
17
Basic elements

Quantum Electrodynamics (QED) is the most accurate physical theory we
have. Its development in the late 1940’s by Dyson, Feynman, Schwinger,
Tomonaga and others is one of man’s great intellectual triumphs. The
key original papers are collected in a volume edited by Schwinger [Sc58];
particularly influential are [Fe49, Fe49a, Dy49]. QED is the culmination
of the development of electrodynamics, special relativity, and quantum
mechanics. The understanding of QED, in terms of covariance, local
gauge invariance, renormalization, and Feynman diagrams laid the basis
for all modern relativistic quantum field theories of the fundamental inter-
actions. Since electron scattering involves the electromagnetic interaction
of relativistic (massless) Dirac particles, QED plays a central role in the
analysis.

The content of QED can be expressed in terms of a set of Feynman
diagrams with corresponding Feynman rules for the S-matrix. We will not
derive these here, as that takes us too far afield; their derivation can
be found in any standard text [Bj65, Fe71], or course (e.g. [Wa91]). The
components of the diagrams are shown in Fig. 17.1. The rules, in the
conventions used in this book, are as follows:

1. Draw all topologically distinct connected diagrams;

2. Include a factor of (−i)(−ie) = −e for each order of perturbation
theory. Here e is algebraic, and for an electron e = −|e|;

3. Include a factor of γμ for each vertex [Fig. 17.1(a)];

4. Include a factor of

−i

(2π)4
1

iγμpμ + me
(17.1)

for each fermion (i.e. electron) propagator [Fig. 17.1(b)];
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130 Part 3 Quantum electrodynamics

Fig. 17.1. Basic elements of Feynman rules for the S-matrix in QED: (a) vertex;
(b) fermion propagator; (c) effective photon propagator.

5. Include a factor of

−i

(2π)4
δμν

q2
(17.2)

for each “effective” photon propagator [Fig. 17.1(c)];1

6. Include a wave function for each of the external particles, e.g.

1√
Ω
u(p) incoming fermion;

1√
2ωΩ

ε(λ)μ incoming photon (17.3)

For a photon with polarization λ in the Coulomb gauge, ε(λ)μ =

(ε(λ), 0) and ε(λ) · k = 0;

7. Read along fermion lines;

8. Include a factor of (2π)4δ(4)(Δp) at each vertex;

9. Integrate over all internal momenta
∫
d4q ≡

∫
d3q dq0;

10. Include a factor of (−1) for each closed fermion loop.

Here we simply treat the hadronic target as an external field, bringing an
electromagnetic interaction into the electron line, which we represent by a
wavy line ending in a cross. For this component:

11. Include a factor for the external field

aμ(q)

(2π)4
(17.4)

1 This result can be obtained by starting in the Coulomb gauge and then combining the

terms coming from the Coulomb interaction (each interaction of order e2) with those

coming from transverse photon exchange (each of order e) in the S-matrix. Terms in qμ
or qν in the photon propagator do not contribute to the S-matrix because of current

conservation [Bj65, Wa91].
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17 Basic elements 131

where the external vector potential has the four-dimensional Fourier
transform

Aext
μ (x) =

∫
eiq·x aμ(q)

(2π)4
d4q (17.5)

We shall be content here to work to first order in the external field.2

Since the electron is light, it can easily radiate as it accelerates, which
it does when scattering from a hadronic target. In computing the lowest
order radiative corrections to the process of electron scattering, one can
consistently confine the analysis to the electron line since it carries charge
and runs completely through a diagram from beginning to end without
termination. Thus the class of third order diagrams which are of first
order in the external field, and which consist of all radiative corections
of order α = e2/4π along the electron line, provide a current conserving,
gauge invariant set. Vacuum polarization in the external photon line can
also be included in this set.

The Feynman diagrams giving the lowest order radiative corrections
in electron scattering are then those shown in Fig. 17.2. Here a term in
δme has been added and subtracted from the starting lagrangian (mass
renormalization) so that the free lagangian represents fermions of the
correct mass, and an additional interaction lagrangian is then present of
the form

δL = δme : ψ̄ψ : (17.6)

The contribution of this mass counterterm must then also be included
consistently in the Feynman rules.3 The processes in Fig. 17.2 constitute the
radiative corrections through order α = e2/4π. We will use the Feynman
rules to set up each expression. The Dirac algebra is straightforward. The
actual evaluation of the resulting integrals follows from the techniques of
Feynman parameterization and four-dimensional momentum integration.4

These methods are also now discussed in standard texts [Bj65], or courses

2 The dominant contribution from terms of higher order in the external field consists

of Coulomb interactions on the incident and outgoing electron lines. These Coulomb

corrections imply that one should really use solutions to the Dirac equation in the

Coulomb field of the target instead of plane waves for the electron. Though technically

complicated, this can be done [Da51, Fe51, Ra54, Gr62, On63, Cu66, Tu68] (an updated

version of the appropriate code is available from [He00]). Contributions of second

order in the external field where a nuclear target is virtually excited and then de-

excited, the so-called dispersion corrections, are much more difficult to estimate reliably

[Sc55, de66, Fr72b, Do75].
3 It is assumed that δme is normal ordered [Bj65, Fe71] and has a power series expansion

δm(2) e
2 + δm(4) e

4 + · · ·.
4 Or integration in n = 4 + ε dimensions if one uses dimensional regularization.
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132 Part 3 Quantum electrodynamics

Fig. 17.2. Feynman diagrams for lowest-order radiative corrections in electron
scattering.

[Wa91], and it is not the intent to reproduce the derivations. We are
primarily concerned here with the results, how they fit together, how they
enter into electron scattering, and their interpretation.

Let us consider each component in turn. Consider first the electron
self-energy. The photon loop and mass counter term corrections to the
S-matrix for a free electron are illustrated in Fig. 17.3. The Feynman rules
give the S-matrix as5

Sfi = − (2π)4i

Ω
δ(4)(k′ − k)ū(k)(Σ − δme)u(k) (17.7)

Here the self-energy insertion is defined as

Σ − δme = − ie2

(2π)4

∫
d4q

q2
γμ

1

iγλ(k − q)λ + me
γμ − δme (17.8)

From Lorentz covariance and power counting, this expression can be

5 For the mass counter term one has the factors (−1)(−i)δme.

https://doi.org/10.1017/9781009290616.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.021


17 Basic elements 133

Fig. 17.3. Electron self-energy.

put in the following form

Σ − δme = A − δme

+(ikλγλ + me)B + (ikλγλ + me)Σf(ikσγσ + me) (17.9)

Here A and B are (infinite) constants independent of k, and Σf is finite.
To give mathematical definition to the divergent integral in Eq. (17.8)

we introduce a covariant Pauli–Villars regulator which amounts here to
replacing the photon propagator by

1

q2
−→ 1

q2
− 1

q2 + Λ2
(17.10)

For very large Λ2 the second term is negligible, while at fixed Λ2 the
asymptotic behavior of the photon propagator is changed to Λ2/q2(q2 +
Λ2), and one picks up enough convergence to make the integral finite.
Explicit evaluation of the resulting integral on the mass shell, that is for
ikλγλ + me = 0, yields the mass counter term [Bj65, Wa91]

A ≡ δme =
3α

2π
me

(
ln

Λ

me
+

1

4

)
(17.11)

Consider next vacuum polarization. The lowest order vacuum polariza-
tion correction to the S-matrix for a free photon as illustrated in Fig. 17.4.
The analytic expression is given by

Sfi = − (2π)4i

Ω
δ(4)(l′ − l)

1√
4ωω′ ε

f
μ(−Πμν)ε

i
ν (17.12)

The polarization part is defined by

Πμν =− ie2

(2π)4

∫
d4k trace

[
1

iγλ(k − l/2)λ + me
γμ

1

iγσ(k + l/2)σ + me
γν

]
=(lμlν − l2δμν)C(l2) (17.13)
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134 Part 3 Quantum electrodynamics

Fig. 17.4. Lowest order vacuum polarization correction.

The second relation follows from Lorentz covariance and current conser-
vation. One can write

C(l2) = C(0) − l2Πf(l
2) (17.14)

In order to produce a mathematically well-defined expression, while main-
taining current conservation, one can use a more general Pauli–Villars
regulator on the loop integral in Eq. (17.13)

Πμν(l, m
2
e) →

∫
g(λ2)dλ2[Πμν(l, m

2
e) − Πμν(l, m

2
e + λ2)] (17.15)

with g(λ2) receiving contributions only from very large λ2 ≈ Λ2 and∫
g(λ2)dλ2 = 1∫

λ2g(λ2)dλ2 = 0 (17.16)

One argument in justification of this regularization procedure is that
equating higher moments of λ2 to zero, thereby obtaining additional
convergence, will not change the answer. Evaluation of the integrals now
results in [Bj65, Wa91]

C(0) =
2α

3π
ln

Λ

me
(17.17)

Let us denote by e0 the electric charge used up to this point, i.e. the
“bare charge” appearing in the initial lagrangian. If one now combines
the lowest order contribution with the vacuum polarization contribution
for scattering of an electron in an external field [Fig. 17.2(a), (g)], the
result is to change the amplitude in the limit q2 → 0 from e2

0/q
2 → e2/q2

where the renormalized charge is given by

e2 = e2
0[1 − C(0)] = e2

0

(
1 − 2α0

3π
ln

Λ

me

)
(17.18)
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Fig. 17.5. Vertex correction. Here k ≡ k1 and k′ ≡ k2.

To this order, in the radiative corrections, one can replace e2
0 → e2. The

vacuum polarization contribution to the above process is now obtained
by making the following replacement in the lowest order term

1

q2
−→ 1

q2
[1 + q2Πf(q

2)] (17.19)

Here Πf(q
2) is calculated with e2.

The remaining finite momentum integrals can be evaluated to give the
answer in terms of an integral over the Feynman parameter x [Bj65, Wa91]

l2Πf(l
2) =

2α

π

∫ 1

0
x(1 − x) ln

[
1 + x(1 − x)

l2

m2
e

]
dx (17.20)

→ α

15π

l2

m2
e

; l2 � m2
e

→ α

3π

[
ln

l2

m2
e

− 5

3

]
; l2 � m2

e

Consider next the vertex correction in Fig. 17.5. The analytic expression
for the contribution to the S-matrix is given by

Sfi = − e

Ω
ū(k2)Λμ(k2, k1)u(k1)a

ext
μ (q) (17.21)

Λμ(k2, k1) =
ie2

(2π)4

∫
d4l

l2
γν

1

iγλ(k1 − l + q)λ + me
γμ

1

iγσ(k1 − l)σ + me
γν

The general form of this vertex follows from Lorentz covariance and
power counting as

Λμ = Lγμ + ΛμC(k2, k1) (17.22)

Here L is a (infinite) constant and the diagonal matrix element of the
remaining convergent term, taken between Dirac spinors, vanishes. Regu-
larization of the photon propagator as in Eq. (17.10) again eliminates the
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136 Part 3 Quantum electrodynamics

ultraviolet divergence at high momenta (short wavelengths), and explicit
evaluation gives [Bj65, Wa91]

L =
α

2π

[
ln

Λ

me
+

9

4
− 2 ln

me

λ

]
(17.23)

Here, to protect against the infrared divergence at low momenta (long
wavelengths), the photon has been given a tiny, fictitious mass and the
photon propagator has been replaced by

1

q2
−→ 1

q2 + λ2
(17.24)

Note that no physical result can depend on the fictitious photon mass λ2.
It is relatively easy to evaluate the matrix element of the remaining term

in Eq. (17.22) between Dirac spinors ū(k2)ΛμC(k2, k1)u(k1) with the result
[Bj65, Wa91]

ΛμC
.
= FE(q2)γμ − FM(q2)

1

2me
σμνqν (17.25)

FM(q2) =
α

π

∫ 1

0
dx

∫ x

0
dy

m2
e x(1 − x)

m2
e x

2 + q2y(x − y)

FE(q2) = − α

2π

∫ 1

0
dx

∫ x

0
dy

{
ln

(
1 +

q2y(x − y)

m2
e x

2 + λ2(1 − x)

)

+2m2
e

(
1 − x − x2

2

)

×
[

1

m2
e x

2 + λ2(1 − x) + q2y(x − y)
− 1

m2
e x

2 + λ2(1 − x)

]

+q2(1 − x + y)(1 − y)

[
1

m2
e x

2 + λ2(1 − x) + q2y(x − y)

]}

Here q = k2 − k1, and
.
= means “taken between Dirac spinors.”

The limiting cases of these results are as follows

FM(0) =
α

2π

FE(q2) =
α

3π

q2

m2
e

(
3

8
− ln

me

λ

)
; q2 � m2

e

= − α

2π
ln

q2

m2
e

ln
q2

λ2
; q2 � m2

e (17.26)

Note that the remaining finite part of the vertex FE(q2) is infrared diver-
gent; therefore it is not an observable.
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By direct calculation, one can now establish to O(α) that

B = L (17.27)

In fact, this relation holds to all orders. It was proven by Ward who
observed the general result known as Ward’s Identity [Wa50]

∂

∂kμ
Σ�(k) = iΛμ(k, k) (17.28)

Here Σ� is the proper self-energy and Λμ the proper vertex [Bj65, Fe71].
In second order, this result follows immediately from Eqs. (17.8, 17.21).
Equation (17.27) can then be derived from it by taking matrix elements
between Dirac spinors of identical four-momentum.6

When the self-energy insertion Σ − δme is on an external line, the
resulting expression obtained from Eqs. (17.8, 17.9) is ambiguous since,
for example,

−B(iγλkλ + me)
1

iγλkλ + me
u(k) = −0

0
B u(k) (17.29)

A proper adiabatic limiting procedure says that here the correct answer is
to retain −(B/2)u(k), and similarly for the other leg [Bj65, Wa91].

The use of the Fourier transform of Maxwell’s equations for the external
field allows one to relate that field to its source7

aext
μ (q) =

e0

q2
jext
μ (q) (17.30)

In summary, the addition of all the diagrams in Fig. 17.2 yields to O(e4
0)

Sfi = −e2
0

Ω
ū(k2)

{
γμ

[
1 + L − B

2
− B

2
− C

]
+ γμq

2Πf(q
2)

+ΛμC(k2, k1)

}
u(k1)

1

q2
jext
μ (q) (17.31)

Ward’s identity now leads to an exact cancellation of the term L − B = 0.
The remaining constant C , arising entirely from vacuum polarization, serves
to renormalize the charge according to Eq. (17.18). As above, one can then
replace α0 = α + O(e4

0) to this order in the radiative corrections.

6 Ward’s Identity follows in general by looking at all the Feynman diagrams involved, let-

ting the external electron momentum flow along the electron line, and then differentiating

with respect to this momentum.
7 This relation explicitly exhibits the one additional power of e0 in the process — i.e., both

ends of the vacuum polarization insertion end up on a charge.
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The result is

Sfi = −e2

Ω
ū(k2)

{
γμ[1 + q2Πf(q

2)] + ΛμC(k2, k1)
}
u(k1)

1

q2
jext
μ (q)

= − e

Ω
ū(k2)

{
γμ[1 + FE(q2) + q2Πf(q

2)] − FM(q2)
1

2me
σμνqν

}
×u(k1)a

ext
μ (q) (17.32)

Several comments are relevant:

• This amplitude is to be computed with the renormalized charge;

• This result is finite as Λ → ∞; there is no longer any ultraviolet
divergence;

• The exact second-order (integral) expressions for the quantities ap-
pearing in this result are given in Eqs. (17.20, 17.25);

• The presence of form factors in this expression indicates that the
electron does indeed have an internal structure; it arises from the
interaction with the virtual photon field and is completely calculable
within the framework of QED;8

• This expression is still infrared divergent in that it depends on the
fictitious photon mass λ2 — hence, as it stands, it is unobservable.

8 There is further internal structure of the electron at much shorter distance scales arising

from the weak interactions.
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