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Abstract

The leading term approach to rates of convergence is employed to derive non-uniform and global
descriptions of the rate of convergence in the central limit theorem. Both upper and lower bounds are
obtained, being of the same order of magnitude, modulo terms of order n~'. We are able to derive
general results by considering only those expansions with an odd number of terms.

1980 Mathematics subject classification (Amer. Math. Soc): 60 F 05, 60 G 50.

1. Introduction and results

Using the leading term approach [1,2] we obtain new bounds to rates of
convergence in various metrics. These results are combined to complement earlier
work of Heyde and Nakata [3]. By way of notation, let X, Xx, X2,... be i.i.d.r.v.
with zero mean and unit variance, let Sn = E"_x Xj, Fn(x) = P(Sn < nl/2x), and
(2w)1/2<J>(x) = f?0Oe-"2/2du. Assume that E(X2k+2) < oo for integer k > 0, let
Hj = E(XJ) for 1 <y < 2k + 2, define ^2*+3 arbitrarily, and define cumulants
Kj (1 < y < oo), polynomials Pj and Qj, leading term function kLn(x) and its
order of magnitude

A = «-*£{ X2k+2I(\X\ > H 1 / 2 ) } + «-<*+1>£{ X2k+4I(\X\ < w1/2)}

as in [2].
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Theorem 1 is a nonuniform description of error in Chebyshev-Edgeworth-
Cramer expansions after the leading term has been accounted for, while Theorem
2 describes order of magnitude of the leading term.

THEOREM 1. Assume E(X2k+2) < oo for an integer k > 0, and that Cramer's
condition, limsupt_x\E(e"x)\ < 1, holds. Then

(1.1)

sup (l +
-OO < X < 00

FH(x) - *(x) - *(x)
7

THEOREM 2. Assume E( X2k+1) < oo, and let E = (0, e) or (-e, 0). Then

, p \1/p I
liminf sup |*Ln(x) | / A , liminf / \kLn(x)\ dx\ k8n

are strictly positive for any e > 0 ancf /» > 1. Moreover, for a constant C > 0
depending only on k, we have sup_00<J(<00(l + x2k+2)\kLn(x)\ < CkSn.

Theorems 1 and 2 are readily combined to give various descriptions of rates of
convergence in nonuniform and Lp metrics. For example, we extend a portion of
Theorem 1 in [3]:

COROLLARY. Assume E(X2k+2) < oo, Cramer's condition, and x2k+4P(\X\ >
x) -» oo as x -> oo. Then for any p > 1 and r < p(2k + 2) — 1, the ratio

2k + l

A(1 + |jc|r) F (x) - $(*) - 4>(x) E Q (x)n'J/

is bounded away from zero and infinity as n —* oo.

2. Proofs

We prove only Theorem 1. The proof of Theorem 2 parallels arguments in [1,
Theorems 2.3 and 2.5] and [2]. Symbols C and p denote respectively a generic
positive constant and a generic positive integer.
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The characteristic function (Fourier-Stieltjes transform) of
2k + l

kDn(x) = Fn(x) - * ( * ) - £ Pj
7 - 1

is given by
2k + l

kdn(t) = a"(t/n^)-e-2^ £ P
7-0

t/n^)- £ fijiit/n^Y
7 = 0

The function x2k+2
kDn(x) has Fourier-Stieltjes transform

Therefore, by [4, Lemma 8, page 155], we have

(2.1) sup (1 + |
-00 < X< 00

+ £ jf r<'+%d?k+2-'>(t)\dt + T-1

for all T > 1, provided supn x(l + \x\2k+2)^d/dx){kDn(x) - Fn(x)}\ < oo. The
latter inequality follows via a short algebraic argument, using techniques of [1,
pages 30-33].

The remainder of the proof consists of estimating the terms on the right hand
side of (2.1). We first estimate kd

(
n'\t) = (d/dt)'kdn(t) for / in the range

0 < t < ns, and for some S e (0, \]. This is carried out in several stages. The
following lemma will prove useful. Define

Anl{t) = a{t/n^2) - 1 - E M>
7-2

LEMMA 2.1. The following estimates are valid for all t > 0, and for all integers
0 < / < 2k + 2:

(2.2)

(2.3)

Furthermore, for each e > 0, there exists S > 0 .swe/i that, whenever 0 < ? <
u>e have

(2.4) »|^i('A1/2)k*'2-
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PROOF. Since kSn = o(n~k), it suffices to prove (2.3) and (2.4). In (2.3), we shall
assume that / = 2m + 1 is odd; the case of even / may be treated similarly. Now,

(d/dt)'E{cos(tX/n1/2) - E (-
7=0

k

7 = 0

3)!

•>n1/2)}-t>2k+3\t2k+3-'

< 2(1 + t2)t2k+2-'n-\8n,

as required for (2.3). Result (2.4) follows from the fact that \a(t) - I + t2/2\ =
o{t2) as t -» 0.

Choose e > 0 so small that \ot(t) - 1| < 1/2 for 0 < t < 2e. Define
00

Then for 0 < t < en1/2, we have

3A: + 3
\ V 1 /• i \ 7 ' + l f (

) — n 2_, \-\) \a\>

7 = 1

7 = 3A: + 4

Since a has 2k + 2 bounded derivatives, and since \a(t) - 1| < t2/2, it follows
that for j > 3k + 4 and 0 < / < 2k + 2, we have

where C does not depend on j . Therefore, if 0 < t < en1/2, we have
(2.5)

An3(t) n)k+2 £ (
7 = 0

3k
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Next, observe from (2.2) that
(2.6)

n-lAn4(t) = (d/dt)'\
r-l

3A: + 3

- E (-l)r+1 E ^{it/n^)J

r=2 [ y=2

3k + 3 r /

i I I E|(^)'{A,(')}'
r=2 i= l a = 0

)
7 = 2

< C2(l + t»

It follows from the definition of cumulants K, that

(2-7) ^ S ( / ) S

7

2A: + 3

E (-Dr+1 E M>/»1 / 2)7V! A
r - l I 7=2

" E Kj(
r=2

< C2(l

for all / > 0. Combining (2.5), (2.6) and (2.7), we see that if 0 < t < en1/2 and
0 < / ̂  2k + 2, then

(2.8) (<//*)' \n\o%a(t/rV2)-n [a

-« E
7 = 2

Let

and let
form

(2.9)

AnA(t) + ^n 5(

2*+3 2A+3

(*/»I / a)-i- E M'V«1/2)Vy! + E «y('V«1/2)V
7-2 7 = 2

= n \oga(t/nl/2) - An6(t). Then result (2.8) may be written in the

\{d/dt)Anl{t)\^C{\
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We may deduce from (2.6) that

(2.10)
Let £(/.!) denote summation over vectors (iv...,ir) with 1 < / • < / , ia> I for

each a, and Y.ra=1 ia = I. Let E ( / 2 ) denote summation over vectors (ilt..., ir) and

(7i> •••> js)
 w i t n 0 < r < / — 1, 1 < s < /, i a > 1 and ya > 1 for each a, and

£ a - i ' « + £ « - i Ja = I- Combining (2.9) and (2.10), we see that

(2.11)

AHt(t) -

(i.i)

- cxp{An6(t)}} |

(1.2)

\exp{An6(t)+Anl(t)}\

< C2(l -
In view of (2.9) (with / = 0), there exists 8 e (0,1/2) such that \Anl(t)\ < Ct

whenever 0 < t < ns and n is sufficiently large. For such values of t, we have

(2.12) |1 - exp{-Am7(t)} I < Clt*
k+1>-'exp(C2t)n-ik+v>.

An elementary argument shows that there exist £j, e2 > 0 such that

if 0 < / < e2n
1/2. Combining (2.11), (2.12) and (2.13), we see that if 0 < / < ns

and n is sufficiently large, then
(2.14) An%{t) < Ct*k+2>-'ap(-B1t

2)n-<k+1\
Next, observe that

(2.15)
r / 2k+i

An9(t)= (d/dt)'\cxp{An6(t)} - cxp{nAjt)}{l + E

i{l
a)\{d/dt)aexp{nAnl{t)}\

(d/dt)l-a\ expj«
7 = 3

- 1+
7 - 1

Pj(it)n -"2
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Now,

exp
7 = 3

Peter Hall and T. Nakata

2k + l

7 = 1

oo / 2k + 3

+ L \ n L >
r=2k+2 { i = 3

[7]

A

where >4n_10(/) denotes a polynomial in /? of degree not exceeding (2k + 1)
X(2k + 3) — 2(k + 2), and all of whose coefficients are uniformly bounded.
Therefore,

2k + l

E
7 - 1

< E
2A + 3

» E ic,0v«1/2)7./!
7 = 3

A!

The series on the right hand side is dominated by C(l +
uniformly in 0 < / < «1/2. Consequently,

(2.16) A (t) < C ( l + tp)t2(k + T>~'n~(k + v>

It follows from (2.2) and (2.4) that if e e (0,1] is sufficiently small, and if
0 < / < en1/2, then

(2.17) \(d/dt)'exp{nAnl(t)} |< Ce-'2/\

Substituting (2.16) and (2.17) into (2.15), we see that if 0 < t < enl/1, then

(2.18) An9(t),

Since

(d/dt)1
2k + l

1 +
7 = 1
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it follows that

333

(2.19)

Now,

(d/dt)' exp{nAHl{t)}{l +

r=2

E

+

where C does not depend on r, and where E( a . 3) denotes summation over vectors
(j\, ...,js) with 2 < 5 < a, each yfc > 1, and Ej_!7fc = a. Using (2.3) and (2.4),
we see that if 0 < t < en1/2, and if e is sufficiently small, then

where C does not depend on r. Substituting into (2.19), we obtain

In view of (2.3), we have

/ 2/fc + l

(2.21) AnU(t)= (d/dt)' (1 + nAnl(t)} 1 + E Pj(it)n~j/

I 7-1

uniformly in /. (Note that the polynomials Pj(it) satisfy Py-(0) = 0.) Combining
(2.14), (2.18), (2.20) and (2.21), we see that if 0 < / < n\ and if n is sufficiently
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large, then

(2.22) \kd?{t) | < Ani{t) + An9(t) + An<l2(t) + AnM(t)

To treat the case where t > ns, we observe that

(2.23)

I I 2k+l

|l+ ^P^n

2k+l

for all t > 0. It follows from (2.13) that for some e e (0,1/4) and TJ > 0, we have
\a(t/n1/2)\"-! < Cexp(-2ef2) whenever 0 < t < t]nl/2. Consequently, \kd

(
n'\t)\

< a 2 * + 3- 'exp(-e/2)«-(*+1) uniformly in ns < t < i)nl/2. Therefore (2.22) holds
uniformly in 0 < / < i\nx/2.

Let

p = sup \a(t) | < 1.
r>7,

If TJ«1/2 < t < nk+l, then it follows from (2.23) that

(2.24) \kd^{t) | < C2(l + t')n'[pr + e"'2/2) < C3r"

for some r < 1.
Returning to (2.1), taking T = nk+1, and estimating |^^*''(0l using (2.22) if

0 < t < TJ/I1/2, or using (2.24) if r\n1/2 < t < nk+1, we see that

sup (i + \x\2k+2)\kDn(t)\= o(«-<*+1) +A 2

- 0 0 < JC< 00

which proves Theorem 1.
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