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Abstract We solve the inverse spectral problems for the class of Sturm–Liouville operators with singular
real-valued potentials from the Sobolev space W s−1

2 (0, 1), s ∈ [0, 1]. The potential is recovered from two
spectra or from one spectrum and the norming constants. Necessary and sufficient conditions for the
spectral data to correspond to a potential in W s−1

2 (0, 1) are established.
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1. Introduction

The aim of this paper is to extend the inverse spectral theory of Sturm–Liouville oper-
ators on (0, 1) to the case of potentials that are distributions from the Sobolev space
W s−1

2 (0, 1), s ∈ [0, 1]. The classical inverse Sturm–Liouville theory developed in 1950s
by Gel’fand, Levitan, Marchenko and Krein [6, 14, 19] covers the case s = 1, and the
other extreme case s = 0 has recently been treated in [1,3,4,9,11,24] (see also the refer-
ences therein). Since, however, many singular potentials of interest in quantum mechanics
belong to the intermediate spaces between W 0

2 (0, 1) = L2(0, 1) and W−1
2 (0, 1) (e.g. the

Dirac δ-function and the Coulomb 1/x-potential are in W s−1
2 (0, 1) for all s < 1

2 ), such
an extension seems important for applications as it would provide more precise spectral
information about the corresponding models.

We start by recalling some of the classical results of the inverse Sturm–Liouville theory.
Suppose that q ∈ L2(0, 1) is real valued and that h0, h1 ∈ R̄ := R ∪ {∞}. Denote by
S(q, h0, h1) a Sturm–Liouville operator in L2(0, 1) given by the differential expression

ly = −y′′ + qy (1.1)
∗ Present address: Institut für Angewandte Mathematik, Abteilung für Wahrscheinlichkeitstheorie und
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and the boundary conditions

y′(0) = h0y(0), y′(1) = h1y(1),

h0 = ∞ or h1 = ∞ corresponding to the Dirichlet boundary condition y(0) = 0 or y(1) =
0, respectively. Spectral properties of the operator S(q, h0, h1) are well understood—
namely, this operator is self-adjoint, bounded below and has a simple discrete spectrum
λ1(q, h0, h1) < λ2(q, h0, h1) < · · · with a limit point at infinity. Moreover, Borg [2]
showed (see also a simpler proof by Levinson [15]) that specification of two spectra for
two different values of h0 determines q uniquely.

Theorem A. Assume that real-valued integrable functions q̃ and q and parameters
h0, h

′
0, h1 ∈ R̄, h′

0 �= h0, are such that λn(q̃, h0, h1) = λn(q, h0, h1) and λn(q̃, h′
0, h1) =

λn(q, h′
0, h1) for all n ∈ N. Then q̃ = q a.e. on (0, 1).

The classical inverse Sturm–Liouville theory provides the algorithm of reconstruction
of q (as well as of the corresponding boundary conditions) from two spectra and also gives
necessary and sufficient conditions in order that two given sequences could be spectra
of S(q, h0, h1) and S(q, h′

0, h1) for some potential q on (0, 1) and some h0, h
′
0, h1 ∈ R̄,

h′
0 �= h0. Typically, such conditions require interlacing of these sequences and their proper

asymptotics, as in the following theorem of Marchenko [20, Theorem 3.4.1].

Theorem B. Sequences λ1 < λ2 < · · · and µ1 < µ2 < · · · of real numbers are spectra
of the Sturm–Liouville operators S(q, ∞,∞) and S(q, 0,∞) with a potential q ∈ L2(0, 1)
if and only if the following conditions are satisfied:

(A1) the sequences (λn) and (µn) interlace, i.e. µk < λk < µk+1 for all k ∈ N;

(A2) the numbers λn and µn have the representations

λn =
(

πn +
c

n
+

λ′
n

n

)2

, µn =
(

πn − π

2
+

c

n
+

µ′
n

n

)2

, (1.2)

for some c ∈ R (equal to
∫

q) and some �2-sequences (λ′
n) and (µ′

n).

Similar results for finite h1 and integrable q have been established by Levitan and
Gasymov [17] and Krein [14].

In the recent work by Shkalikov and Savchuk (see [25,26] and the references therein)
most of the classical Sturm–Liouville theory has been generalized to the case of distribu-
tional potentials in W−1

2 (0, 1). The corresponding self-adjoint operators could be defined
by the form sum method; however, such a definition is rather abstract and does not
take into account the differential nature of these operators. The explicit construction
of [25,26] define the same operators as differential ones; it rests on the regularization
by quasi-derivatives and proceeds as follows. Let q be a real-valued distribution from
W−1

2 (0, 1) and let σ ∈ L2(0, 1) be any of its distributional primitives; then the differen-
tial expression (1.1) (understood in the sense of distributions) can be regularized through

lσy := −(y′ − σy)′ − σy′ (1.3)
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on the natural domain

dom lσ := {y ∈ W 1
1 (0, 1) | y′ − σy ∈ W 1

1 (0, 1), lσy ∈ L2(0, 1)}.

We observe that the derivative y′ of y ∈ dom lσ need not be continuous, while the quasi-
derivative y[1] := y′ − σy is (absolutely) continuous by construction. It was shown in [25]
that the restriction of lσ by the boundary conditions

y[1](0) = h0y(0), y[1](1) = h1y(1) (1.4)

with h0, h1 ∈ R̄ determines a self-adjoint operator in L2(0, 1) that is bounded below and
has simple discrete spectrum. We remark that choosing σ + h as a primitive of q and
h0 − h, h1 − h as the new parameters in the boundary conditions (1.4) does not change
the operator. If h0 is finite and h = h0, this makes the Robin boundary condition a
‘Neumann’ one for a special choice of the primitive σ, so that there is no distinguished
Neumann boundary condition in this case.

To fix the notation, from now on we shall denote by σ the primitive of q of zero
mean (i.e. such that

∫
σ = 0) and by T (q, h0, h1) the Sturm–Liouville operator given

by the differential expression lσ of (1.3) with this σ and the boundary conditions (1.4).
Observe that for a regular potential q ∈ L2(0, 1) the operator T (q, h0, h1) coincides with
S(q, h0 + σ(0), h1 + σ(1)), so that, e.g. T (q, −σ(0),∞) = S(q, 0,∞).

Take some q ∈ W−1
2 (0, 1) and h ∈ R and denote by λ1 < λ2 < · · · and µ1 < µ2 < · · ·

the eigenvalues of the operators T (q, ∞,∞) and T (q, h, ∞), respectively. It is known [1,
11,26] that the sequences (λn) and (µn) satisfy (A1) and the following relaxed version
of (A2):

(A2′) the numbers λn and µn obey the asymptotics

λn = (πn + λ̃n)2, µn = (πn − 1
2π + µ̃n)2 (1.5)

with some �2-sequences (λ̃n) and (µ̃n).

Conversely, it was shown in [11] that if two sequences (λn) and (µn) of real numbers
satisfy properties (A1) and (A2′), then there exist unique q ∈ W−1

2 (0, 1) and h ∈ R such
that (λn) and (µn) are the eigenvalues of the Sturm–Liouville operators T (q, ∞,∞) and
T (q, h, ∞), respectively. In other words, the inverse spectral problem of recovering the
potential from two spectra is uniquely soluble in the class of Sturm–Liouville operators
with singular potentials from W−1

2 (0, 1). The papers [9] and [11] give the corresponding
reconstruction algorithm and thus extend the classical inverse Sturm–Liouville theory.

We also observe that some inverse spectral problems for a Sturm–Liouville operator
in impedance form a−1(au′)′, with an impedance function a ∈ W 1

2 (0, 1), were treated
in [1,3,4,24]. Such an operator is self-adjoint in L2((0, 1); a dx) under suitable boundary
conditions and is unitarily similar to T (q, h0, h1) with q = (

√
a)′′/

√
a ∈ W−1

2 (0, 1) and
suitable h0, h1 ∈ R̄.

One of the main aims of the present work is to show that the inverse spectral problem of
determining the potential q from the spectra of the operators T (q, h0, h1) and T (q, h′

0, h1),
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h′
0 �= h0, is completely soluble in the class of Sturm–Liouville operators with potentials

q from W s−1
2 (0, 1), for every s ∈ [0, 1]. For the sake of definiteness, we shall concentrate

on the case h0 = h1 = ∞ and h′
0 = h ∈ R only, the other cases being analogous. More

precisely, we shall formulate necessary and sufficient conditions on sequences (λn) and
(µn) in order that they should be eigenvalues of the Sturm–Liouville operators T (q, ∞,∞)
and T (q, h, ∞), respectively, for some choice of q in W s−1

2 (0, 1) and h ∈ R.
For an arbitrary intermediate value s ∈ (0, 1), the direct spectral problem was studied

in [10, 13, 26]. For instance, it was proved in [10] that the eigenvalue remainders λ̃n

and µ̃n defined in (1.5) are, respectively, even and odd sine Fourier coefficients of some
function from W s

2 (0, 1) (cf. the above-mentioned cases s = 0 in (A2′) and s = 1 in (A2)).
More exactly, the main result from [10] reads as follows.

Theorem C. Assume that q ∈ W s−1
2 (0, 1) for some s ∈ [0, 1] and that h ∈ R and

denote by λ1 < λ2 < · · · and µ1 < µ2 < · · · the eigenvalues of the Sturm–Liouville
operators T (q, ∞,∞) and T (q, h, ∞), respectively. Define λ̃n and µ̃n through (1.5); then
the function σ∗ given by

σ∗(x) := 2
∞∑

n=1

µ̃n sin[(2n − 1)πx] − 2
∞∑

n=1

λ̃n sin(2πnx) (1.6)

belongs to W s
2 (0, 1). Moreover, σ∗ − σ ∈ W 2s

2 (0, 1), where σ is the distributional primitive
of q of zero mean.

In this paper we show that the condition σ∗ ∈ W s
2 (0, 1) is a sufficient addendum to (A1)

and (A2′) to guarantee that the corresponding potential belongs to W s−1
2 (0, 1). Our main

result is as follows.

Theorem 1.1. In order that two sequences (λn) and (µn) be eigenvalues of the Sturm–
Liouville operators T (q, ∞,∞) and T (q, h, ∞), respectively, with some q ∈ W s−1

2 (0, 1),
s ∈ [0, 1] and h ∈ R, it is necessary and sufficient that assumptions (A1), (A2′) hold and
that the function σ∗ of (1.6) belongs to W s

2 (0, 1).

We remark that the case s = 1 of this theorem is more general than Theorem B as
it allows different constants c in the asymptotics for λn and µn in (1.2) at the cost of
allowing the Robin boundary condition y′(0) = [σ(0) + h]y(0) for the second operator.
The same c appears if and only if σ∗(0) = 0, and the latter condition is equivalent to
having σ(0) + h = 0 [10], which results in Marchenko’s Theorem B.

As an intermediate step we solve the inverse spectral problem of recovering the poten-
tial of a Sturm–Liouville expression from its Dirichlet spectrum (λn) and the so-called
norming constants (αn). We recall that

αn :=
(

2
∫ 1

0
|un(x)|2 dx

)−1

,

where un is an eigenfunction of the operator T (q, ∞,∞) that corresponds to the eigen-
value λn and satisfies the initial condition u

[1]
n (0) =

√
|λn|. Alternatively, we can reduce

the inverse spectral problem of reconstructing the potential q and the number h from two
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spectra to that of recovering q and h from the spectrum (µn) of the operator T (q, h, ∞)
and the norming constants (βn); the latter are defined as

βn :=
(

2
∫ 1

0
|vn(x)|2 dx

)−1

,

where vn is an eigenfunction of the operator T (q, h, ∞) that corresponds to the eigen-
value µn and satisfies the initial conditions vn(0) = 1 and v

[1]
n (0) = h.

In the case q ∈ L2(0, 1) (i.e. for s = 1) the norming constants αn and βn have the
asymptotics (cf. [22, Theorem 3.4])

αn = 1 +
α′

n

n
, βn = 1 +

β′
n

n

for some (α′
n), (β′

n) ∈ �2. Gel’fand and Levitan [6] (see also [16, Chapter II.10]) proved
that the mapping sending the triple (q, h0, h1) ∈ L1((0, 1), R)×R

2 into the spectral data of
the operator S(q, h0, h1)—the sequences of its eigenvalues and norming constants—is one-
to-one and presented the reconstruction algorithm. Dahlberg and Trubowitz [5] specified
the structure of the set of the spectral data of the Sturm–Liouville operators S(q, 0,∞)
with Neumann–Dirichlet boundary conditions when q runs through L2((0, 1), R). In the
case of the Dirichlet boundary conditions, Pöschel and Trubowitz [22] proved that such
a mapping is a local real analytic isomorphism of L2((0, 1), R) and the set of the spectral
data, the latter being endowed with a suitable topology.

In the case q ∈ W−1
2 (0, 1) (i.e. for s = 0) the norming constants αn of T (q, ∞,∞) and

βn of T (q, h, ∞) have the asymptotics [9]

αn = 1 + α̃n, βn = 1 + β̃n, (α̃n), (β̃n) ∈ �2. (1.7)

It was proved in [9] that any pair of sequences (µn) and (βn) with µ1 < µ2 < · · ·
obeying (A2′) and positive βn satisfying (1.7) form the spectral data of the operator
T (q, h, ∞) for unique q ∈ L2(0, 1) and h ∈ R; moreover, the mapping between the space
of the operators T (q, h, ∞) and the set of their spectral data becomes a real analytic
isomorphism in suitable topologies. Similar statements hold for the case of Dirichlet
boundary conditions, i.e. for the sequences of λn and αn.

Our second aim is to specify the above results for the class of potentials in W s−1
2 (0, 1)

with s ∈ (0, 1). The asymptotics of αn and βn are specified as follows. We introduce the
function γ via the formula

γ(x) := 2
∞∑

n=1

β̃n cos[(2n − 1)πx] − 2
∞∑

n=1

α̃n cos(2πnx) (1.8)

and also define
γ∗(x) := −2xσ∗(1 − x).

Theorem 1.2. Assume that σ∗ ∈ W s
2 (0, 1) for some s ∈ [0, 1]. Then the function γ

also belongs to W s
2 (0, 1); moreover, γ − γ∗ ∈ W 2s

2 (0, 1).
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We see that if the primitive σ of q belongs to W s
2 (0, 1), then the sequences (−α̃n)

and (β̃n) are even and odd cosine Fourier coefficients, respectively, of the function
γ ∈ W s

2 (0, 1) given by (1.8). In the reverse direction the claim is that if the even and
odd parts of the functions σ∗ and γ belong to W s

2 (0, 1), then σ is a W s
2 -function (and

hence the potential q belongs to W s−1
2 (0, 1)). More exactly, the following two statements

hold true.

Theorem 1.3. Sequences λ1 < λ2 < · · · and α1, α2, . . . are eigenvalues and norm-
ing constants of the Sturm–Liouville operator T (q, ∞,∞) with a real-valued potential
q ∈ W s−1

2 (0, 1), s ∈ [0, 1], if and only if the following conditions are satisfied:

(B1) the λn have the representation λn = (πn + λ̃n)2, where the numbers λ̃n, n ∈ N, are
the even sine Fourier coefficients of some function from W s

2 (0, 1);

(B2) the αn are positive and the numbers α̃n := αn − 1, n ∈ N, are the even cosine
Fourier coefficients of some function from W s

2 (0, 1).

Theorem 1.4. Sequences µ1 < µ2 < · · · and β1, β2, . . . are eigenvalues and norm-
ing constants of the Sturm–Liouville operator T (q, h, ∞) with a real-valued potential
q ∈ W s−1

2 (0, 1), s ∈ [0, 1], and h ∈ R if and only if the following conditions are satisfied:

(C1) the µn have the representation µn = π(n − 1
2 ) + µ̃n, where the numbers µ̃n, n ∈ N,

are the odd sine Fourier coefficients of some function from W s
2 (0, 1);

(C2) the βn are positive and the numbers β̃n := βn − 1, n ∈ N, are the odd cosine Fourier
coefficients of some function from W s

2 (0, 1).

The organization of the paper is as follows. In § 2 the asymptotics of the norming con-
stants αn and βn are established, based on which Theorem 1.2 is proved. The algorithm
of solution of the inverse spectral problems under consideration and the proofs of The-
orems 1.1, 1.3 and 1.4 are given in § 3. Finally, some necessary facts about the Sobolev
spaces W s

2 (0, 1) and Fourier series therein are gathered together in Appendix A.

2. Asymptotics of the norming constants

Suppose that q ∈ W−1
2 (0, 1) is real-valued, that σ ∈ L2(0, 1) is its primitive of zero mean,

and that h ∈ R. Throughout the rest of this section, λ1 < λ2 < · · · and µ1 < µ2 < · · · will
stand for the eigenvalues of the Sturm–Liouville operators T (q, ∞,∞) and T (q, h, ∞),
respectively, that were defined in § 1. Observe that λn + c and µn + c, c ∈ C, are the
eigenvalues of the operators T (q + c,∞,∞) and T (q + c, h − c/2,∞), respectively; it
therefore suffices to study the case of positive λn and µn. Recall also that λn and µn

satisfy conditions (A1) and (A2′) of § 1.
We denote by u±(· , λ) and v−(· , λ) solutions of the equation lσ(u) = λu (lσ being the

differential expression of (1.3)) that satisfy the conditions

u−(0, λ) = u+(1, λ) = v
[1]
− (0, λ) − h = 0, u

[1]
− (0, λ) = u

[1]
+ (1, λ) = v−(0, λ) = 1.
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Observe that according to the definition of lσ the equation lσ(u) = λu is to be regarded
as the first-order system

d
dx

(
u

u[1]

)
=

(
σ 1

−σ2 − λ −σ

) (
u

u[1]

)
.

Since the entries of the above matrix are integrable, this system enjoys the standard
existence and uniqueness properties; in particular, the solutions u±(· , λ) and v−(· , λ)
are well defined for all λ ∈ C.

Set Φ(λ) := u−(1, λ) and Ψ(λ) := u
[1]
+ (0, λ) − hu+(0, λ); then the numbers λn and µn

are zeros of Φ and Ψ , respectively. Φ and Ψ are entire functions of order 1
2 and hence can

be represented by their canonical Hadamard products [11], namely,

Φ(λ) =
∞∏

n=1

λn − λ

π2n2 , Ψ(λ) =
∞∏

n=1

µn − λ

π2(n − 1
2 )2

.

Moreover, it turns out that the norming constants αn = (
√

2λn‖u−(· , λn)‖)−2 and
βn = (

√
2‖v−(· , µn)‖)−2 can be expressed via the functions Φ and Ψ only (cf. [7,11]).

Lemma 2.1. The norming constants αn and βn satisfy the following equalities:

αn =
Ψ(λn)

2λnΦ̇(λn)
, βn = − Φ(µn)

2Ψ̇(µn)
. (2.1)

Proof. The Green function G(x, y, λ) of the operator T (q, ∞,∞) (i.e. the kernel of
the resolvent (T (q, ∞,∞) − λ)−1) equals

G(x, y, λ) =
∞∑

n=1

2αnλnu−(x, λn)u−(y, λn)
λn − λ

.

On the other hand, we have

G(x, y, λ) =
1

W (λ)

{
u−(x, λ)u+(y, λ), 0 � x � y � 1,

u−(y, λ)u+(x, λ), 0 � y � x � 1,

where W (λ) := u+(x, λ)u[1]
− (x, λ) − u−(x, λ)u[1]

+ (x, λ) is the Wronskian of u+ and u−.
The value of W (λ) is independent of x ∈ [0, 1]; in particular, taking x = 0 and x = 1
yields

W (λ) ≡ u+(0, λ) ≡ −u−(1, λ) ≡ −Φ(λ). (2.2)

Equating the two expressions for the Green function and comparing the residues at
the poles λ = λn, we find that

2αnλnu−(y, λn) =
u+(y, λn)

Φ̇(λn)
.
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Observe that u−(· , λn) and u+(· , λn) are collinear and hence

u+(· , λn)
u−(· , λn)

=
u

[1]
+ (· , λn) − hu+(· , λn)

u
[1]
− (· , λn) − hu−(· , λn)

= u
[1]
+ (0, λn) − hu+(0, λn) = Ψ(λn);

combining the above relations, we conclude that

αn =
u+(y, λn)
u−(y, λn)

1
2λnΦ̇(λn)

=
Ψ(λn)

2λnΦ̇(λn)
,

as claimed.
In a similar fashion we equate two expressions for the Green function of the operator

T (q, h, ∞), namely,

∞∑
n=1

2βnv−(x, µn)v−(y, µn)
µn − λ

≡ 1
W1(λ)

{
v−(x, λ)u+(y, λ), 0 � x � y � 1,

v−(y, λ)u+(x, λ), 0 � y � x � 1.

Here W1 is the Wronskian of u+ and v− and it is identically equal to −Ψ , as follows from
the equalities

W1(λ) := u+(x, λ)v[1]
− (x, λ) − v−(x, λ)u[1]

+ (x, λ) = hu+(0, λ) − u
[1]
+ (0, λ) = −Ψ(λ).

Therefore, we find that

βn =
u+(y, µn)

2v−(y, µn)Ψ̇(µn)
=

u+(0, µn)
2Ψ̇(µn)

= −u−(1, µn)
2Ψ̇(µn)

= − Φ(µn)
2Ψ̇(µn)

,

where the second equality is obtained by taking y = 0, while the third one follows from
(2.2). The lemma is proved. �

In what follows, we shall say that a function f ∈ L2(0, 1) is odd (respectively, even) if
f(1 − x) ≡ −f(x) (respectively, if f(1 − x) ≡ f(x)). Denote by L2,o(0, 1) and L2,e(0, 1)
the subspaces of L2(0, 1) consisting of odd and even functions, respectively. We shall
denote by fo and fe, respectively, the odd and even parts of a function f ; obviously,

fo(x) = 1
2 [f(x) − f(1 − x)], fe(x) = 1

2 [f(x) + f(1 − x)].

Lemma 2.2. The functions Φ and Ψ admit the integral representations

Φ(λ) =
sin

√
λ√

λ
+

∫ 1

0
φ(x)

sin[
√

λ(1 − 2x)]√
λ

dx,

Ψ(λ) = cos
√

λ +
∫ 1

0
ψ(x) cos[

√
λ(1 − 2x)] dx,

(2.3)

in which φ ∈ L2,o(0, 1) and ψ ∈ L2,e(0, 1).
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Proof. Using the technique of the transformation operators [12], Φ and Ψ can be
shown to admit the integral representations of the form

Φ(λ) =
sin

√
λ√

λ
+

∫ 1

0
φ̃(x)

sin
√

λx√
λ

dx,

Ψ(λ) = cos
√

λ +
∫ 1

0
ψ̃(x) cos

√
λx dx

with some L2-functions φ̃ and ψ̃; see the detailed derivation in [11]. Now we put

φ(x) :=

{
φ̃(1 − 2x) if x ∈ [0, 1

2 ],

−φ̃(2x − 1) if x ∈ ( 1
2 , 1],

ψ(x) :=

{
ψ̃(1 − 2x) if x ∈ [0, 1

2 ],

ψ̃(2x − 1) if x ∈ ( 1
2 , 1].

It is easily seen that φ ∈ L2,o(0, 1), ψ ∈ L2,e(0, 1), and that equalities (2.3) hold. The
lemma is proved. �

The next lemma tells us that the values of Φ and Ψ at the points λn and µn are
expressed through sine and cosine Fourier coefficients of some related functions. In the
following, sn(f) and cn(f) will stand for, respectively, the nth sine and the nth cosine
Fourier coefficients of a function f ∈ L2(0, 1); see (A 1) for exact formulae. Also, we
denote by M the operator of multiplication by 1 − 2x, i.e. (Mf)(x) = (1 − 2x)f(x) and
put λ̃n :=

√
λn − πn and µ̃n :=

√
µn − π(n − 1

2 ), n ∈ N.

Lemma 2.3. For an arbitrary f ∈ L2(0, 1), the following equalities hold:

(1)
∫ 1

0
f(x) sin[

√
λn(1 − 2x)] dx = (−1)n+1[s2n(f) − λ̃nc2n(Mf) + λ̃2

ns2n(f1)],

(2)
∫ 1

0
f(x) cos[

√
λn(1 − 2x)] dx = (−1)n[c2n(f) + λ̃ns2n(Mf) + λ̃2

nc2n(f2)],

(3)
∫ 1

0
f(x) sin[

√
µn(1 − 2x)] dx = (−1)n+1[c2n−1(f) + µ̃ns2n−1(Mf) + µ̃2

nc2n−1(f3)],

(4)
∫ 1

0
f(x) cos[

√
µn(1 − 2x)] dx = (−1)n+1[s2n−1(f) − µ̃nc2n−1(Mf) + µ̃2

ns2n−1(f4)],

where fj , j = 1, 2, 3, 4, are some functions from L2(0, 1).

Proof. We shall prove only part (1) as the other parts are established analogously.
Using the equality

sin[
√

λn(1− 2x)] = (−1)n+1 cos[λ̃n(1− 2x)] sin(2πnx)+ (−1)n sin[λ̃n(1− 2x)] cos(2πnx),
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the asymptotic relations

sin t = t + O(t3), cos t = 1 − t2/2 + O(t4), t → 0,

and the fact that (λ̃n) ∈ �2, we find that∫ 1

0
f(x) sin[

√
λn(1 − 2x)] dx = (−1)n+1[s2n(f) − λ̃nc2n(Mf) + λ̃2

nan]

for some �2-sequence (an). Clearly, there exists a function f1 ∈ L2(0, 1) such that
an = s2n(f1) for all n ∈ N and the proof of part (1) is complete. �

Remark 2.4. Put

g1 := σ∗ ∗̃ Mf + σ∗ ∗̃ (σ∗ ∗̂ f1), g2 := −σ∗ ∗̂ Mf + σ∗ ∗̂ (σ∗ ∗̃ f2),

g3 := σ∗ ∗̂ Mf + σ∗ ∗̂ (σ∗ ∗̃ f3), g4 := −σ∗ ∗̃ Mf + σ∗ ∗̃ (σ∗ ∗̂ f4),

where the operations ‘ ∗̂ ’ and ‘ ∗̃’ are introduced in Appendix A. By virtue of Lemma A 2
we can restate equalities (1)–(4) of the previous lemma as follows:

(1′)
∫ 1

0
f(x) sin[

√
λn(1 − 2x)] dx = (−1)n+1s2n(f + g1),

(2′)
∫ 1

0
f(x) cos[

√
λn(1 − 2x)] dx = (−1)nc2n(f + g2),

(3′)
∫ 1

0
f(x) sin[

√
µn(1 − 2x)] dx = (−1)n+1c2n−1(f + g3),

(4′)
∫ 1

0
f(x) cos[

√
µn(1 − 2x)] dx = (−1)n+1s2n−1(f + g4).

If the functions σ∗ and f belong to W s
2 (0, 1) for some s ∈ [0, 1], then Mf ∈ W s

2 (0, 1) by
Proposition A 1, and thus Corollary A 4 implies that the above functions gj , j = 1, 2, 3, 4,
belong to W 2s

2 (0, 1).

Using (2.1), the integral representations for Φ and Ψ , and the asymptotics of λn and µn,
we can show that the norming constants αn and βn obey the asymptotics αn = 1 + α̃n

and βn = 1 + β̃n with �2-sequences (α̃n) and (β̃n). It turns out that if the spectral data
(λn) and (µn) have more precise asymptotics than those of (A2′), then the functions φ

and ψ in (2.3) become smoother, and the asymptotics of αn and βn refine.

Lemma 2.5. Assume that the numbers λ̃n and µ̃n are such that the function σ∗

of (1.6) belongs to W s
2 (0, 1) for some s ∈ [0, 1]. Then the functions φ and ψ in the integral

representation (2.3) of Φ and Ψ have the form

φ = −σ∗
o + φ1, ψ = σ∗

e + ψ1,

where φ1 and ψ1 are, respectively, some odd and even functions from W 2s
2 (0, 1).
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Proof. By virtue of Lemma 2.2 the equality Φ(λn) = 0 can be recast as

sin
√

λn +
∫ 1

0
φ(x) sin[

√
λn(1 − 2x)] dx = 0.

Observe that sin
√

λn = (−1)n sin λ̃n and that sin λ̃n = λ̃n + λ̃2
nbn for some sequence (bn)

from �2. Combining this observation with Lemma 2.3, we arrive at the relation

λ̃n − s2n(φ) + λ̃nc2n(Mφ) + λ̃2
ns2n(φ̂) = 0

for some odd function φ̂ ∈ L2,o(0, 1). Using Lemma A 2 and recalling that

λ̃n = −s2n(σ∗) = −s2n(σ∗
o),

we conclude that
φ = −σ∗

o − σ∗
o ∗̃ [(Mφ) − σ∗

o ∗̂ φ̂].

In particular, φ ∈ W s
2 (0, 1) by Corollary A 4, so that the function (Mφ)−σ∗

o ∗̂ φ̂ belongs
to W s

2 (0, 1), and again by Corollary A 4 we get

φ1 := φ + σ∗
o = σ∗

o ∗̃ [σ∗
o ∗̂ φ̂ − (Mφ)] ∈ W 2s

2 (0, 1).

The fact that φ1 is odd is obvious.
In a similar manner, using the relations Ψ(µn) = 0 and

√
µn = π(n − 1

2 ) + µ̃n and
Lemmas 2.2 and 2.3, we find that

µ̃n − s2n−1(ψ) + µ̃nc2n−1(Mψ) + µ̃2
ns2n−1(ψ̂) = 0

for some function ψ̂ ∈ L2,e(0, 1). Replicating the above reasoning, we conclude that
ψ = σ∗

e + ψ1 for some even function ψ1 from W 2s
2 (0, 1), as claimed. The proof is com-

plete. �

Proof of Theorem 1.2. Formulae (2.1) imply that

α̃n = αn − 1 =
Ψ(λn) − 2λnΦ̇(λn)

2λnΦ̇(λn)
, β̃n = βn − 1 =

−√
µnΦ(µn) − 2

√
µnΨ̇(µn)

2
√

µnΨ̇(µn)

for all n ∈ N. According to Lemma 2.2 we have

Ψ(λn) − 2λnΦ̇(λn) =
∫ 1

0
θ1(x) cos[

√
λn(1 − 2x)] dx,

−√
µnΦ(µn) − 2

√
µnΨ̇(µn) =

∫ 1

0
θ2(x) sin[

√
µn(1 − 2x)] dx

with θ1 := ψ − Mφ and θ2 := −φ + Mψ. Furthermore, in view of Lemma 2.3 and
Remark 2.4, ∫ 1

0
θ1(x) cos[

√
λn(1 − 2x)] dx = (−1)nc2n(θ1 + θ̃1),∫ 1

0
θ2(x) sin[

√
µn(1 − 2x)] dx = (−1)n+1c2n−1(θ2 + θ̃2)

with some functions θ̃1 and θ̃2 from W 2s
2 (0, 1).
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It follows from Lemma 2.2 that

2λnΦ̇(λn) = cos
√

λn +
∫ 1

0
(1 − 2x)φ(x) cos[

√
λn(1 − 2x)] dx,

−2
√

µnΨ̇(µn) = sin
√

µn +
∫ 1

0
(1 − 2x)ψ(x) sin[

√
µn(1 − 2x)] dx.

We have

cos
√

λn = (−1)n cos λ̃n = (−1)n(1 + λ̃ndn),

sin
√

µn = (−1)n+1 cos µ̃n = (−1)n+1(1 + µ̃nen)

for some �2-sequences (dn) and (en). Using Lemma 2.3 and Remark 2.4, we now conclude
that

(−1)n2λnΦ̇(λn) = 1 + c2n(g1), (−1)n+12
√

µnΨ̇(µn) = 1 + c2n−1(g2)

for some functions g1 and g2 from W s
2 (0, 1). Since Φ̇(λn) �= 0 and Ψ̇(µn) �= 0 for all n ∈ N,

Lemma A 5 implies that

(−1)n

2λnΦ̇(λn)
= 1 + c2n(h1),

(−1)n+1

2
√

µnΨ̇(µn)
= 1 + c2n−1(h2)

for some functions h1 and h2 from W s
2 (0, 1).

We now combine the above relations to conclude that

α̃n = c2n(θ1 + θ̃1)(1 + c2n(h1)), β̃n = c2n−1(θ2 + θ̃2)(1 + c2n−1(h2)).

It follows that γ = −θ1 + θ2 + θ̃ for some θ̃ ∈ W 2s
2 (0, 1). Since

−θ1 + θ2 = (M − I)(φ + ψ) = (M − I)(σ∗
e − σ∗

o) + (M − I)(φ1 + ψ1)

= γ∗ + (M − I)(φ1 + ψ1)

by Lemma 2.5 and (M − I)(φ1 + ψ1) ∈ W 2s
2 (0, 1) by Proposition A 1, we conclude that

the function γ − γ∗ is in W 2s
2 (0, 1), as required. The theorem is proved. �

Observe that Theorems C and 1.2 give necessary parts of Theorems 1.3 and 1.4. Suffi-
cient parts of these theorems constitute the inverse spectral problem and are treated in
the next section.

3. The inverse problem

We start by recalling briefly the standard method of recovering the Sturm–Liouville
operators T (q, ∞,∞) and T (q, h, ∞), h ∈ R, from their spectral data—the sequences
of eigenvalues and the corresponding norming constants. This method was suggested by
Gel’fand and Levitan in [6] for the case of regular (i.e. locally integrable) potentials and
was further developed in [9] to cover singular potentials from W−1

2 (0, 1).
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As in § 1, we denote by λ1 < λ2 < · · · and α1, α2, . . . , respectively, the eigenvalues and
the corresponding norming constants of the operator T (q, ∞,∞) and by µ1 < µ2 < · · ·
and β1, β2, . . . those of the operator T (q, h, ∞). The functions

ω1(x) :=
∞∑

n=1

[αn cos
√

λnx − cos(πnx)], x ∈ [0, 2],

ω2(x) :=
∞∑

n=1

{βn cos
√

µnx − cos[π(n − 1
2 )x]}, x ∈ [0, 2],

belong to L2(0, 2) as soon as the functions σ∗ of (1.6) and γ of (1.8) are in L2(0, 1)
(cf. Lemmas 3.1 and 3.3 below). We put, for x, y ∈ [0, 1],

fj(x, y) := ωj(|x − y|) + (−1)jωj(x + y), j = 1, 2, (3.1)

and introduce an integral operator Fj with kernel fj ; namely, Fj acts in L2(0, 1) according
to the formula

(Fju)(x) :=
∫ 1

0
fj(x, y)u(y) dy. (3.2)

Also, let K1 and K2 be the transformation operators for T (q, ∞,∞) and T (q, h, ∞),
respectively. Recall that Kj , j = 1, 2, is an integral operator with lower-triangular ker-
nel kj , i.e. kj(x, y) = 0 a.e. on the set {(x, y) | 0 � x < t � 1}, and thus

(Kju)(x) =
∫ x

0
kj(x, y)u(y) dy, j = 1, 2.

The operator I+K1 transforms solutions of the unperturbed equation l0(u) = λu (i.e. cor-
responding to σ ≡ 0) subject to the Dirichlet initial condition u(0) = 0 into the solutions
of the equation lσ(u) = λu subject to the Dirichlet initial condition; the operator I +K2

does the same for the Robin boundary condition y[1](0) = hy(0).
Moreover, fj and kj are related through the so-called Gel’fand–Levitan–Marchenko

(GLM) equation:

fj(x, y) + kj(x, y) +
∫ x

0
kj(x, t)fj(t, y) dt = 0, 0 � y � x � 1. (3.3)

It is known [8,9] that this GLM equation is naturally related to the problem of factoriza-
tion of the operator I +Fj in a special manner and that (3.3) is uniquely soluble for kj as
soon as the operator I + Fj is (uniformly) positive. We note that under properties (B1)
and (B2) with s = 0 the operator I +F1 is uniformly positive in L2(0, 1), and the same is
true of I + F2 if (C1) and (C2) hold with s = 0 (see the details in [9]). Hence both GLM
equations of interest possess unique solutions. Moreover, up to an additive constant Cj ,
the primitive σ of the potential q equals

σ(x) = (−1)j−12ωj(2x) − 2
∫ x

0
kj(x, t)fj(t, x) dt + Cj . (3.4)
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In what follows, we shall restrict ourselves to the case of the operator T (q, ∞,∞); the
proofs for the operator T (q, h, ∞) require only minor modifications.

In order to prove the sufficiency part of Theorem 1.3 we need to show first that the
function ω1 belongs to W s

2 (0, 1), then establish some properties of the kernel k1, and
finally use formula (3.4) to prove the inclusion σ ∈ W s

2 (0, 1).

Lemma 3.1. Assume that the numbers λ̃n and α̃n > −1 are such that there exist func-
tions g and h in W s

2 (0, 1), s ∈ [0, 1], with the property that λ̃n = s2n(g) and α̃n = c2n(h).
Then the function ω1 belongs to W s

2 (0, 2).

Proof. Observe first that, by the construction of σ∗ and γ, we have σ∗
o = go and

γe = he, whence σ∗
o ∈ W s

2 (0, 1) and γe ∈ W s
2 (0, 1). We write

2ω1(2x) = 2
∞∑

n=1

[(1 + α̃n) cos(2πnx + 2λ̃nx) − cos(2πnx)]

= 2
∞∑

n=1

α̃n cos(2πnx) + 2
∞∑

n=1

(1 + α̃n)[cos(2λ̃nx) − 1] cos(2πnx)

− 2
∞∑

n=1

(1 + α̃n) sin(2λ̃nx) sin(2πnx)

=: −γe(x) + g1(x) − g2(x),

so that it remains to prove that the functions g1 and g2 belong to W s
2 (0, 1).

Justification of the inclusions g1 ∈ W s
2 (0, 1) and g2 ∈ W s

2 (0, 1) is similar, and we shall
give it in detail only for the function g1. We have

g1(x) = 2
∞∑

n=1

(1 + α̃n) cos(2πnx)
∞∑

k=1

(−1)k (2λ̃nx)2k

(2k)!
.

For x ∈ [0, 1], the estimate
∞∑

k=1

(2λ̃nx)2k

(2k)!
� cosh(2λ̃n) − 1 = O(λ̃2

n)

and the inclusion (λ̃n) ∈ �2 imply that the above double series for g1 converges uniformly
and absolutely. Changing the summation order, we find that

g1(x) =
∞∑

k=1

(−1)k22k

(2k)!
x2khk(x), (3.5)

where

hk(x) := 2
∞∑

n=1

(1 + α̃n)λ̃2k
n cos(2πnx).

Put τ := σ∗
o ∗̃ σ∗

o ; then by virtue of Lemma A 2 we find that

hk = (τ ∗ τ ∗ · · · ∗ τ︸ ︷︷ ︸
k times

) + γe ∗ (τ ∗ τ ∗ · · · ∗ τ︸ ︷︷ ︸
k times

);
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see the definition of ‘∗’ and ‘ ∗̃’ in Appendix A. Corollary A 4 yields the inclusion
hk ∈ W s

2 (0, 1); moreover, there exists a number C1 > 0 such that

‖hk‖s � C1(1 + ‖γe‖0)‖σ∗
o‖2k

s .

Denote by V the operator of multiplication by x; then V 2k is bounded both in L2(0, 1)
and in W 1

2 (0, 1) and there exists C2 � 1 such that, for all f ∈ W 1
2 (0, 1),

‖V 2kf‖0 � ‖f‖0, ‖V 2kf‖1 � C2k‖f‖1.

Interpolating [18] between W 1
2 (0, 1) and L2(0, 1), we see that V 2k is bounded in every

intermediate space W s
2 (0, 1) and ‖V 2kf‖s � C2k

s‖f‖s for all f ∈ W s
2 (0, 1). Combining

the above relations, we conclude that the series in (3.5) converges in W s
2 (0, 1). Henceforth

g1 ∈ W s
2 (0, 1), which completes the proof. �

Denote by As the set of all integral operators K over (0, 1), whose kernels k possess
the following properties:

(i) for every x ∈ [0, 1] the functions k(x, ·) and k(· , x) belong to W s
2 (0, 1);

(ii) the mappings

[0, 1] 
 x �→ k(x, ·) ∈ W s
2 (0, 1), [0, 1] 
 x �→ k(· , x) ∈ W s

2 (0, 1)

are continuous.

The results of [21] imply the following statement.

Proposition 3.2. Assume that F is an integral operator with kernel f such that
F ∈ As, s ∈ [0, 1

2 ), and I +F > 0. Let k be equal to a solution of the corresponding GLM
equation (3.3) in the domain 0 � y � x � 1 and be zero in the domain 0 � x < y � 1;
then an integral operator K with kernel k also belongs to As.

Let the assumptions of Lemma 3.1 hold for some s ∈ [0, 1
2 ), so that ω1 ∈ W s

2 (0, 1).
Then the operator F1 given by (3.1), (3.2) belongs to As. Indeed, properties (i) and (ii)
of the definition of As for the kernel f1 follow from the fact that

(a) the operator P restricting a function on R onto (0, 1) is a bounded mapping from
W s

2 (R) into W s
2 (0, 1) [18, Theorem 1.9.1];

(b) the translations Ttf(·) := f(· + t), t ∈ R, form a C0-group in W s
2 (R) [21].

With these preliminaries in hand, we can complete the inverse spectral analysis of
Theorems 1.1, 1.3 and 1.4.

Proof of Theorem 1.1. The necessity part of the theorem follows from Theorem C,
hence we need to prove only the sufficiency part, i.e. that properties (A1) and (A2′) and
the inclusion σ∗ ∈ W s

2 (0, 1) imply that q ∈ W s−1
2 (0, 1).

Assume therefore that the sequences (λn) and (µn) satisfy properties (A1) and (A2′).
By [11], there exist then a unique function q ∈ W−1

2 (0, 1) and a unique number h ∈ R
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such that λn and µn are eigenvalues of the Sturm–Liouville operators T (q, ∞,∞) and
T (q, h, ∞), respectively. It remains to prove that the inclusion σ∗ ∈ W s

2 (0, 1) yields
σ ∈ W s

2 (0, 1), σ being the primitive of q of zero mean. We shall consider separately
the cases s ∈ [0, 1

2 ), s ∈ [ 12 , 1) and s = 1.

Case 1 (s ∈ [0, 1
2)). By Theorem 1.2 the function γ belongs to W s

2 (0, 1); hence by
Lemma 3.1 the function ω1 is in W s

2 (0, 1) and, as explained above, the integral operator F1

falls into the set As. It follows from Proposition 3.2 that the solution k1 of the GLM
equation (3.3) generates an integral operator K1 that also belongs to As.

In view of formula (3.4) and the inclusion ω1 ∈ W s
2 (0, 1), the theorem will be proved as

soon as we show that the integral
∫ x

0 k1(x, t)f1(t, x) dt defines a function from W s
2 (0, 1).

Observe that k1(x, t) = 0 a.e. for 0 � x < t � 1, so that we can extend the range of
integration to [0, 1]. Hence we put

η(x) :=
∫ 1

0
k1(x, t)f1(t, x) dt

and we will prove that η ∈ W s
2 (0, 1).

Recall [18, Theorem 1.10.2] that one of the equivalent norms in the space W s
2 (0, 1) is

given by

‖η‖s =
(

‖η‖2
0 + 2

∫ 1

0

∫ 1

x

|η(x) − η(y)|2
(x − y)1+2s

dy dx

)1/2

.

Now we use the fact that the operators K1 and F1 belong to As. In particular, there
exists a constant C1 > 0 such that

max
x∈[0,1]

(‖k1(x, ·)‖2
s + ‖k1(· , x)‖2

s + ‖f1(x, ·)‖2
s + ‖f1(· , x)‖2

s) � C1,

and we use this inequality to derive the estimates

‖η‖2
0 �

∫ 1

0

(∫ 1

0
|k1(x, y)|2 dy

∫ 1

0
|f1(y, x)|2 dy

)
dx � C2

1

and

|η(x) − η(y)|2 � 2
∣∣∣∣
∫ 1

0
|k1(x, t) − k1(y, t)| |f1(t, x)|dt

∣∣∣∣2
+ 2

∣∣∣∣
∫ 1

0
|k1(y, t)| |f1(t, x) − f1(t, y)|dt

∣∣∣∣2

� 2C1

(∫ 1

0
|k1(x, t) − k1(y, t)|2 dt +

∫ 1

0
|f1(t, x) − f1(t, y)|2 dt

)
.

It follows that

‖η‖2
s � C2

1 + 4C1

∫ 1

0
[‖k1(· , t)‖2

s + ‖f1(t, ·)‖2
s] dt � 5C2

1 ,

so that η ∈ W s
2 (0, 1), and the proof for the case s ∈ [0, 1

2 ) is complete.
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Case 2 (s ∈ [12 , 1)). Case 1 applied to the exponent 1
2s gives σ ∈ W

s/2
2 (0, 1), so

that σ − σ∗ ∈ W s
2 (0, 1) by Theorem C. Since, by assumption, σ∗ ∈ W s

2 (0, 1), we have
σ ∈ W s

2 (0, 1), as required.

Case 3 (s = 1). We again use the bootstrap method: first, by Case 2, σ ∈ W
1/2
2 (0, 1);

then, by Theorem C, σ − σ∗ ∈ W 1
2 (0, 1). This inclusion yields σ ∈ W 1

2 (0, 1), and the proof
is complete. �

Proof of Theorem 1.3. If σ ∈ W s
2 (0, 1), then σ∗ ∈ W s

2 (0, 1) by Theorem C, hence
γ ∈ W s

2 (0, 1) by Theorem 1.2. Properties (B1) and (B2) then obviously hold as, by the
construction of σ∗ and γ, λ̃n = s2n(−σ∗) and α̃n = c2n(−γ).

Conversely, assume that (B1) and (B2) hold. According to the results of [9], there
exists a unique q ∈ W−1

2 (0, 1) such that λn and αn are eigenvalues and norming con-
stants of T (q, ∞,∞). We need to prove that validity of (B1) and (B2) implies that the
recovered potential q belongs in fact to W s−1

2 (0, 1) (i.e. that the primitive σ of q belongs
to W s

2 (0, 1)). Indeed, (B1′) and (B2′) yield ω1 ∈ W s
2 (0, 2) by Lemma 3.1, and the proof of

Theorem 1.1 uses this inclusion to conclude that σ ∈ W s
2 (0, 1). The proof is complete. �

The proof of Theorem 1.4 is completely analogous; the only essential change is that
Lemma 3.1 should be replaced with the following, its counterpart (we leave both proofs
to the reader).

Lemma 3.3. Assume that the numbers µ̃n and β̃n > −1 are such that there exist
functions g and h in W s

2 (0, 1) with the property that µ̃n = s2n−1(g) and β̃n = c2n−1(h).
Then the function ω2 belongs to W s

2 (0, 1).
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Appendix A. Sobolev spaces W s
2 (0, 1) and the Fourier transform therein

We recall here some facts about the Sobolev spaces W s
2 (0, 1) and Fourier coefficients of

functions from these spaces. For details, we refer the reader to [18, Chapter 1].
By definition, the space W 0

2 (0, 1) coincides with L2(0, 1) and the norm ‖ · ‖0 in W 0
2 (0, 1)

is just the L2(0, 1)-norm. The Sobolev space W 2
2 (0, 1) consists of all functions f in L2(0, 1)

whose distributional derivatives f ′ and f ′′ also fall in L2(0, 1). Being endowed with the
norm

‖f‖2 := (‖f‖2
0 + ‖f ′‖2

0 + ‖f ′′‖2
0)

1/2,

W 2
2 (0, 1) becomes a Hilbert space.
Now we interpolate [18, Chapter 1.2.1] between W 2

2 (0, 1) and W 0
2 (0, 1) to get the

intermediate spaces W s
2 (0, 1) with norms ‖ · ‖s for s ∈ (0, 2); namely,

W 2t
2 (0, 1) := [W 2

2 (0, 1), W 0
2 (0, 1)]1−t, t ∈ (0, 1).
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The norms ‖ · ‖s are non-decreasing with s ∈ [0, 2], i.e. if s < r and f ∈ W r
2 (0, 1), then

‖f‖s � ‖f‖r. Since, by construction, the spaces W s
2 (0, 1) form an interpolation scale,

the general interpolation theorem [18, Theorem 1.5.1] implies the following interpolation
property for operators in these spaces.

Proposition A 1. Assume that an operator T acts boundedly in W s
2 (0, 1) and

W r
2 (0, 1), s < r. Then T is a bounded operator in W

ts+(1−t)r
2 (0, 1) for every t ∈ [0, 1];

moreover, ‖T‖ts+(1−t)r � ‖T‖t
s‖T‖1−t

r .

Proposition A 1 yields boundedness in every W s
2 (0, 1), s ∈ [0, 2], of the operators R

and V given by Rf(x) = f(1 − x) and V f(x) = xf(x).
For an arbitrary f ∈ L2(0, 1) and an arbitrary λ ∈ C, we put

sλ(f) :=
∫ 1

0
f(x) sin(πλx) dx, cλ(f) :=

∫ 1

0
f(x) cos(πλx) dx. (A 1)

As usual, ‘∗’ denotes the convolution operation on (0, 1), i.e.

(f ∗ g)(x) :=
∫ x

0
f(x − t)g(t) dt.

We shall also introduce the following shorthand notation:

(f ∗ g)(x) := 1
2 [R(Rf ∗ g + f ∗ Rg) + f ∗ g + Rf ∗ Rg],

(f ∗̂ g)(x) := 1
2 [R(Rf ∗ g + f ∗ Rg) − f ∗ g − Rf ∗ Rg],

(f ∗̃ g)(x) := 1
2 [R(Rf ∗ g − f ∗ Rg) + f ∗ g − Rf ∗ Rg]

(where, as earlier, R stands for the reflection operator, (Rf)(x) = f(1 − x)). The oper-
ations ‘∗’, ‘ ∗̂ ’ and ‘ ∗̃’ play the same role for the sine and cosine Fourier transform on
(0, 1) as the usual convolution for the Fourier transform on the whole line. Namely, these
operations have the following properties.

Lemma A 2. For arbitrary f, g ∈ L2(0, 1) and λ ∈ C the following equalities hold:

cλ(f)cλ(g) = cλ(f ∗ g), sλ(f)sλ(g) = cλ(f ∗̂ g), sλ(f)cλ(g) = sλ(f ∗̃ g).

Proof. We shall prove only the first equality since the other two can be treated analo-
gously. We have

2cλ(f)cλ(g) =
∫ 1

0

∫ 1

0
f(x)g(t){cos[πλ(x − t)] + cos[πλ(x + t)]} dxdt,

and simple calculations lead to∫ 1

0

∫ 1

0
f(x)g(t) cos πλ(x − t) dxdt

=
∫ 1

0

(∫ 1−s

0
f(s + t)g(t) dt +

∫ 1−s

0
f(t)g(s + t) dt

)
cos(πλs) ds,
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0

∫ 1

0
f(x)g(t) cos[πλ(x + t)] dxdt

=
∫ 1

0

(∫ s

0
f(s − t)g(t) dt +

∫ s

0
f(1 − t)g(1 − s + t) dt

)
cos πλs ds.

Taking into account the relations∫ 1−s

0
f(s + t)g(t) dt = R(Rf ∗ g)(s),

∫ s

0
f(1 − t)g(1 − s + t) dt = Rf ∗ Rg,

we get cλ(f)cλ(g) = cλ(f ∗ g) as stated. The lemma is proved. �

It is well known that convolution accumulates smoothness; the precise meaning of this
statement is as follows.

Proposition A 3. Assume that s, t ∈ [0, 1] and that f ∈ W s
2 (0, 1) and g ∈ W t

2(0, 1)
are arbitrary. Then the function h := f ∗ g belongs to W s+t

2 (0, 1) and, moreover, there
exists C > 0 independent of f and g such that ‖h‖s+t � C‖f‖s‖g‖t.

Proof of this proposition is based on interpolation between the extreme cases s, t = 0, 1,
which are dealt with directly.

Combining Proposition A 3 with the fact that the operator R is bounded in the
spaces W s

2 (0, 1) for all s ∈ [0, 1], we arrive at the following conclusion.

Corollary A 4. Assume that s, t ∈ [0, 1] and that f ∈ W s
2 (0, 1), g ∈ W t

2(0, 1). Then
the functions f ∗ g, f ∗̂ g and f ∗̃ g belong to W s+t

2 (0, 1) and, moreover, there exists a
number C > 0 independent of f and g such that

max{‖f ∗ g‖s+t, ‖f ∗̂ g‖s+t, ‖f ∗̃ g‖s+t} � C‖f‖s‖g‖t.

The following lemma is an analogue of the well-known Wiener lemma.

Lemma A 5. Assume that f ∈ W s
2 (0, 1), where s ∈ [0, 1]. If 1 + cn(f) �= 0 for all

n ∈ N, then there exists a function g ∈ W s
2 (0, 1) such that

(1 + cn(f))−1 = 1 + cn(g), n ∈ N.

Proof. We start the proof with some auxiliary constructions. Denote by C the oper-
ator that acts from L2(0, 1)/C into �2 according to the formula

Cf̃ := (cn(f))n∈N, f ∈ f̃ .

This operator is isomorphic; we put

Ws := {Cf̃ | f̃ ∈ W s
2 (0, 1)/C}

and endow the linear space Ws with the norm

‖x‖Ws := ‖C−1x‖W s
2 (0,1)/C.
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In view of Lemma A 2 and Corollary A 4, the element-wise multiplication (xy)n := xnyn

is a continuous operation in Ws. We adjoin to Ws the unit element e (with components
en equal to 1) and denote the resulting unital algebra by Ŵs. By a well-known result [23,
Theorem 10.2] one can introduce an equivalent norm in Ŵs under which Ŵs becomes a
commutative Banach algebra.

Assume now that the assumptions of the lemma hold and denote by x an element of
Ŵs with components xn := 1 + cn(f). We shall prove below that x is invertible in Ŵs;
it then follows that x−1 = e + y for some y ∈ Ws, as required.

It is well known [23, Theorem 11.5] that the element x is invertible in the unital Banach
algebra Ŵs if and only if x does not belong to any maximal ideal of Ŵs. Assume, on
the contrary, that there exists a maximal ideal m of Ŵs containing x. Since Ŵs contains
all finite sequences and none of xn vanishes, m also contains all finite sequences. Finite
sequences form a dense subset of Ws because the set of all trigonometric polynomials in
cos πnx is dense in W s

2 (0, 1)/C. Recalling that maximal ideals are closed, we conclude
that Ws ⊂ m. Next we observe that Ws is a proper subset of m (e.g. x belongs to
m \ Ws) and that Ws has codimension 1 in Ŵs. Henceforth m = Ŵs, which contradicts
our assumption that m is a maximal ideal of Ŵs. As a result, x is not contained in any
maximal ideal of Ŵs and thus is invertible in Ŵs. The lemma is proved. �
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