Bull. Austral. Math. Soc. Vol. 67 (2003) [249-256]

IMPROVEMENT ON THE BOUNDS OF PERMUTATION GROUPS WITH BOUNDED MOVEMENT

Mehdi Alaeiyan

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. Then we define the movement of G as, m := move(G) $:= \sup_{\Gamma} \{ |\Gamma^g \setminus \Gamma| \mid g \in G \}$. Let p be a prime, $p \ge 5$. If G is not a 2-group and p is the least odd prime dividing |G|, then we show that $n := |\Omega| \le 4m - p + 3$.

Moreover, if we suppose that the permutation group induced by G on each orbit is not a 2-group then we improve the last bound of n and for an infinite family of groups the bound is attained.

1. INTRODUCTION

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset Γ of Ω the size $|\Gamma^g \setminus \Gamma|$ is bounded, for $g \in G$, we define the movement of Γ as move $(\Gamma) = \max_{g \in G} |\Gamma^g \setminus \Gamma|$. If move $(\Gamma) \leq m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is defined as the maximum of move (Γ) over all subsets Γ , that is,

$$m := \operatorname{move}(G) := \sup\{|\Gamma^g \setminus \Gamma| \mid \Gamma \subseteq \Omega, g \in G\}$$

This notion was introduced in [4]. By [4, Theorem 1], if G has movement m, then Ω is finite. Moreover both the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m. In particular, it was proved that each G-orbit has length at most 3m and $n := |\Omega| \leq 5m-2$. In [1] it was shown that n = 5m-2 if and only if n = 3 and G is transitive. But in [3], this bound was refined further and it was shown that $n \leq (9m-3)/2$. Moreover, if n = (9m-3)/2 then either n = 3 and $G = S_3$ or G is an elementary Abelian 3-group and all its orbits have length 3. Now suppose that G is not a 2-group, and let $p \ (\geq 5)$ be the least odd prime dividing the |G|. Then by [4, Lemma 2,2], $n \leq (9m-3)/2$. In this paper we aim to improve the bound for any group with above conditions as follows:

THEOREM 1.1. Let p be a prime, $p \ge 5$, let m be a positive integer, and let G be a permutation group on a set Ω with movement m such that G has no fixed points in Ω . If G is not a 2-group and p is the least odd prime dividing |G|, then $n := |\Omega| \le 4m - p + 3$.

Received 24th July, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

M. Alaeiyan

We do not know whether the bound in Theorem 1.1 is attained. But according to hypothesis in Theorem 1.1, and with the assumption that G is not a 2-group on each orbit, then we have the following result such that the bound is attained for an infinite family of groups. We denote by $P \ltimes K$ a semi-direct product K.P with normal subgroup K.

THEOREM 1.2. Let G be a permutation group on a set Ω with movement m such that G has no fixed points in Ω . If G is not a 2-group on any orbit, and $p \ge 5$ is the least odd prime dividing |G|, then the following hold:

- 1. $n := |\Omega| \leq (p/p-1)(\lfloor (2mp/p-1) \rfloor 1)$ (for $x \in \mathbb{R}$, $\lfloor x \rfloor$ denotes the integer part of x);
- 2. moreover, if $|\Omega| = (p/p-1)(\lfloor (2mp/p-1) \rfloor 1)$ then either n = p, m= (p-1)/2, and $G :\leq Z_{2^{a_0}} \ltimes Z_p$ where $a_0 = \max\{a \mid 2^a \text{ divides } p-1\}$, that is, 2^{a_0} is the 2-part of (p-1), or for some positive integer $d, G \cong Z_p^d$, $m = p^{d-1}(p-1)/2$ and all its orbits have length p.

2. EXAMPLES AND PRELIMINARIES

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representation has t nontrivial cycles of lengths $l_1, ..., l_t$ say. We might represent g as

$$g = (a_1 a_2 \dots a_{l_1})(b_1 b_2 \dots b_{l_2}) \dots (z_1 z_2 \dots z_{l_t}).$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\lfloor l_i/2 \rfloor$ points from the i^{th} cycle, for each *i*, chosen in such a way that $\Gamma(g)^g \cap \Gamma(g) = \emptyset$. For example, we could choose $\Gamma(g) = \{a_2, a_4, \ldots, b_2, b_4, \ldots, z_2, z_4, \ldots\}$. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written. For any set $\Gamma(g)$ of this kind we say that $\Gamma(g)$ consists of every second point of every cycle of g. From the definition of $\Gamma(g)$ we see that

$$\left|\Gamma(g)^{g}\setminus\Gamma(g)\right| = \left|\Gamma(g)\right| = \sum_{i=1}^{t} \lfloor l_{i}/2 \rfloor.$$

The next lemma shows that this quantity is an upper bound for $|\Gamma^{g} \setminus \Gamma|$ for an arbitrary subset Γ of Ω .

LEMMA 2.1 ([2, Lemma 2.1].) Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G$, $|\Gamma^g \setminus \Gamma| \leq \sum_{i=1}^t \lfloor l_i/2 \rfloor$ where l_i is the length of the *i*th cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma = \Gamma(g)$ defined above.

Now we shall show that there certainly is an infinite family of groups for which equality in Theorem 1.2(1) holds, for any prime p.

EXAMPLE 2.2. Let d be a positive integer, let $G := Z_p^d$, let $t := (p^d - 1)/(p - 1)$, and let H_1, \ldots, H_t be an enumeration of the subgroups of index p in G. Define Ω_i to be the coset space of H_i in G and $\Omega = \Omega_1 \cup \ldots \cup \Omega_t$. If $g \in G - \{1\}$, then g lies in $(p^{d-1} - 1)/(p - 1)$ of the groups H_i and therefore acts on Ω as a permutation with $(p/p - 1)(p^{d-1} - 1)$ fixed points and p^{d-1} orbits of length p. It follows from Lemma 2.1 that move $(G) = m = p^{d-1}(p - 1)/2$. Thus $\lfloor (2mp/p - 1) \rfloor = p^d$ and

$$n = |\Omega| = p \cdot t = \frac{p}{p-1}(p^d - 1) = \frac{p}{p-1}\left(\left\lfloor \frac{2mp}{p-1} \right\rfloor - 1\right).$$

Now we have the following lemma which is a classification of all transitive permutation groups G of degree p where p is the least odd prime dividing |G|.

LEMMA 2.3. Let G be a transitive permutation group on a set Ω of size p, where $p \ge 5$ is the least odd prime dividing |G|. Then $G = Z_{2^a} \ltimes Z_p$, where $a \ge 0$, and $2^a | (p-1)$.

PROOF: Let G be a transitive permutation group on a set Ω of size p. Then G is isomorphic to a transitive subgroup of S_p and so p is the largest prime divisor of |G|. Since p is also the least odd prime dividing |G|, we have $|G| = p.2^a$ for some $a \ge 0$. By Burnside's "pq theorem" (see [6, Theorem 2, 10, 17]) G is soluble, and hence by a theorem of Galois [6, Theorem 3.6.1], G is isomorphic to a subgroup of the group AGL(1, p) of affine transformations of a finite field consisting of p elements. Thus $G = Z_{2^a} \ltimes Z_p$ as asserted.

COROLLARY 2.4. Let G be a permutation group on a set Ω , and suppose that Δ is a G-orbit of length p in Ω where p is the least odd prime dividing |G|. Then the induced permutation group G^{Δ} is $G = Z_{2^{\alpha}} \ltimes Z_{p}$ where $0 \leq a \leq a_{0}$, and $2^{a_{0}}$ is the 2-part of (p-1).

3. The Maximum degree of bounded movement groups

Suppose that $G \leq Sym(\Omega)$ and that G is not a 2-group and move(G) = m, and such that $p \geq 5$ is the least odd prime dividing the |G|. In this section we find an upper bound for $|\Omega|$ that is a linear function of m.

To prove the main theorems, we introduce the following notation.

 $r_p :=$ number of G-orbits of length p on which G acts as Z_p ;

 $r'_p(a) :=$ number of G-orbits of length p on which G acts as $G = Z_{2^a} \ltimes Z_p$ with $1 \leq a \leq a_0$; and set $r'_p := \sum_{a=1}^{a_0} r'_p(a)$;

 $\Phi :=$ union of G-orbits of lengths 2^b , where $1 \leq b \leq \log_2 p$; and u is the number of orbits in Φ .

s := number of G-orbits of length > p.

M. Alaeiyan

The orbits are labelled accordingly. Thus $\Omega_1, ..., \Omega_{r_p}$ are those of length p on which G acts as Z_p ; $\Omega_{r_p+1}, ..., \Omega_{r_p+r'_p}$ are those of length p on which G acts as $G = Z_{2^a} \ltimes Z_p$ for some $a \ge 1$; $\Omega_{r_p+r'_p+1}, ..., \Omega_{r_p+r'_p+u}$ are those of length 2^b where $1 \le b \le \log_2 p$; et cetera. Define $t := r_p + r'_p + u + s$, $t_1 := r_p + r'_p + u$, and $t_0 = r_p + r'_p$. So t is the total number of G-orbits.

For $1 \leq i \leq t_0$ define K_i to be the kernel of the action of G on Ω_i and for $g \in G$ define k(g) to be the number of i in that range for which g is not in K_i . For $g \in G$ and a G-invariant set Δ we denote by $\operatorname{fix}_{\Delta}(g) = \{\alpha \in \Delta \mid \alpha^g = \alpha\}$ and $\operatorname{supp}_{\Delta}(g) = \{\alpha \in \Delta \mid \alpha^g \neq \alpha\}$ the set of fixed points of g in Δ and the support of g in Δ , respectively (so that $|\operatorname{fix}_{\Delta}(g)| + |\operatorname{supp}_{\Delta}(g)| = |\Delta|$), and define $\operatorname{odd}_{\Delta}(g) :=$ the number non-trivial cycles of gin Δ that have odd length.

LEMMA 3.1. With the above notation, let $\Delta := \bigcup_{i=t_1+1}^{t} \Omega_i$ and let $g \in G$. Then $\frac{p-1}{2}k(g) + \frac{1}{2}|\operatorname{supp}_{\Phi}(g)| + \frac{1}{2}(|\operatorname{supp}_{\Delta}(g)| - \operatorname{odd}_{\Delta}(g)) \leq m.$

PROOF: For each *i* such that $1 \leq i \leq t_0$ and *g* is not in K_i , since $|\Omega_i| = p$ then g^{Ω_i} is a *p*-cycle or a 2-element with one fixed point and we may choose a subset Γ_i of (p-1)/2points of Ω_i such that $\Gamma_i^g \cap \Gamma_i = \emptyset$. Let Γ_0 be the set of chosen points from all the Γ_i for $1 \leq i \leq t_0$, and so by definition $\Gamma_0^g \cap \Gamma_0 = \emptyset$.

For each of the non-trivial cycles $(b_1...b_{2l})$ and $(a_1a_2...a_k)$ of g in Φ and Δ respectively, adjoin the points $b_1, b_3, ..., b_{2l-1}$ and also $a_1, a_3, ..., a_{k'}$ to Γ_0 , where k' is odd and $k-2 \leq k' \leq k-1$. Let Γ be the resulting set. It has been constructed so that $\Gamma^g \cap \Gamma = \emptyset$. Therefore $|\Gamma| \leq m$. Since

$$|\Gamma| = \frac{p-1}{2}k(g) + \frac{1}{2}|\operatorname{supp}_{\Phi}(g)| + \frac{1}{2}(|\operatorname{supp}_{\Delta}(g)| - \operatorname{odd}_{\Delta}(g)),$$

we have the stated inequality.

To prove Theorem 1.1 we first prove the following lemma.

LEMMA 3.2:

$$\left(\sum_{a=0}^{a_0} \frac{p-1}{2} \cdot \left(1 - \frac{1}{2^a p}\right) r'_p(a) + \frac{|\Phi| - u}{2} + \frac{p-1}{2p} \left(|\Delta| - s\right)\right) < m,$$

where for a = 0 the number $r'_p(a)$ is r_p .

PROOF: Suppose that $1 \le i \le t_0$. Then the group induced by G on Ω_i is $G = Z_{2^a} \ltimes Z_p$ for some $a \ge 0$, such that $2^a \mid (p-1)$, and since $|G: K_i| = 2^a p$, there are

$$|G| - |K_i| = (2^a p - 1)|K_i|$$

elements g which act nontrivially on Ω_i . It follows that

$$\sum_{q \in G} \frac{p-1}{2} k(q) = \frac{p-1}{2} \sum_{a=0}^{u_0} \left(\frac{2^a p - 1}{2^a p} |G| \right) r'_p(a)$$

0

[4]

where $r'_p(0) := r_p$.

For $t_0 + 1 \leq i \leq t_1$, the group induced by G on Ω_i is a 2-group. The union of these sets Ω_i is Φ , and since by Burnside's Lemma [5, Theorem 3.26] the average number of fixed points of elements of G in Φ is the number u of G-orbits in Φ , we have

$$\sum_{g \in G} \frac{1}{2} |\operatorname{supp}_{\Phi}(g)| = \frac{1}{2} \sum_{g \in G} \left(|\Phi| - |\operatorname{fix}_{\Phi}(g)| \right) = \frac{1}{2} |\Phi| \cdot |G| - \frac{|G|}{2} \cdot u.$$

Similarly,

$$\sum_{g \in G} \frac{1}{2} |\operatorname{supp}_{\Delta}(g)| = \frac{1}{2} |\Delta| . |G| - \frac{s|G|}{2}$$

and since $\operatorname{odd}_{\Delta}(g) \leq (1/p) |\operatorname{supp}_{\Delta}(g)|$, we have

$$\sum_{g \in G} \frac{1}{2} \Big(\left| \operatorname{supp}_{\Delta}(g) \right| - \operatorname{odd}_{\Delta}(g) \Big) \geqslant \frac{p-1}{2p} \Big(|\Delta| |G| - s|G| \Big).$$

Thus adding the inequality of lemma 3.1 over all $g \in G$, we obtain

$$m|G| > |G| \left(\sum_{a=0}^{a_0} \frac{p-1}{2} \cdot \left(1 - \frac{1}{2^a p} \right) r'_p(a) + \frac{|\Phi| - u}{2} + \frac{p-1}{2p} \left(|\Delta| - s \right) \right),$$

where the strict inequality recognises the fact the inequality of Lemma 3.1 is strict for the identity element of |G|. This completes the proof of Lemma 3.2.

Now

$$n = \left(\sum_{a=0}^{a_0} r'_p(a)\right) p + |\Phi| + |\Delta|.$$

Also we have $|\Phi| \ge 2u$, and so

$$\frac{|\Phi|-u}{2} \geqslant \frac{|\Phi|}{4}.$$

Thus the inequality in Lemma 3.2 implies that

$$m > \frac{n}{4} + \sum_{a=0}^{a_0} r'_p(a) \left(\frac{p-1}{2} - \frac{p-1}{2^{a+1}p} - \frac{p}{4} \right) + |\Delta| \left(\frac{p-1}{2p} - \frac{1}{4} \right) - \frac{p-1}{2p} s$$
$$= \frac{n}{4} + \sum_{a=0}^{a_1} r'_p(a) \left(\frac{p-2}{4} - \frac{p-1}{2^{a+1}p} \right) + |\Delta| \left(\frac{p-2}{4p} \right) - \frac{p-1}{2p} s.$$

Since G is not a 2-group, so we have either $\sum_{a=0}^{a_0} r'_p(a) > 0$ or s > 0. If some $r'_p(a) > 0$, then

$$m > \frac{n}{4} + \frac{p-2}{4} - \frac{p-1}{2^{a+1}p}$$

But we note that since $p \ge 5$, for each $a \ge 0$,

$$\frac{p-2}{4} - \frac{p-1}{2^{a+1}p} \ge \frac{p-2}{4} - \frac{p-1}{2p} > 0.$$

Hence,

$$m > \frac{n}{4} + \frac{p-2}{4} - \frac{p-1}{2p} = \frac{n}{4} + \frac{p^2 - 4p + 2}{4p}$$

On the other hand if s > 0, then $|\Delta| \ge (p+1)s \ge p+1$. Thus,

$$m > \frac{n}{4} + |\Delta| \left(\frac{p-2}{4p}\right) - \frac{p-1}{2p}s$$

$$\ge \frac{n}{4} + s \left(\frac{(p+1)(p-2)}{4p} - \frac{p-1}{2p}\right)$$

$$\ge \frac{n}{4} + \frac{p^2 - 3p}{4p}.$$

So in either case we must have,

$$m > \frac{n}{4} + min\left\{\frac{p^2 - 4p + 2}{4p}, \frac{p^2 - 3p}{4p}\right\} = \frac{n}{4} + \frac{p^2 - 4p + 2}{4p}.$$

Hence,

$$n < 4m - \frac{p^2 - 4p + 2}{4p} = 4m - p + 4 - \frac{2}{p}.$$

That is, n < 4m - p + 4 and so $n \leq 4m - p + 3$. Hence the proof of Theorem 1.1 is complete.

4. The proof of Theorem 1.2

In this section with the notation defined in Section 3 we refine the upper bound 4m - p + 3 for n and obtain an upper bound that is attained for an infinite family of groups. For this purpose suppose that G is not a 2-group on any orbit, that is u = 0. Then we have the following lemma.

LEMMA 4.1. With the above notation,

$$n < \frac{2p^2m}{(p-1)^2} - \Big[\frac{p}{p-1}\sum_{a}\frac{2^a-1}{2^a}r'_p(a) + \frac{1}{p-1}|\Delta| - \frac{p}{p-1}s\Big].$$

PROOF: Since G is not a 2-group on any orbit, u = 0 and so $|\Phi| = 0$ the inequality of Lemma 3.2, yields

$$m > \left(\sum_{a=0}^{a_0} \frac{p-1}{2} \cdot \left(1 - \frac{1}{2^a p}\right) r'_p(a) + \frac{p-1}{2p} \left(|\Delta| - s\right)\right).$$

Since $n = pr_p + pr'_p + |\Delta|$, we have

$$\frac{2p^2m}{(p-1)^2} > pr_p + \frac{p}{p-1} \sum_a \frac{2^a p - 1}{2^a} r'_p(a) + \frac{p}{p-1} (|\Delta| - s)$$
$$= pr_p + pr'_p + \frac{p}{p-1} \sum_a \frac{2^a - 1}{2^a} r'_p(a) + |\Delta| + \frac{1}{p-1} |\Delta| - \frac{p}{p-1} s.$$

254

[7]

Hence,

$$\frac{2p^2m}{(p-1)^2} > n + \Big[\frac{p}{p-1}\sum_{a}\frac{2^a-1}{2^a}r'_p(a) + \frac{1}{p-1}|\Delta| - \frac{p}{p-1}s\Big],$$

and we have the stated inequality.

Now define $\eta := 2p^2m - (p-1)^2n$. Clearly η is an integer and from Lemma 3.3 we have that

$$0 \leq p(p-1) \sum_{a} \frac{2^{a}-1}{2^{a}} r'_{p}(a) + (p-1)|\Delta| - (p-1)p.s < \eta$$

If $\eta > p(p-1)$, then part 1 of Theorem 1.2 follows. To prove the theorem we suppose that $\eta \leq p(p-1)$ and seek to discover what configurations may occur.

From the inequality

$$0 \leq p(p-1) \sum_{a} \frac{2^{a}-1}{2^{a}} r'_{p}(a) + (p-1)|\Delta| - (p-1)p \cdot s < \eta \leq p(p-1)$$

we obtain,

$$0 \leq p \sum_{a} \frac{2^{a} - 1}{2^{a}} r'_{p}(a) + (|\Delta| - (p - 1)p.s) < p.$$

First we show that s = 0. Since if $s \neq 0$, then by [4, Lemma 2]

$$p.t < n \leqslant t + \frac{2mp}{p-1} - 1.$$

Hence,

$$t < \frac{1}{p-1} \Big(\frac{2mp}{p-1} - 1 \Big),$$

and then we have

$$n \leq t + \frac{2mp}{p-1} - 1 < \frac{p}{p-1} \Big(\frac{2mp}{p-1} - 1 \Big),$$

which contradicts our assumption. Hence s = 0, and so $|\Delta| = 0$ and

$$0 \leq p \sum_{a} \frac{2^{a} - 1}{2^{a}} r'_{p}(a) < \eta/(p - 1) \leq p.$$

This inequality implies that $r'_p \leq 1$. If $r_p = 0$ and $r'_p \neq 0$, then n = p = 2mp/(p-1). Following [2] and Lemma 2.3, the last equality holds if and only if m = (p-1)/2 and $G = Z_{2^a} \ltimes Z_p$, where $a \ge 1$, and $2^a \mid (p-1)$.

Moreover, suppose that $r'_p = 0$. Then $n = p \cdot r_p$ and by Example 2.2 G is an elementary Abelian p-group.

Now we consider the case that $r_p > 0$, and $r'_p > 0$, that is $r'_p = 1$. Define Σ_1 := $\bigcup_{i=1}^{r_p} \Omega_i$, the union of the orbits of length p on which G acts as Z_p , and Σ_2 , the unique of the orbit of length p on which G acts as $G = Z_{2^a} \ltimes Z_p$, where $a \ge 1$ and $2^a \mid (p-1)$. Let $m_1 := \text{move}(G^{\Sigma_1})$, and $m_2 := \text{move}(G^{\Sigma_2}) = (p-1)/2$. By Example 2.2 each non-identity element of G^{Σ_1} have the same movement m_1 , so by considering of the each *p*-element of G^{Σ_2} it follows easily that $m = m_1 + m_2$. Defining $n_1 := |\Sigma_1|$, and n_2 $:= |\Sigma_2| = p = 2mp/(p-1)$. We have from Example 2.2 that

$$n_1 \leqslant \frac{p}{p-1} \left(\left\lfloor \frac{2m_1p}{p-1} \right\rfloor - 1 \right),$$

and so

$$n = n_1 + n_2 \leq \frac{p}{p-1} \left(\left\lfloor \frac{2m_1p}{p-1} \right\rfloor - 1 \right) + \left\lfloor \frac{2m_2p}{p-1} \right\rfloor < \frac{p}{p-1} \left(\left\lfloor \frac{2m_1p}{p-1} \right\rfloor - 1 \right) + \frac{p}{p-1} \left\lfloor \frac{2m_2p}{p-1} \right\rfloor.$$

Hence,

$$n < \frac{p}{p-1} \left(\left\lfloor \frac{2mp}{p-1} \right\rfloor - 1 \right).$$

What this has shown is that, if $\eta := 2p^2m - (p-1)^2n$, that is, $n \ge \left(\lfloor (2mp/p-1) \rfloor - 1\right)/(p-1)$, then either $r_p = 0$ or $r'_p = 0$ and we have the situation posed in above. In this cases

$$n = \left\lfloor \frac{2mp}{p-1} \right\rfloor = \frac{p}{p-1} \left(\left\lfloor \frac{2mp}{p-1} \right\rfloor - 1 \right).$$

Thus the result now follows and the proof of Theorem 1.2 is complete.

0

[8]

References

- [1] J.R. Cho, P.S. Kim, and C.E. Praeger, 'The maxiamal number of orbits of a permutation groups with bounded movement', J. Algebra 214 (1999), 625-630.
- [2] A. Hassani, M. Khayaty, E. I. Khukhro and C. E. Praeger, 'Transitive permutation groups with bounded movement having maximal degree', J. Algebra 214 (1999), 317-337.
- P.M. Neumann and C.E. Praeger, 'On the movement of a permutation group', J. Algebra 214 (1999), 631-635.
- [4] C.E. Praeger, 'On permutation groups with bounded movement', J. Algebra 144 (1991), 436-442.
- J.J. Rotman, An Introduction to the theory of groups, (3rd edition) (Allyn and Bacon, Boston, 1984).
- [6] T. Tsuzuku, Finite groups and finite geometries (Cambridge University Press, Cambridge, 1982).

Department of Mathematics Iran University of Science and Technology Narmak Tehran 16844 Iran e-mail: Khayaty@iust.ac.ir