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Abstract. Fix an arbitrary finite group A of order a, and let X(n, q) denote the set
of homomorphisms from A to the finite general linear group GLn(q). The size of X(n, q)
is a polynomial in q. In this note, it is shown that generically this polynomial has degree
n2(1 − a−1) − εr and leading coefficient mr, where εr and mr are constants depending
only on r := n mod a. We also present an algorithm for explicitly determining these
constants.

2010 Mathematics Subject Classification. 20G40, 20C15.

1. Introduction. Let A be a finite group of order a and let X(n, q) =
Hom(A, GLn(q)) denote the set of all homomorphisms from A to the general linear
group of n × n invertible matrices with entries in the finite field �q. Suppose that �q is a
splitting field for A. In [5], Liebeck and Shalev provide upper and lower bounds for the
size of this set, which is a polynomial in q [2, Proposition 4.1]; see also [1]. The bound
presented in [5, Theorem] has the following form:

cq(n2−r2)(1−a−1) ≤ |X(n, q)| ≤ dqn2(1−a−1),

where c is an absolute constant, d is a constant depending only on a, and r is the value
of n modulo a. Note that, as is pointed out in [5] and [1], there is an absolute constant
β > 0 such that βqn2 ≤ |GLn(q)| ≤ qn2

for all n and q, so these bounds can be rewritten
in terms of the order of GLn(q). The aim of this note is to show that there exists N
such that for all n ≥ N the leading term of the polynomial |X(n, q)| has the form

mrqn2(1−a−1)−εr ,

where (given a fixed group A) mr and εr are constants only depending on r, and
N = a(a − 1) will definitely suffice. In particular, this leading coefficient and degree are
independent of q. We also present an algorithm for explicitly determining the values
of mr, εr and N for any choice of A. The input needed for the algorithm is the degrees
of the irreducible representations for A over a splitting field for A.

The paper is laid out as follows. We begin in Section 2 by setting up some basic
notation and recalling some of the analysis from [5] and [1], before moving on to the
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main results in Section 3. After giving some examples to illustrate various points of the
paper in Section 4, in the final section of the paper, we indicate how to relax some of
the assumptions in force for the rest of the paper, and also make some further remarks.

2. Preliminaries. Throughout, A denotes a finite group with a elements. We use
q to denote the order of a finite field �q, so q = pd for some prime p and positive integer
d. Our standing assumption on q for most of this note (except in Section 5) is that �q

is a splitting field for A, i.e., the characteristic p of the field �q does not divide a and all
irreducible �qA-modules are absolutely irreducible. By Schur’s Lemma, given a simple
�qA-module M, we have End�qA−mod(M) � �q.

For an n-dimensional �q-vector space V , we have the finite general linear group
GL(V ) which we freely identify with GLn(q), the group of invertible n × n matrices with
entries in �q, when it is convenient to do so. We let X(n, q) = Hom(A, GLn(q)) denote
the set of homomorphisms from A to GLn(q) for each choice of n and q, and note that
GLn(q) acts on X(n, q) by conjugation: Given ρ : A → GLn(q) and g ∈ GLn(q), set
(g · ρ)(a) = gρ(a)g−1 for all a ∈ A. This breaks the set X(n, q) up into GLn(q)-orbits,
and one key part of the analysis in [5] and [1] is to bound the size of each of these
orbits. This involves some basic representation theory, which we now recap.

Let (M1, . . . , Ms) be a complete ordered tuple of pairwise non-isomorphic
irreducible (hence absolutely irreducible by our assumptions on the field) �qA-modules,
and let di = dim(Mi) for each i. Choose the labelling so that M1 is the trivial module.
The degrees di are the same for any splitting field for A, and a = ∑s

i=1 d2
i . Given any

�qA-module V , we have an isomorphism

V � n1M1 ⊕ · · · ⊕ nsMs,

where niMi denotes the direct sum of the module Mi with itself ni times (we allow ni = 0
here). For a given �qA-module V , we therefore have an ordered s-tuple (n1, . . . , ns) of
non-negative integers and two �qA-modules are isomorphic if and only if they have
the same ordered s-tuple attached. Moreover, if we restrict attention to n-dimensional
modules for some fixed n, then the relevant s-tuples (n1, . . . , ns) for which

∑s
i=1 nidi = n

also parameterise the GLn(q)-orbits in X(n, q). It follows from the analysis in [5] and
[1] that, given a tuple (n1, . . . , ns), the stabiliser associated to the corresponding orbit
in X(n, q) is isomorphic to a product

∏s
i=1 GLni (q), which allows us to write down the

size of the orbit by the Orbit-Stabilizer Theorem. The key to the approach presented
in this note is to give a better estimate of the largest possible size for such an orbit, and
to show that such a size is attained, which improves on the upper and lower bounds
presented in [5].

3. Results. Keep the notation from the previous section, and remember our
standing assumption that �q is a splitting field for A. Before stating and proving the
main technical results needed for our algorithm, we introduce some more terminology.
Let n ∈ �. We say that an ordered tuple (n1, . . . , ns) of integers (not necessarily non-
negative) is admissible for n if

∑s
i=1 nidi = n; if the context is clear, then we simply say

the tuple is admissible. We call such an admissible tuple eligible if, in addition, ni ≥ 0
for all i. Finally, we call a tuple (n1, . . . , ns) which is admissible for n ∈ � a minimal
tuple for n if

∑s
i=1 n2

i is minimal amongst all admissible tuples for n.
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LEMMA 3.1. Fix n ∈ �. Then

(i) the parameterisation of the orbits in X(n, q) by eligible tuples is independent
of q;

(ii) for each eligible tuple t = (n1, . . . , ns), there is a polynomial ft(x) ∈ �[x] such
that the size of the corresponding orbit in X(n, q) is ft(q);

(iii) the polynomials of maximal degree from (ii) are precisely those corresponding
to minimal tuples.

Proof. Part (i) follows from the fact that the dimensions and number of
isomorphism classes of absolutely irreducible �qA-modules over a splitting field are
independent of that field. Then (ii) follows because the shape of the stabiliser of
a given orbit, as given at the end of the previous section, is independent of q.
Specifically, given any eligible tuple (n1, . . . , ns), the size of the associated orbit in
X(n, q) is |GLn(q)|/∏s

i=1 |GLni (q)|, which is a polynomial in q [2, Proposition 4.1] with
leading term qn2−∑s

i=1 n2
i . Therefore, the largest degree amongst all these polynomials is

attained by those polynomials corresponding to tuples for which
∑s

i=1 n2
i is minimal.

These are precisely the polynomials corresponding to minimal eligible tuples, which
proves (iii). �

LEMMA 3.2. Given n ∈ �, there are finitely many minimal tuples for n.

Proof. Since d1 = 1, the tuple (n, 0, 0, . . . , 0) is admissible for n, and hence for
a minimal tuple (n1, . . . , ns) we have

∑s
i=1 n2

i ≤ n2. In particular, for each i we have
−n ≤ ni ≤ n. This gives rise to finitely many tuples, and all the minimal tuples lie
amongst these. �

The above lemma shows that for each n we have finitely many minimal tuples to
worry about. In fact, we can do much better than that, as the following results show.

LEMMA 3.3. Given n ∈ �, write n = ka + r where k ∈ � ∪ {0} and 0 ≤ r < a.

(i) Suppose (r1, . . . , rs) is a minimal tuple for r. Then (kd1 + r1, . . . , kds + rs) is
a minimal tuple for n.

(ii) Suppose (n1, . . . , ns) is a minimal tuple for n. Then (n1 − kd1, . . . , ns − kds) is
a minimal tuple for r.

Hence, minimal tuples for n are in 1–1 correspondence with minimal tuples for r.

Proof. First, note that if (r1, . . . , rs) is an admissible tuple for r, then
∑s

i=1 ridi = r,
so

s∑

i=1

(kdi + ri)di = k
s∑

i=1

d2
i +

s∑

i=1

ridi = ka + r = n,

and hence (kd1 + r1, . . . , kds + rs) is admissible for n. Conversely, if (n1, . . . , nr) is
admissible for n, then

s∑

i=1

(ni − kdi)di =
s∑

i=1

nidi − k
s∑

i=1

d2
i = n − ka = r,

so (n1 − kd1, . . . , ns − kds) is admissible for r.
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Now suppose (r1, . . . , rs) is minimal for r and (n1, . . . , ns) is minimal for n. Since
(r1, . . . , rs) is minimal for r and (n1 − kd1, . . . , ns − kds) is admissible for r, we have

s∑

i=1

(kdi + ri)2 = k2
s∑

i=1

d2
i + 2k

s∑

i=1

ridi +
s∑

i=1

r2
i

= k2a + 2kr +
s∑

i=1

r2
i

≤ k2a + 2kr +
s∑

i=1

(ni − kdi)2

= k2a + 2kr +
s∑

i=1

n2
i − 2k

s∑

i=1

nidi + k2
s∑

i=1

d2
i

=
s∑

i=1

n2
i + 2k2a + 2kr − 2kn

=
s∑

i=1

n2
i .

But (n1, . . . , nr) is minimal for n, so we must actually have equality here and hence
(kd1 + r1, . . . , kds + rs) is also minimal for n. Using this equality, we now also have

s∑

i=1

(ni − kdi)2 =
s∑

i=1

n2
i − 2k

s∑

i=1

nidi + k2
s∑

i=1

d2
i

=
s∑

i=1

(kdi + ri)2 − 2kn + k2a

= 2k2a + 2kr +
s∑

i=1

r2
i − 2k(ka + r)

=
s∑

i=1

r2
i ,

so (n1 − kd1, . . . , ns − kds) is a minimal tuple for r. �
REMARK 3.4. Lemma 3.3 is really at the heart of this note. It shows that, despite

the fact that the whole set X(n, q) gets more and more complicated as n grows, we can
still exert some control over the orbits which are largest in the sense of Lemma 3.1(iii).
One cannot hope for this to be true for smaller orbits, because as n grows, so does the
number of eligible tuples and hence the total number of orbits.

LEMMA 3.5. There exists N ∈ � such that for all n ≥ N, all minimal tuples for n are
eligible and the number of minimal tuples only depends on the value of n modulo a.

Proof. For any n ∈ �, the number of minimal tuples for n is the same as the number
of minimal tuples for r, where n = ka + r with k ∈ � ∪ {0} and 0 ≤ r < a, by Lemma
3.3, so this number only depends on the value of n modulo a. Moreover, the minimal
tuples for n all have the form (kd1 + r1, . . . , kds + rs) where (r1, . . . , rs) is a minimal
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tuple for r, again by Lemma 3.3. There are finitely many values ri as r runs over all
integers between 0 and a − 1 by the argument in the proof of Lemma 3.2, and we just
need to choose N large enough so that for all n ≥ N, all possible values kdi + ri ≥ 0,
which can clearly be done. After this point, all the minimal tuples are also eligible. �

REMARK 3.6. By the argument in the proof of Lemma 3.2, if (r1, . . . , rs) is a
minimal tuple for 0 ≤ r < a, the minimal possible value for any ri is −r. Since each
di ≥ 1 this means that kdi + ri ≥ 0 as long as k > a − 1 for any choice of 0 ≤ r < a, so
we could choose N = a(a − 1) in Lemma 3.5 if we wanted a concrete bound. However,
in practice, as we shall see, the best value for N is often much less than this.

REMARK 3.7. When n = ka is a multiple of a, the tuple (kd1, . . . , kdr) is the unique
minimal eligible tuple for n. This is because this tuple gives a global minimum for the
value

∑s
i=1 x2

i amongst all tuples of real numbers (x1, . . . , xs) satisfying the constraint∑s
i=1 xidi = n, as can be verified using some basic calculus.

PROPOSITION 3.8. Suppose 0 ≤ r < a. Let mr be the number of minimal tuples for r,
and let (r1, . . . , rs) be one of the minimal tuples for r. Let εr = ∑s

i=1 r2
i − r2a−1. Given

n ∈ � with n ≥ N, where N is as in Lemma 3.5, write n = ka + r, where k ∈ � and
0 ≤ r < a. Then

(i) εr ≥ 0 (with equality if and only if r = 0);
(ii) there exists a polynomial fn(x) ∈ �[x], independent of q, whose leading term

is mrxn2(1−a−1)−εr such that |X(n, q)| = fn(q).

Proof. (i) The global minimum value for
∑s

i=1 x2
i amongst all real s-tuples

(x1, . . . , xs) satisfying
∑s

i=1 xidi = r is given by the tuple (a−1rd1, . . . , a−1rds), and
hence

∑s
i=1 r2

i ≥ ∑s
i=1 a−2r2d2

i = a−1r2, as required. It is clear that if r = 0, then εr = 0.
For the converse note that we get εr = 0 if and only if the global minimum tuple is
an integer tuple, that is if and only if a−1rdi ∈ � for all i. But since d1 = 1 (the degree
of the trivial irreducible representation), this means that a−1r ∈ �. Since r < a, this is
only possible if r = 0.

(ii) By the definition of N from Lemma 3.5, all minimal tuples for n are eligible
and there are precisely mr of them. Moreover, each minimal tuple for n has the form
(kd1 + r′

1, . . . , kds + r′
s), where (r′

1, . . . , r′
s) is a minimal tuple for r. Now note that for

any minimal tuple (r′
1, . . . , r′

s) for r we have
∑s

i=1(r′
i)

2 = ∑s
i=1 r2

i , where (r1, . . . , rs) is
the fixed minimal tuple picked in the statement of the result. Then

s∑

i=1

(kdi + r′
i)

2 = k2
s∑

i=1

d2
i + 2k

s∑

i=1

r′
idi +

s∑

i=1

(r′
i)

2

= k2a + 2kr +
s∑

i=1

r2
i

= a−1(k2a2 + 2akr + r2) − r2a−1 +
s∑

i=1

r2
i

= a−1n2 + εr.

By Lemma 3.1(iii), the minimal tuples for n give rise to the orbits whose orders are
polynomials of maximal degree amongst the orders of all orbits in X(n, q), and the
order of each of these orbits is a polynomial in q with leading term qn2−a−1n2−εr . Since
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X(n, q) is the disjoint union of all of the orbits it contains, the order of X(n, q) is a
polynomial in q with leading term mrqn2(1−a−1)−εr . None of the arguments used to derive
this result rely on the actual value of q, only that �q is a splitting field for A. Since the
degrees di are all the same for any splitting field, we get the result. �

We summarise the results obtained in the form of an algorithm:

ALGORITHM. The following steps will allow one to find the numbers mr, εr and N from
Proposition 3.8, and hence calculate the highest degree term of the polynomial |X(n, q)|
for any n ≥ N.

STEP 1. For each 0 ≤ r < a find all minimal tuples of integers for r; that is, find all
tuples (r1, . . . , rs) satisfying

∑s
i=1 ridi = r and minimising the value of

∑s
i=1 r2

i . For each
r, record the number mr of minimal tuples found, and the number εr := ∑s

i=1 r2
i − r2a−1,

where (r1, . . . , rs) is one of the minimal tuples.

STEP 2. Find the smallest b ∈ � ∪ {0} such that bdi + ri ≥ 0 for all ri from step 1.
Then set N = ba.

4. Examples. We now present some examples of our algorithm and its results
when applied to some groups which are relatively easy to handle. For a given minimal
tuple (r1, . . . , rs), we denote

∑s
i=1 r2

i by Sr.

4.1. Abelian groups. If A is abelian and �q is a splitting field for A, then there are
a distinct classes of irreducible representations of A and they are all one-dimensional.
Therefore, for 0 ≤ r < a, a minimal tuple is just found by filling r spaces with a 1 and
a − r with a zero. This means that all minimal tuples are eligible, so N = 0, mr is the
binomial coefficient

(a
r

)
, and Sr = r. Therefore, εr = r − r2a−1 and the leading term of

the polynomial |X(n, q)| is
(a

r

)
qn2(1−a−1)−r+r2a−1

.

4.2. Dihedral groups Dm. Let A = Dm be the dihedral group of order a = 2m.
For �q to be a splitting field for A, it is enough that �q contains all elements of the form
ζ + ζ−1, where ζ is a root of the mth cyclotomic polynomial. Over a splitting field, if
m is odd, then A has two irreducible representations of degree 1 and m−1

2 of degree 2,
and if m is even, we get four irreducible representations of degree 1 and m−2

2 of degree
2. Hence, we split into two cases:

m = 2l + 1 is odd. In this case, for any even r = 2k with 0 ≤ r < 2n, we choose k of the
m representations of degree 2 to come up with a minimal tuple; there are

(m
k

)
ways to

do this, so that is the value of mr, and Sr = k = r
2 . For an odd r = 2k + 1, we again

choose k of the degree 2 representations, and then one of degree 1; there are therefore
mr = 2

(m
k

)
ways to do this, each one with Sr = k + 1 = r+1

2 . Hence, we have that the
leading term of the polynomial |X(n, q)| is

(m
k

)
qn2(1−a−1)− r

2 +r2a−1
if r = 2k is even and

2
(m

k

)
qn2(1−a−1)− r+1

2 +r2a−1
if r = 2k + 1 is odd.

m = 2l is even. In this case, for any even r = 2k with 0 ≤ r < 2n, we choose k of the
m representations of degree 2 to come up with a minimal tuple; there are

(m
k

)
ways to

do this, so that is the value of mr, and Sr = k = r
2 . For an odd r = 2k + 1, we again

choose k of the degree 2 representations, and then one of degree 1; there are therefore
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mr = 4
(m

k

)
ways to do this, each one with Sr = k + 1 = r+1

2 . Hence, we have that the
leading term of the polynomial |X(n, q)| is

(m
k

)
qn2(1−a−1)− r

2 +r2a−1
if r = 2k is even and

4
(m

k

)
qn2(1−a−1)− r+1

2 +r2a−1
if r = 2k + 1 is odd.

4.3. The symmetric group S4. If A = S4, which has order a = 24, then any field
of characteristic not 2 or 3 is a splitting field for A, and the degrees of the irreducible
representations over such a field are 1, 1, 2, 3 and 3. According to our algorithm, we need
to determine the minimal tuples for all 0 ≤ r < 24. The relevant data is summarised in
the following table:

r mr Sample tuple Sr εr r mr Sample tuple Sr εr

0 1 (0, 0, 0, 0, 0) 0 0 12 4 (1, 0, 1, 2, 1) 7 1

1 2 (1, 0, 0, 0, 0) 1 23
24 13 2 (1, 1, 1, 2, 1) 8 23

24

2 1 (0, 1, 0, 0, 0) 1 5
6 14 1 (0, 0, 1, 2, 2) 9 5

6

3 2 (0, 0, 0, 1, 0) 1 5
8 15 2 (1, 0, 1, 2, 2) 10 5

8

4 4 (1, 0, 0, 1, 0) 2 4
3 16 1 (1, 1, 1, 2, 2) 11 1

3

5 2 (0, 0, 1, 1, 0) 2 23
24 17 2 (1, 0, 2, 2, 2) 13 23

24

6 1 (0, 0, 0, 1, 1) 2 1
2 18 1 (1, 1, 2, 2, 2) 14 1

2

7 2 (1, 0, 0, 1, 1) 3 23
24 19 2 (1, 1, 1, 3, 2) 16 23

24

8 1 (0, 0, 1, 1, 1) 3 1
3 20 4 (1, 0, 2, 3, 2) 18 4

3

9 2 (1, 0, 1, 1, 1) 4 5
8 21 2 (1, 1, 2, 3, 2) 19 5

8

10 1 (1, 1, 1, 1, 1) 5 5
6 22 1 (1, 1, 1, 3, 3) 21 5

6

11 2 (0, 0, 1, 2, 1) 6 23
24 23 2 (1, 0, 2, 3, 3) 23 23

24

Of note here is the fact that in this case for every r all the minimal tuples are eligible
tuples, and hence for this example the value of N = 0 (so our result is valid for all n).
It is relatively straightforward to show that this is a general phenomenon which occurs
when the degrees of the irreducible representations for A can be put into an ordered
list 1 = d1 ≤ d2 ≤ · · · ≤ ds with di − di−1 ≤ 1 for 1 < i ≤ s.

It is also worth noting that this small example already shows that the value of the
“error term” εr can be greater than 1, so finding the degree of the polynomial |X(n, q)|
is more complicated than simply taking the integer part of n2(1 − a−1).

4.4. Further examples. Let A = S5, so a = 120. Any field of characteristic larger
than 5 is a splitting field for S5, and the degrees of the irreducible representations over
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such a field are 1, 1, 4, 4, 5, 5 and 6. When r = 3, the tuple (0,−1, 1, 0, 0, 0, 0) is one
of four minimal tuples (the others being those naturally obtained from this one by
permuting amongst entries of equal degree). Hence, we cannot take N = 0 as we have
negative entries for at least one value of r. In this case, the value of N provided by our
algorithm is N = a = 120. For similar reasons, when A = S6, we also need to go up to
N = a = 720. We have also calculated directly that value of N for all groups of order
a ≤ 80 is either 0 or a.

5. Extensions and further remarks. In this section, we outline various ways to
extend the work presented, either by relaxing some of the standing assumptions made
in Section 2 or by changing the groups involved. We also point out an application of this
work to the study of representation varieties. We begin by discussing the restrictions
we have placed on the field �q.

5.1. The assumption that �q is a splitting field. We have had the standing
assumption that �q is a splitting field for A. This means, in particular, that the
characteristic p of �q is coprime to the size a of the group A and that every irreducible
�qA-module is absolutely irreducible. This assumption allows us to assume that all
modules encountered are semisimple and that the irreducible summands encountered
do not really depend on the field in any essential way.

Suppose we relax the assumption that all irreducible modules are absolutely
irreducible, but retain for now the assumption that q and a are coprime (this is the
situation in [5], for example). Then we can still write down a basic set (N1, . . . , Nt),
say, of irreducible �qA-modules. It follows from Schur’s Lemma that End�qA−mod(Ni)
is a division ring for each i, and since any finite division ring is a field it is not hard to
see that we have End�qA−mod(Ni) � �qei for some ei ≥ 1. Moreover, if we extend scalars
to �qei , then the module Ni splits into a direct sum of ei absolutely irreducible �qei A-
modules, (Mi1, . . . , Miei ) say, which form a single orbit under the action of the Galois
group Gal(�qei /�q) � �ei . Denote the dimension of each Mij over �qei by dij, and note
that dij = di1 for all 1 ≤ j ≤ ei. Note also that the �q-dimension of Ni must be di1ei.
Conversely, given an absolutely irreducible �qe A-module M over some extension �qe of
�q, taking the direct sum of the distinct Gal(�qe/�q)-conjugates of M forms a module
which arises from precisely one of the Ni by extension of scalars from �q to �qe . For
justification of the claims above, see results in [3, Section 7], in particular, Corollary
7.11 and Proposition 7.18.

In this way, one can retrieve all of the information necessary to mimic the proofs
and constructions in Section 3 over �q. In particular, the degrees dij occurring above
(with their multiplicities ei) are precisely the degrees of the distinct representatives of
the isomorphism classes of absolutely irreducible KA-modules over some sufficiently
large extension K of �q (it suffices to extend to a finite field containing all the �qei ).
We therefore have that

∑t
i=1

∑ei
j=1 d2

ij = a. Within this set-up, one can still calculate
stabilisers of representations – we see direct products of GLn(qei )s – and one can analyze
t-tuples of integers (m1, . . . , mt) such that

∑t
i=1 midi1ei = n. This amounts to the same

thing as analyzing those s-tuples of integers (n11, . . . , ntet ) such that
∑s

i=1

∑ei
j=1 nijdij = n

subject to the additional constraint that ni1 = nij for all 1 ≤ j ≤ ei. Presenting it in this
way shows that, given the degrees dij, we actually need to identify a subset of the eligible
s-tuples for the number n from Section 3 – those tuples satisfying the given additional
constraint. The analysis in Section 3 now proceeds almost unchanged: Certain of these
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tuples will be minimal, and after a certain point, all minimal tuples will be eligible.
After this point, the leading coefficient and power of q in the polynomial |X(n, q)| will
only depend on the value of n modulo a. Furthermore, when n is divisible by a, the
unique minimal tuple described in the proof of Proposition 3.8(i) actually satisfies the
additional constraint given, so we get a leading term qn2(1−a−1) in this case.

The preceding remarks are perhaps made more transparent with a couple of simple
examples. We maintain notation from previous sections.

EXAMPLE 5.1. Let d be an odd positive integer, let q = 2d and let A be the cyclic
group of order 3, generated by the element x of order 3, say. We need three distinct
cube roots of 1 to realise all the absolutely irreducible representations of A; since d is
odd, �q does not contain three distinct cube roots of 1, but �q2 does. Over �q, A has the
trivial representation N1 and another irreducible representation N2 of degree 2; N2 can
be realised concretely by sending x to the matrix

(
1 1
1 0

)
(note that this matrix does have

order 3 when the characteristic is 2, and it has characteristic polynomial X2 + X + 1,
so is not diagonalisable unless the field contains a non-trivial cube root of 1). If we
extend scalars by adjoining a root of X2 + X + 1 (i.e., move to the field �q2 ), then N2

splits into two one-dimensional modules.
Now, we have only have one representation of A over �q of degree 1 – the trivial

representation – so we have in this case that |X(1, q)| = 1. On the other hand, if we
extend scalars to �q2 , we get |X(1, q2)| = 3. In fact, for any n ∈ �, we have

|X(3n + 1, q)| = q
2
3 (3n+1)2− 2

3 + lower order terms,

whereas

|X(3n + 1, q2)| = 3(q2)
2
3 (3n+1)2− 2

3 + lower order terms.

This shows how the leading coefficient of |X(n, q)| can vary with q when we work with
fields which are not necessarily splitting fields.

EXAMPLE 5.2. Let q = 3 and let A be the dihedral group of order 10. Over �3, there
are three irreducible representations of A: two of dimension 1, N1 and N2, say, and
a single four-dimensional representation, say N3. If we extend scalars to �9, then N4

splits into the two familiar two-dimensional representations (those we see “generically”
by considering dihedral groups as groups of plane rotations and reflections); call these
two-dimensional modules M3 and M′

3, and denote the modules given by N1 and N2

after extension of scalars by M1 and M2.
Over �3, there are four ways to build a representation of degree 3 – N1 ⊕ N1 ⊕ N1 or

N1 ⊕ N1 ⊕ N2 or N1 ⊕ N2 ⊕ N2 or N2 ⊕ N2 ⊕ N2 – and amongst these the middle two
correspond to minimal tuples. For these, the value of our error term εr = 12 + 22 − 9

10 =
21
10 . On the other hand, if we work over �9, then we can build a three-dimensional
representation – M1 ⊕ M3, for example – for which the error term is 12 + 12 − 9

10 = 11
10 .

Hence, whenever n is congruent to 3 modulo 10,

deg(|X(n, 3)|) = 9
10

n2 − 21
10

,
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whereas

deg(|X(n, 9)|) = 9
10

n2 − 11
10

.

This shows how the degree of the polynomial |X(n, q)| can vary with q when we work
with fields which are not necessarily splitting fields.

Progress is even possible if we drop the assumption that q and a are coprime,
so that not all �qA-modules are semisimple. Some sort of semisimplicity assumption
is necessary, as is shown by [5, Example 1], but it is possible to make progress in
the modular case if one is willing to replace the set Hom(A, GLn(q)) with the set
Homcr(A, GLn(q)) of all homomorphisms from A to GLn(q) such that the associated
representation is semisimple (completely reducible); this is the standing assumption
in the paper [1], for example. If one does this, then similar results are possible to
those in Section 3, but one has to work a bit harder. For example, instead of results
depending on a, one has to use the dimension of the socle of the group algebra
�qA (denote this dimension by b), and one cannot hope for the results obtained to
be independent of q. However, one should still expect that the leading term of the
polynomial |Homcr(A, GLn(q))| will have the form mrqn2(1−b−1)−εr , where r is the value
of n modulo b, and mr and εr can be determined by procedures similar to those laid
out in Section 3.

5.2. Changing the target group. The main point of the paper [1] is to produce
bounds similar to those in [5], replacing GLn(q) with a unitary, symplectic or orthogonal
group, see [1, Theorems B–D]. This is achieved at the expense of knowing a bit more
information about the simple modules for the group A; for example, one needs to know
how many of the simple modules are self-dual. However, armed with this knowledge,
an approach similar to that given in this note would produce similar results for these
cases too.

5.3. Dimensions of representation varieties. Let K be an algebraically closed field,
and let G = GLn(K). The set X := Hom(A, G) of homomorpisms from A to G is an
example of a representation variety [4] (it can be realised as a closed subvariety of the
a-fold cartesian product Ga). The linear algebraic group G acts on X by restriction of
the simultaneous conjugation action on Ga and, as is observed in [5, Section 2], under
the assumption that K has characteristic zero or coprime to a, the G-orbits in X are
the irreducible components of X . The dimension of such an orbit is the dimension of G
minus the dimension of the associated stabiliser. The analysis in this paper shows that
the maximal dimension arising is precisely n2(1 − a−1) − εr, where the notation is that
in Proposition 3.8, and this is therefore the dimension of X . Moreover, the number mr

is precisely the number of irreducible components of maximal dimension in X .

REFERENCES

1. M. E. Bate, The number of homomorphisms from finite groups to classical groups, J.
Algebra 308(2) (2007), 612–628.

2. N. Chigira, Y. Takegahara and T. Yoshida, On the number of homomorphisms from a
finite group to a general linear group, J. Algebra 232(1) (2000), 236–254.

https://doi.org/10.1017/S0017089516000562 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000562


THE SIZE OF Hom(A, GLn(q)) 61

3. C. W. Curtis and I. Reiner, Methods of representation theory – with applications to finite
groups and orders, vol. I (Wiley, New York, 1981).

4. A. Lubotzky and A. R. Magid, Varieties of representations of finitely generated groups,
Mem. Amer. Math. Soc. 58(336), (1985).

5. M. W. Liebeck and A. Shalev, The number of homomorphisms from a finite group to a
general linear group, Commun. Algebra 32(2) (2004), 657–661.

https://doi.org/10.1017/S0017089516000562 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000562

