IMPROVEMENT ON THE BOUNDS OF PERMUTATION GROUPS WITH BOUNDED MOVEMENT

Mehdi Alaeiyan

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. Then we define the movement of G as, $m:=\operatorname{move}(G)$ $:=\sup _{\Gamma}\left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid g \in G\right\}$. Let p be a prime, $p \geqslant 5$. If G is not a 2-group and p is the least odd prime dividing $|G|$, then we show that $n:=|\Omega| \leqslant 4 m-p+3$.

Moreover, if we suppose that the permutation group induced by G on each orbit is not a 2-group then we improve the last bound of n and for an infinite family of groups the bound is attained.

1. Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset Γ of Ω the size $\left|\Gamma^{g} \backslash \Gamma\right|$ is bounded, for $g \in G$, we define the movement of Γ as move $(\Gamma)=\max _{g \in G}\left|\Gamma^{g} \backslash \Gamma\right|$. If move $(\Gamma) \leqslant m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is defined as the maximum of move(Γ) over all subsets Γ, that is,

$$
m:=\operatorname{move}(G):=\sup \left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid \Gamma \subseteq \Omega, g \in G\right\}
$$

This notion was introduced in [4]. By [4, Theorem 1], if G has movement m, then Ω is finite. Moreover both the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m. In particular, it was proved that each G-orbit has length at most $3 m$ and $n:=|\Omega| \leqslant 5 m-2$. In [1] it was shown that $n=5 m-2$ if and only if $n=3$ and G is transitive. But in [3], this bound was refined further and it was shown that $n \leqslant(9 m-3) / 2$. Moreover, if $n=(9 m-3) / 2$ then either $n=3$ and $G=S_{3}$ or G is an elementary Abelian 3-group and all its orbits have length 3. Now suppose that G is not a 2 -group, and let $p(\geqslant 5)$ be the least odd prime dividing the $|G|$. Then by [4, Lemma 2,2], $n \leqslant(9 m-3) / 2$. In this paper we aim to improve the bound for any group with above conditions as follows:

Theorem 1.1. Let p be a prime, $p \geqslant 5$, let m be a positive integer, and let G be a permutation group on a set Ω with movement m such that G has no fixed points in Ω. If G is not a 2-group and p is the least odd prime dividing $|G|$, then $n:=|\Omega| \leqslant 4 m-p+3$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

We do not know whether the bound in Theorem 1.1 is attained. But according to hypothesis in Theorem 1.1, and with the assumption that G is not a 2-group on each orbit, then we have the following result such that the bound is attained for an infinite family of groups. We denote by $P \ltimes K$ a semi-direct product $K . P$ with normal subgroup K.

Theorem 1.2. Let G be a permutation group on a set Ω with movement m such that G has no fixed points in Ω. If G is not a 2 -group on any orbit, and $p \geqslant 5$ is the least odd prime dividing $|G|$, then the following hold:

1. $n:=|\Omega| \leqslant(p / p-1)(\lfloor(2 m p / p-1)\rfloor-1)$ (for $x \in \mathbb{R},\lfloor x\rfloor$ denotes the integer part of x);
2. moreover, if $|\Omega|=(p / p-1)(\lfloor(2 m p / p-1)\rfloor-1)$ then either $n=p, m$ $=(p-1) / 2$, and $G: \leqslant Z_{2^{a_{0}}} \propto Z_{p}$ where $a_{0}=\max \left\{a \mid 2^{a}\right.$ divides $\left.p-1\right\}$, that is, $2^{a_{0}}$ is the 2-part of $(p-1)$, or for some positive integer $d, G \cong Z_{p}^{d}$, $m=p^{d-1}(p-1) / 2$ and all its orbits have length p.

2. Examples and preliminaries

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representation has t nontrivial cycles of lengths l_{i}, \ldots, l_{t} say. We might represent g as

$$
g=\left(a_{1} a_{2} \ldots a_{l_{1}}\right)\left(b_{1} b_{2} \ldots b_{l_{2}}\right) \ldots\left(z_{1} z_{2} \ldots z_{l_{t}}\right) .
$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\left\lfloor l_{i} / 2\right\rfloor$ points from the $i^{\text {th }}$ cycle, for each i, chosen in such a way that $\Gamma(g)^{g} \cap \Gamma(g)=\emptyset$. For example, we could choose $\Gamma(g)=\left\{a_{2}, a_{4}, \ldots, b_{2}, b_{4}, \ldots, z_{2}, z_{4}, \ldots\right\}$. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written. For any set $\Gamma(g)$ of this kind we say that $\Gamma(g)$ consists of every second point of every cycle of g. From the definition of $\Gamma(g)$ we see that

$$
\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=|\Gamma(g)|=\sum_{i=1}^{i}\left\lfloor l_{i} / 2\right\rfloor
$$

The next lemma shows that this quantity is an upper bound for $\left|\Gamma^{g}\right\rangle \Gamma \mid$ for an arbitrary subset Γ of Ω.

Lemma 2.1 ([2, Lemma 2.1].) Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G,\left|\Gamma^{g} \backslash \Gamma\right| \leqslant \sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor$ where l_{i} is the length of the $i^{\text {th }}$ cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma=\Gamma(g)$ defined above.

Now we shall show that there certainly is an infinite family of groups for which equality in Theorem 1.2(1) holds, for any prime p.

Example 2.2. Let d be a positive integer, let $G:=Z_{p}^{d}$, let $t:=\left(p^{d}-1\right) /(p-1)$, and let H_{1}, \ldots, H_{t} be an enumeration of the subgroups of index p in G. Define Ω_{i} to be the coset space of H_{i} in G and $\Omega=\Omega_{1} \cup \ldots \cup \Omega_{t}$. If $g \in G-\{1\}$, then g lies in $\left(p^{d-1}-1\right) /(p-1)$ of the groups H_{i} and therefore acts on Ω as a permutation with $(p / p-1)\left(p^{d-1}-1\right)$ fixed points and p^{d-1} orbits of length p. It follows from Lemma 2.1 that $\operatorname{move}(G)=m=p^{d-1}(p-1) / 2$. Thus $\lfloor(2 m p / p-1)\rfloor=p^{d}$ and

$$
n=|\Omega|=p . t=\frac{p}{p-1}\left(p^{d}-1\right)=\frac{p}{p-1}\left(\left\lfloor\frac{2 m p}{p-1}\right\rfloor-1\right) .
$$

Now we have the following lemma which is a classification of all transitive permutation groups G of degree p where p is the least odd prime dividing $|G|$.

LEMMA 2.3. Let G be a transitive permutation group on a set Ω of size p, where $p \geqslant 5$ is the least odd prime dividing $|G|$. Then $G=Z_{2^{a}} \ltimes Z_{p}$, where $a \geqslant 0$, and $2^{a} \mid(p-1)$.

Proof: Let G be a transitive permutation group on a set Ω of size p. Then G is isomorphic to a transitive subgroup of S_{p} and so p is the largest prime divisor of $|G|$. Since p is also the least odd prime dividing $|G|$, we have $|G|=p .2^{a}$ for some $a \geqslant 0$. By Burnside's "pq theorem" (see [6, Theorem 2, 10, 17]) G is soluble, and hence by a theorem of Galois [6 , Theorem 3.6.1], G is isomorphic to a subgroup of the group $A G L(1, p)$ of affine transformations of a finite field consisting of p elements. Thus $G=Z_{2^{a}} \ltimes Z_{p}$ as asserted.

Corollary 2.4. Let G be a permutation group on a set Ω, and suppose that Δ is a G-orbit of length p in Ω where p is the least odd prime dividing $|G|$. Then the induced permutation group G^{Δ} is $G=Z_{2^{a}} \ltimes Z_{p}$ where $0 \leqslant a \leqslant a_{0}$, and $2^{a_{0}}$ is the 2-part of $(p-1)$.

3. The Maximum degree of bounded movement groups

Suppose that $G \leqslant \operatorname{Sym}(\Omega)$ and that G is not a 2 -group and move $(G)=m$, and such that $p \geqslant 5$ is the least odd prime dividing the $|G|$. In this section we find an upper bound for $|\Omega|$ that is a linear function of m.

To prove the main theorems, we introduce the following notation.
$r_{p}:=$ number of G-orbits of length p on which G acts as $Z_{p} ;$
$r_{p}^{\prime}(a):=$ number of G-orbits of length p on which G acts as $G=Z_{2^{a}} \times Z_{p}$ with $1 \leqslant a \leqslant a_{0}$; and set $r_{p}^{\prime}:=\sum_{a=1}^{a_{0}} r_{p}^{\prime}(a)$;
$\Phi:=$ union of G-orbits of lengths 2^{b}, where $1 \leqslant b \leqslant \log _{2} p$; and u is the number of orbits in Φ.
$s:=$ number of G-orbits of length $>p$.

The orbits are labelled accordingly. Thus $\Omega_{1}, \ldots, \Omega_{r_{p}}$ are those of length p on which G acts as $Z_{p} ; \Omega_{r_{p}+1}, \ldots, \Omega_{r_{p}+r_{p}^{\prime}}$ are those of length p on which G acts as $G=Z_{2^{a}} \ltimes Z_{p}$ for some $a \geqslant 1 ; \Omega_{r_{p}+r_{p}^{\prime}+1}, \ldots, \Omega_{r_{p}+r_{p}^{\prime}+u}$ are those of length 2^{b} where $1 \leqslant b \leqslant \log _{2} p$; et cetera. Define $t:=r_{p}+r_{p}^{\prime}+u+s, t_{1}:=r_{p}+r_{p}^{\prime}+u$, and $t_{0}=r_{p}+r_{p}^{\prime}$. So t is the total number of G-orbits.

For $1 \leqslant i \leqslant t_{0}$ define K_{i} to be the kernel of the action of G on Ω_{i} and for $g \in G$ define $k(g)$ to be the number of i in that range for which g is not in K_{i}. For $g \in G$ and a G-invariant set Δ we denote by fix $\Delta_{\Delta}(g)=\left\{\alpha \in \Delta \mid \alpha^{g}=\alpha\right\}$ and $\operatorname{supp}_{\Delta}(g)=\{\alpha \in \Delta \mid$ $\left.\alpha^{g} \neq \alpha\right\}$ the set of fixed points of g in Δ and the support of g in Δ, respectively (so that $\left.\left|\operatorname{fix}_{\Delta}(g)\right|+\left|\operatorname{supp}_{\Delta}(g)\right|=|\Delta|\right)$, and define odd ${ }_{\Delta}(g):=$ the number non-trivial cycles of g in Δ that have odd length.

Lemma 3.1. With the above notation, let $\Delta:=\bigcup_{i=t_{1}+1}^{t} \Omega_{i}$ and let $g \in G$. Then

$$
\frac{p-1}{2} k(g)+\frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|+\frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-\operatorname{odd}_{\Delta}(g)\right) \leqslant m
$$

Proof: For each i such that $1 \leqslant i \leqslant t_{0}$ and g is not in K_{i}, since $\left|\Omega_{i}\right|=p$ then $g^{\Omega_{i}}$ is a p-cycle or a 2-element with one fixed point and we may choose a subset Γ_{i} of $(p-1) / 2$ points of Ω_{i} such that $\Gamma_{i}^{g} \cap \Gamma_{i}=\emptyset$. Let Γ_{0} be the set of chosen points from all the Γ_{i} for $1 \leqslant i \leqslant t_{0}$, and so by definition $\Gamma_{0}^{g} \cap \Gamma_{0}=\emptyset$.

For each of the non-trivial cycles ($b_{1} \ldots b_{2 l}$) and ($a_{1} a_{2} \ldots a_{k}$) of g in Φ and Δ respectively, adjoin the points $b_{1}, b_{3}, \ldots, b_{2 l-1}$ and also $a_{1}, a_{3}, \ldots, a_{k^{\prime}}$ to Γ_{0}, where k^{\prime} is odd and $k-2 \leqslant k^{\prime}$ $\leqslant k-1$. Let Γ be the resulting set. It has been constructed so that $\Gamma^{g} \cap \Gamma=\emptyset$. Therefore $|\Gamma| \leqslant m$. Since

$$
|\Gamma|=\frac{p-1}{2} k(g)+\frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|+\frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-\operatorname{odd}_{\Delta}(g)\right),
$$

we have the stated inequality.
To prove Theorem 1.1 we first prove the following lemma.
Lemma 3.2:

$$
\left(\sum_{a=0}^{a_{0}} \frac{p-1}{2} \cdot\left(1-\frac{1}{2^{a} p}\right) r_{p}^{\prime}(a)+\frac{|\Phi|-u}{2}+\frac{p-1}{2 p}(|\Delta|-s)\right)<m
$$

where for $a=0$ the number $r_{p}^{\prime}(a)$ is r_{p}.
Proof: Suppose that $1 \leqslant i \leqslant t_{0}$. Then the group induced by G on Ω_{i} is $G=Z_{2^{a}} \ltimes Z_{p}$ for some $a \geqslant 0$, such that $2^{a} \mid(p-1)$, and since $\left|G: K_{i}\right|=2^{a} p$, there are

$$
|G|-\left|K_{i}\right|=\left(2^{a} p-1\right)\left|K_{i}\right|
$$

elements g which act nontrivially on Ω_{i}. It follows that

$$
\sum_{g \in G} \frac{p-1}{2} k(g)=\frac{p-1}{2} \sum_{a=0}^{a_{0}}\left(\frac{2^{a} p-1}{2^{a} p}|G|\right) r_{p}^{\prime}(a)
$$

where $r_{p}^{\prime}(0):=r_{p}$.
For $t_{0}+1 \leqslant i \leqslant t_{1}$, the group induced by G on Ω_{i} is a 2-group. The union of these sets Ω_{i} is Φ, and since by Burnside's Lemma [5 , Theorem 3.26] the average number of fixed points of elements of G in Φ is the number u of G-orbits in Φ, we have

$$
\sum_{g \in G} \frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|=\frac{1}{2} \sum_{g \in G}\left(|\Phi|-\left|\operatorname{fix}_{\Phi}(g)\right|\right)=\frac{1}{2}|\Phi| \cdot|G|-\frac{|G|}{2} \cdot u .
$$

Similarly,

$$
\sum_{g \in G} \frac{1}{2}\left|\operatorname{supp}_{\Delta}(g)\right|=\frac{1}{2}|\Delta| \cdot|G|-\frac{s|G|}{2}
$$

and since $\operatorname{odd}_{\Delta}(g) \leqslant(1 / p)\left|\operatorname{supp}_{\Delta}(g)\right|$, we have

$$
\sum_{g \in G} \frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-\operatorname{odd}_{\Delta}(g)\right) \geqslant \frac{p-1}{2 p}(|\Delta| \cdot|G|-s|G|)
$$

Thus adding the inequality of lemma 3.1 over all $g \in G$, we obtain

$$
m|G|>|G|\left(\sum_{a=0}^{a_{0}} \frac{p-1}{2} \cdot\left(1-\frac{1}{2^{a} p}\right) r_{p}^{\prime}(a)+\frac{|\Phi|-u}{2}+\frac{p-1}{2 p}(|\Delta|-s)\right)
$$

where the strict inequality recognises the fact the inequality of Lemma 3.1 is strict for the identity element of $|G|$. This completes the proof of Lemma 3.2.

Now

$$
n=\left(\sum_{a=0}^{a_{0}} r_{p}^{\prime}(a)\right) p+|\Phi|+|\Delta|
$$

Also we have $|\Phi| \geqslant 2 u$, and so

$$
\frac{|\Phi|-u}{2} \geqslant \frac{|\Phi|}{4} .
$$

Thus the inequality in Lemma 3.2 implies that

$$
\begin{aligned}
m & >\frac{n}{4}+\sum_{a=0}^{a_{0}} r_{p}^{\prime}(a)\left(\frac{p-1}{2}-\frac{p-1}{2^{a+1} p}-\frac{p}{4}\right)+|\Delta|\left(\frac{p-1}{2 p}-\frac{1}{4}\right)-\frac{p-1}{2 p} s \\
& =\frac{n}{4}+\sum_{a=0}^{a_{1}} r_{p}^{\prime}(a)\left(\frac{p-2}{4}-\frac{p-1}{2^{a+1} p}\right)+|\Delta|\left(\frac{p-2}{4 p}\right)-\frac{p-1}{2 p} s
\end{aligned}
$$

Since G is not a 2-group, so we have either $\sum_{a=0}^{a_{0}} r_{p}^{\prime}(a)>0$ or $s>0$. If some $r_{p}^{\prime}(a)>0$, then

$$
m>\frac{n}{4}+\frac{p-2}{4}-\frac{p-1}{2^{a+1} p} .
$$

But we note that since $p \geqslant 5$, for each $a \geqslant 0$,

$$
\frac{p-2}{4}-\frac{p-1}{2^{a+1} p} \geqslant \frac{p-2}{4}-\frac{p-1}{2 p}>0 .
$$

Hence,

$$
m>\frac{n}{4}+\frac{p-2}{4}-\frac{p-1}{2 p}=\frac{n}{4}+\frac{p^{2}-4 p+2}{4 p}
$$

On the other hand if $s>0$, then $|\Delta| \geqslant(p+1) s \geqslant p+1$. Thus,

$$
\begin{aligned}
m & >\frac{n}{4}+|\Delta|\left(\frac{p-2}{4 p}\right)-\frac{p-1}{2 p} s \\
& \geqslant \frac{n}{4}+s\left(\frac{(p+1)(p-2)}{4 p}-\frac{p-1}{2 p}\right) \\
& \geqslant \frac{n}{4}+\frac{p^{2}-3 p}{4 p} .
\end{aligned}
$$

So in either case we must have,

$$
m>\frac{n}{4}+\min \left\{\frac{p^{2}-4 p+2}{4 p}, \frac{p^{2}-3 p}{4 p}\right\}=\frac{n}{4}+\frac{p^{2}-4 p+2}{4 p}
$$

Hence,

$$
n<4 m-\frac{p^{2}-4 p+2}{4 p}=4 m-p+4-\frac{2}{p}
$$

That is, $n<4 m-p+4$ and so $n \leqslant 4 m-p+3$. Hence the proof of Theorem 1.1 is complete.

4. The proof of Theorem 1.2

In this section with the notation defined in Section 3 we refine the upper bound $4 m-p+3$ for n and obtain an upper bound that is attained for an infinite family of groups. For this purpose suppose that G is not a 2-group on any orbit, that is $u=0$. Then we have the following lemma.

Lemma 4.1. With the above notation,

$$
n<\frac{2 p^{2} m}{(p-1)^{2}}-\left[\frac{p}{p-1} \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+\frac{1}{p-1}|\Delta|-\frac{p}{p-1} s\right]
$$

Proof: Since G is not a 2-group on any orbit, $u=0$ and so $|\Phi|=0$ the inequality of Lemma 3.2, yields

$$
m>\left(\sum_{a=0}^{a_{0}} \frac{p-1}{2} \cdot\left(1-\frac{1}{2^{a} p}\right) r_{p}^{\prime}(a)+\frac{p-1}{2 p}(|\Delta|-s)\right)
$$

Since $n=p r_{p}+p r_{p}^{\prime}+|\Delta|$, we have

$$
\begin{aligned}
\frac{2 p^{2} m}{(p-1)^{2}} & >p r_{p}+\frac{p}{p-1} \sum_{a} \frac{2^{a} p-1}{2^{a}} r_{p}^{\prime}(a)+\frac{p}{p-1}(|\Delta|-s) \\
& =p r_{p}+p r_{p}^{\prime}+\frac{p}{p-1} \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+|\Delta|+\frac{1}{p-1}|\Delta|-\frac{p}{p-1} s .
\end{aligned}
$$

Hence,

$$
\frac{2 p^{2} m}{(p-1)^{2}}>n+\left[\frac{p}{p-1} \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+\frac{1}{p-1}|\Delta|-\frac{p}{p-1} s\right]
$$

and we have the stated inequality.
Now define $\eta:=2 p^{2} m-(p-1)^{2} n$. Clearly η is an integer and from Lemma 3.3 we have that

$$
0 \leqslant p(p-1) \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+(p-1)|\Delta|-(p-1) p . s<\eta .
$$

If $\eta>p(p-1)$, then part 1 of Theorem 1.2 follows. To prove the theorem we suppose that $\eta \leqslant p(p-1)$ and seek to discover what configurations may occur.

From the inequality

$$
0 \leqslant p(p-1) \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+(p-1)|\Delta|-(p-1) p . s<\eta \leqslant p(p-1)
$$

we obtain,

$$
0 \leqslant p \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)+(|\Delta|-(p-1) p . s)<p .
$$

First we show that $s=0$. Since if $s \neq 0$, then by [4, Lemma 2]

$$
p . t<n \leqslant t+\frac{2 m p}{p-1}-1
$$

Hence,

$$
t<\frac{1}{p-1}\left(\frac{2 m p}{p-1}-1\right)
$$

and then we have

$$
n \leqslant t+\frac{2 m p}{p-1}-1<\frac{p}{p-1}\left(\frac{2 m p}{p-1}-1\right)
$$

which contradicts our assumption. Hence $s=0$, and so $|\Delta|=0$ and

$$
0 \leqslant p \sum_{a} \frac{2^{a}-1}{2^{a}} r_{p}^{\prime}(a)<\eta /(p-1) \leqslant p
$$

This inequality implies that $r_{p}^{\prime} \leqslant 1$. If $r_{p}=0$ and $r_{p}^{\prime} \neq 0$, then $n=p=2 m p /(p-1)$. Following [2] and Lemma 2.3, the last equality holds if and only if $m=(p-1) / 2$ and $G=Z_{2^{a}} \propto Z_{p}$, where $a \geqslant 1$, and $2^{a} \mid(p-1)$.

Moreover, suppose that $r_{p}^{\prime}=0$. Then $n=p . r_{p}$ and by Example $2.2 G$ is an elementary Abelian p-group.

Now we consider the case that $r_{p}>0$, and $r_{p}^{\prime}>0$, that is $r_{p}^{\prime}=1$. Define Σ_{1} $:=\bigcup_{i=1}^{r_{p}} \Omega_{i}$, the union of the orbits of length p on which G acts as Z_{p}, and Σ_{2}, the unique of the orbit of length p on which G acts as $G=Z_{2^{a}} \ltimes Z_{p}$, where $a \geqslant 1$ and $2^{a} \mid(p-1)$.

Let $m_{1}:=\operatorname{move}\left(G^{\Sigma_{1}}\right)$, and $m_{2}:=\operatorname{move}\left(G^{\Sigma_{2}}\right)=(p-1) / 2$. By Example 2.2 each non-identity element of $G^{\Sigma_{1}}$ have the same movement m_{1}, so by considering of the each p-element of $G^{\Sigma_{2}}$ it follows easily that $m=m_{1}+m_{2}$. Defining $n_{1}:=\left|\Sigma_{1}\right|$, and n_{2} $:=\left|\Sigma_{2}\right|=p=2 m p /(p-1)$. We have from Example 2.2 that

$$
n_{1} \leqslant \frac{p}{p-1}\left(\left\lfloor\frac{2 m_{1} p}{p-1}\right\rfloor-1\right)
$$

and so
$n=n_{1}+n_{2} \leqslant \frac{p}{p-1}\left(\left\lfloor\frac{2 m_{1} p}{p-1}\right\rfloor-1\right)+\left\lfloor\frac{2 m_{2} p}{p-1}\right\rfloor<\frac{p}{p-1}\left(\left\lfloor\frac{2 m_{1} p}{p-1}\right\rfloor-1\right)+\frac{p}{p-1}\left\lfloor\frac{2 m_{2} p}{p-1}\right\rfloor$.
Hence,

$$
n<\frac{p}{p-1}\left(\left\lfloor\frac{2 m p}{p-1}\right\rfloor-1\right) .
$$

What this has shown is that, if $\eta:=2 p^{2} m-(p-1)^{2} n$, that is, $n \geqslant(\lfloor(2 m p / p-1)\rfloor$ $-1) /(p-1)$, then either $r_{p}=0$ or $r_{p}^{\prime}=0$ and we have the situation posed in above. In this cases

$$
n=\left\lfloor\frac{2 m p}{p-1}\right\rfloor=\frac{p}{p-1}\left(\left\lfloor\frac{2 m p}{p-1}\right\rfloor-1\right)
$$

Thus the result now follows and the proof of Theorem 1.2 is complete.

References

[1] J.R. Cho, P.S. Kim, and C.E. Praeger, 'The maxiamal number of orbits of a permutation groups with bounded movement', J. Algebra 214 (1999), 625-630.
[2] A. Hassani, M. Khayaty, E. I. Khukhro and C. E. Praeger, 'Transitive permutation groups with bounded movement having maximal degree', J. Algebra 214 (1999), 317-337.
[3] P.M. Neumann and C.E.Praeger, 'On the movement of a permutation group', J. Algebra 214 (1999), 631-635.
[4] C.E. Praeger, 'On permutation groups with bounded movement', J. Algebra 144 (1991), 436-442.
[5] J.J. Rotman, An Introduction to the theory of groups, (3rd edition) (Allyn and Bacon, Boston, 1984).
[6] T. Tsuzuku, Finite groups and finite geometries (Cambridge University Press, Cambridge, 1982).

Department of Mathematics
Iran University of Science and Technology
Narmak
Tehran 16844
Iran
e-mail: Khayaty@iust.ac.ir

[^0]: Received 24th July, 2002

