A RADIO SURVEY FOR GRAVITATIONAL LENSES IN THE SOUTHERN HEMISPHERE

J.E.J. LOVELL AND P.M. MCCULLOCH Department of Physics, University of Tasmania, Australia

AND

D.L. JAUNCEY Australia Telescope National Facility, CSIRO, Sydney, Australia

We are undertaking an imaging survey with the Australia Telescope Compact Array (ATCA) to find gravitational lens candidates in flat-spectrum Parkes Catalogue radio sources. Flat-spectrum radio sources typically possess a single high brightness temperature nucleus of milliarcsecond size. Such sources, if lensed, will show multiply imaged nuclei with separations that are large compared to their milliarcsecond sizes. Our flat-spectrum sample was selected using the criteria $\alpha_{2.7/5.0} > -0.5$ ($S(\nu) \propto \nu^{\alpha}$), $S_{2.7} >$ 0.34Jy and $\delta \leq -20^{\circ}$, and comprises a total of 461 sources.

Survey observations were made with the ATCA in "cuts" mode (with typically 7 "cuts" per source) at 3 and 6 cm simultaneously. The 3 cm observations allow images to be made at 1 arcsec resolution which, when combined with the 6 cm data, enable spectral index information to be obtained. Simulations show that a 1 min "cut" per source every 2 h over a ~ 12 h period is sufficient to detect a close (~ 1 arcsec) double. This method of observation allowed us to observe ~ 80 sources per day.

The data were edited and calibrated within AIPS and imaged using the Caltech Difmap program (Shepherd et al. 1995). The final self-calibrated images yielded typical dynamic ranges in excess of 100:1. The ATCA data provide source positions with sub-arcsec accuracy and so make the identification of optical counterparts feasible. The COSMOS/UKST Southern Sky Catalogue (see Drinkwater et al. (1995) for a description) has proven invaluable in this task.

To date we have identified three lens candidates, images of which are shown in Figure 1 and described below. Follow up work, including observa-

403

C. S. Kochanek and J. N. Hewitt (eds), Astrophysical Applications of Gravitational Lensing, 403–404. © 1996 IAU. Printed in the Netherlands.

Figure 1. A 3 cm image of PKS 0244-470 super-resolved to reveal the compact nature of the two components (top left), PKS 2321-375 at 6 cm (top right) and PKS 1116-462 at 3 cm (bottom). Contour levels are 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 % of the peak for each source.

tions with the Australian Long Baseline Array and optical CCD imaging, is being carried out on these objects.

PKS 0244–470 is a 1 arcsec compact double. The flux density ratio of the two components is approximately 3:1 with a peak flux density of \sim 1 Jy. Both components possess a flat spectrum, suggesting that this object may be a doubly imaged quasar.

PKS 1116–462 appears as a flat-spectrum double source at the ATCA, thus making it a radio lens candidate, and yet appears as a point source at I, V and B bands at the Anglo Australian Telescope. This may indicate that, if the source is a gravitational lens, then one component may be reddened by an intervening galaxy.

PKS 2321–375 consists of a compact flat-spectrum core with a steep spectrum "jet" to the east and a weak flat-spectrum component to the south-east of the "jet". This object could be in a lensing system where the compact core of a quasar has been doubly imaged.

References

Drinkwater, M., Barnes, & Ellison, 1995, PASA, in press Shepherd, M.C., Pearson, T.J., & Taylor, G.B., 1994, BAAS, 26, 987