Very Ampleness of Line Bundles and Canonical Embedding of Coverings of Manifolds

SAI-KEE YEUNG*
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A. e-mail: yeung@math.purdue.edu

(Received: 2 December 1998; in final form: 20 April 1999)

Abstract

Let L be an ample line bundle on a Kähler manifolds of nonpositive sectional curvature with K as the canonical line bundle. We give an estimate of m such that $K+m L$ is very ample in terms of the injectivity radius. This implies that m can be chosen arbitrarily small once we go deep enough into a tower of covering of the manifold. The same argument gives an effective Kodaira Embedding Theorem for compact Kähler manifolds in terms of sectional curvature and the injectivity radius. In case of locally Hermitian symmetric space of noncompact type or if the sectional curvature is strictly negative, we prove that K itself is very ample on a large covering of the manifold.

Mathematics Subject Classifications (2000). Primary 14E25, 32J27, 32Q05, 32Q40.
Key words: very ampleness, canonical embedding.

Let L be an ample line bundle on an algebraic manifold M. Let K be the canonical line bundle of the manifold. It follows by definition that there is a constant m such that $K+m L$ is ample. It is natural to ask for the smallest value of such m. In case that the line bundle is the canonical line bundle, the question is about the smallest k such that $k K$ is very ample. Let M be a nonpositively curved algebraic manifold with a profinite fundamental group so that there is a tower of coverings over M corresponding to normal subgroups of finite index. In this paper, we show that for sufficiently large covering manifold in the tower, m can be taken to be 1 . In the particular case of a sufficiently large covering of the Hermitian symmetric manifold of nonpositive curvature, we show that actually $k=1$, that is, the canonical line bundle K itself is ample for a covering manifold of a sufficiently large covering index. The same conclusion holds for similar examples of Kähler manifolds with negative Riemannian sectional curvature. An effective version of the Kodaira embedding theorem which gives an estimate of k or m in terms of curvature bounds and the injectivity radius of a general manifold is also obtained.

Here are the main results of this article.

[^0]THEOREM 1. Let M be a complex manifold of complex dimension n. Suppose the sectional curvature R of M satisfies $-a^{2} \leqslant R \leqslant 0$. Let the curvature R_{L} of the holomorphic line bundle L satisfy $c<R_{L}$. Let the injectivity radius of the manifold M be bounded from below by τ. Then, $K+m L$ is very ample for $m \geqslant 2 n \delta_{\tau, a, c}$, where

$$
\begin{equation*}
\delta_{\tau, a, c}=\frac{1}{c}\left[\frac{16+16 \log 2}{\tau^{2}}+\frac{4 \log 2}{\tau} a \operatorname{coth}\left(\frac{a \tau}{2}\right)\right] . \tag{1}
\end{equation*}
$$

Moreover, $K+m L$ generates the N th order jet of M at any point of M for $m \geqslant((N / 2)+n) \delta_{\tau, a, c}$.

Remarks.(1) We remark that $\delta_{\tau, a, c} \rightarrow 0$ as $\tau \rightarrow \infty$.
(2) (Effective Kodaira Embedding Theorem) If we relax the curvature condition to $-a^{2} \leqslant R \leqslant b^{2}$, where $b>0$, the conclusion is that $K+m L$ is very ample for $m \geqslant 2 n \delta_{\tau, a, b, c}$. Letting $\tau_{o}=\min (\tau, \pi / 2 b), \delta_{\tau, a, b, c}$ is estimated by

$$
\begin{equation*}
\delta_{\tau, a, b, c}=\frac{1}{c}\left[\frac{16+16 \log 2}{\tau_{o}^{2}}+\frac{4 \log 2}{\tau_{o}} a \operatorname{coth}\left(\frac{a \tau_{o}}{2}\right)-\frac{b \tau_{o} \cot \left(b \tau_{o}\right)-1}{\tau_{o}^{2}}\right], \tag{2}
\end{equation*}
$$

Moreover, $K+m L$ generates the nth order jet of M at every point of M for $m \geqslant((N / 2)+n) \delta_{\tau, a, b, c}$. The number τ_{o} is used instead of τ so that $\cot \left(b \tau_{o}\right)$ will not become too negative. This is an effective version of Kodaira embedding Theorem.

As some applications of Theorem 1, we assume that the fundamental group $\pi_{1}(M)$ of M is profinite in the sense that there exists a sequence of normal subgroups Γ_{i} satisfying $\Gamma_{i+1}<\Gamma_{i}, \Gamma_{0}=\pi_{1}(M)$ and $\cap_{i=0}^{\infty} \Gamma_{i}=\emptyset$. Let \tilde{M} be the universal covering of M. Then $M_{i}=\tilde{M} / \Gamma_{i}$ is a covering space of M with the covering map denoted by $p_{i}: M_{i} \rightarrow M$. As $\cap_{i=0}^{\infty} \Gamma_{i}=\emptyset$, we conclude that the injectivity radius of M_{i} tends to ∞ as $i \rightarrow \infty$ due to the discreteness of $\pi_{1}(M)$. We call $\left\{M_{i}\right\}$ a tower of coverings for M with the injectivity radius increasing to ∞. The following is an immediate corollary of Theorem 1 :

THEOREM 2. Let M be a nonpositively curved algebraic manifold with profinite fundamental group. There exists i_{o} such that for all $i \geqslant i_{o}, K_{M_{i}}+p_{i}^{*} L$ is very ample. In fact, there is i_{j} such that $K_{M_{i}}+p_{i}^{*} L$ generate the j th jet space of M for $i \geqslant i_{j}$. Furthermore, the same is true for $K_{M_{i}}+\varepsilon p_{i}^{*} L$ for any small rational $\varepsilon>0$ such that $\varepsilon p_{i}^{*} L$ is a line bundle on M_{i}.

Since the fundamental group of Hermitian symmetric manifolds of noncompact type are discrete subgroups of general linear groups, they have to be profinite. Hence, the above conclusion is readily applicable in this case. However, this is superseded by the following theorem:

THEOREM 3. Let $\left\{M_{j}\right\}$ be a tower of covering of Hermitian symmetric manifolds of noncompact type. There exists a constant $i_{0} \geqslant 0$ such that $K_{M_{j}}$ is very ample for $j \geqslant i_{0}$. Moreover, given any $l>0$, there exists $i_{l} \geqslant 0$ such that $K_{M_{j}}$ generates the k th jet $J^{k}\left(M_{j}\right)$ of M_{j} for $j \geqslant i_{l}$.

Similar statements for Kähler manifolds with sectional curvature pinched between two negative numbers are also true.

THEOREM 4. Let $\left\{M_{j}\right\}$ be a tower of covering over a Kähler manifold M with sectional curvature R satisfying $-a^{2}<R<-b^{2}<0$. There exists a constant $i_{0} \geqslant 0$ such that $K_{M_{j}}$ is very ample for $j \geqslant i_{0}$. Moreover, given any $l>0$, there exists $i_{l} \geqslant 0$ such that $K_{M_{j}}$ generates the k th jet $J^{k}\left(M_{j}\right)$ of M_{j} for $j \geqslant i_{l}$.

Following from the definition of the Seshadri constant for a line bundle, which will be explained in Section 1, we get the following conclusion:

COROLLARY 1. For the examples in Theorems 3 and 4, the Seshadri constant for the canonical line bundle is at least 1.

The organization of the article is as follows. In Section 1, we first use L^{2} estimates to show that the value of m, so that $K+m L$ is ample, can be effectively estimated by the injectivity of the manifold and the curvature form of L. In this way, we also estimate the Seshadri constant of the line bundle. Then we apply the results to a tower of coverings of profinite nonpositively curved manifolds to get the result that $K+L$ is very ample after one goes deep enough into the covering space. In particular, this includes the class of Hermitian symmetric manifolds of noncompact type. In Section 2, we relate the L^{2} geometry of the universal covering to conclude that K is actually very ample for the covering of a sufficiently large covering index for the manifolds stated in Theorems 3 and 4.

1. Some Criteria for Very Ampleness of Line Bundles on General Manifolds

The main tool is the following L^{2}-estimates due to Hörmander [Ho].
LEMMA 1. Let M be a compact Kähler manifold with a Kähler metric ω and let K_{M} be the canonical line bundle. Let φ be a function on M. Let (L, h) be a Hermitian line bundle on M. Assume that

$$
c_{1}(L, h)+\sqrt{-1} \partial \bar{\partial} \varphi-c_{1}\left(K_{M}\right)>c \omega .
$$

Let g be a $\bar{\partial}$-closed L-valued $(0,1)$-form on M with $\int_{M}\|g\|_{h}^{2} \mathrm{e}^{-\varphi}<0$. Then the equation
$\bar{\partial} f=g$ has a solution satisfying the L^{2} - estimate

$$
\int_{M}\|f\|_{h} \mathrm{e}^{-\varphi}<\int_{M} \frac{\|g\|_{h}^{2} \mathrm{e}^{-\varphi}}{c}
$$

We also need the following Hessian comparison theorem as stated in [G-W], p. 19:
LEMMA 2. Let $\left(M_{1}, o_{1}\right)$ and $\left(M_{2}, o_{2}\right)$ be Riemannian manifolds with poles at o_{1}, o_{2} and of equal dimension. Suppose that the radial curvature of a point on a normal geodesic γ_{1} on M_{1} starting from o_{1} is at least the radial curvature of the point on a corresponding normal geodesic γ_{2} on M_{2}. Then for every increasing function f, the following Hessian comparison is valid.

$$
D^{2} f\left(\rho_{1}\right)\left(\gamma_{1}(t)\right) \leqslant D^{2} f\left(\rho_{2}\right)\left(\gamma_{2}(t)\right)
$$

Proof of Theorem 1. We need to consider the lower bound of the eigenvalues of the complex Hessian $L f(X, Y)=D^{2} f(X, Y)+D^{2} f(J X, J Y)$, where J is the complex structure involved. Since the injectivity radius of M is at least τ, we can place a geodesic ball $B(x, \tau)$ of radius τ centered at each point x of M within which there is no cut locus or conjugate locus. For a fixed $\varepsilon>0$, let $\chi(t)$ be a C^{∞} bumping function defined on the interval $[0, \infty)$, satisfying

$$
\begin{aligned}
& \chi(t)=1, t \leqslant \frac{\tau}{2}, \quad \chi(t)=0, t \geqslant \tau \\
& -\frac{2+\varepsilon}{\tau} \leqslant \chi^{\prime}(t) \leqslant 0, \quad\left|\chi^{\prime \prime}(t)\right| \leqslant \frac{4(2+\varepsilon)}{\tau^{2}} .
\end{aligned}
$$

Then $\chi(t)$ is a decreasing function, with support in $[0, \tau]$. The function χ can be constructed as follows. Construct a step function $s(t)$,

$$
s(t)=-\frac{8}{\tau^{2}} \quad \text { for } \quad t \in\left(\frac{\tau}{2}, \frac{3 \tau}{4}\right), \quad s(t)=\frac{8}{\tau^{2}} \quad \text { for } \quad t \in\left(\frac{3 \tau}{4}, \tau\right)
$$

and $s(t)=0$ outside the range. Let $s_{1}(t)$ be the integral of $s(t)$ with initial condition $s_{1}(0)=0$, and $s_{2}(t)$ be the integral of $s_{1}(t)$ with $s_{2}(0)=1$. Smoothing $s(t)$, the resulting $s_{2}(t)$ gives a candidate for χ. Let $\rho_{x}(y)$ be the distance of y from x with respect to the Kähler metric. Define a function ψ_{x} on M by $\psi_{x}=\left(\log \left(4 \rho_{x}^{2} / \tau^{2}\right)\right) \chi \circ \rho_{x}$. ψ_{x} is supported only on $B(x, \tau)$. For simplicity of notations, we will suppress x in the formula below. Note that

$$
D^{2} f(\rho)(X, Y)=f^{\prime \prime}(\rho) \mathrm{d} \rho(X) \otimes \mathrm{d} \rho(Y)+f^{\prime}(\rho) D^{2} \rho(X, Y)
$$

for two vectors X, Y on M. Let M_{μ} be the space form of constant Riemannian sec-
tional curvature μ. We let X^{\prime} be the vector on M_{μ} corresponding to vectors X.

$$
\begin{aligned}
D^{2} \psi(X, X)= & D^{2}\left[\log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) \chi \circ \rho_{x}\right](X, X) \\
= & \chi \circ \rho_{x} D^{2} \log \rho^{2}(X, X)+2 D \log \rho^{2} D\left(\chi \circ \rho_{x}\right)(X, X)+ \\
& +\log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) D\left(\left(\chi \circ \rho_{x}\right)(X, X)\right)
\end{aligned}
$$

Applying Lemma 2 by comparing it with the flat space M_{0} and denoting the restriction of g to the geodesic sphere perpendicular to the radial direction by h, we get

$$
\begin{align*}
L \log \rho^{2}(X, X)= & D^{2} \log \rho^{2}(X, X)+D^{2} \log \rho^{2}(J X, J X) \\
& \geqslant D^{2} \log \rho_{M_{-b}}^{2}\left(X^{\prime}, X^{\prime}\right)+D^{2} \log \rho_{M_{0}}^{2}\left((J X)^{\prime},(J X)^{\prime}\right) \\
\geqslant & -\frac{2}{\rho^{2}} \mathrm{~d} \rho \otimes d \rho(X, X)-\frac{2}{\rho^{2}} \mathrm{~d} \rho \otimes d \rho(J X, J X)+ \tag{3}\\
& +\frac{2}{\rho^{2}} h(X, X)+\frac{2}{\rho^{2}} h(J X, J X) \\
\geqslant & 0
\end{align*}
$$

Comparing with M_{-a} and using the fact that $\tau \geqslant \rho_{x} \geqslant \tau / 2$ in the region where $\chi^{\prime} \neq 0$, we have

$$
\begin{aligned}
\log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) D^{2}(\chi \circ \rho)(X, X) \geqslant & \log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) D^{2}\left(\chi \circ \rho_{M_{-a}}\right)\left(X^{\prime}, X^{\prime}\right) \\
= & \log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) \chi^{\prime \prime}\left(\rho_{M_{-a}}\right) \mathrm{d} \rho_{M_{-a}} \otimes \mathrm{~d} \rho_{M_{-a}}\left(X^{\prime}, X^{\prime}\right)+ \\
& +\log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) \chi^{\prime}\left(\rho_{M_{-a}}\right) D^{2} \rho_{M_{-a}}\left(X^{\prime}, X^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\geqslant & \log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) \chi^{\prime \prime}\left(\rho_{M_{-a}}\right) \mathrm{d} \rho_{M_{-a}} \otimes \mathrm{~d} \rho_{M_{-a}}\left(X^{\prime}, X^{\prime}\right)- \\
& -\log \left(\frac{4 \rho_{x}^{2}}{\tau^{2}}\right) \frac{2+\varepsilon}{\tau} a \operatorname{coth}(a \rho) g(X, X) \\
\geqslant & -\log 4 \frac{4(2+\varepsilon)}{\tau^{2}} \mathrm{~d} \rho \otimes \mathrm{~d} \rho(X, X)- \\
& -\log 4 \frac{2+\varepsilon}{\tau} a \operatorname{coth}\left(\frac{a \tau}{2}\right) g(X, X)
\end{aligned}
$$

and

$$
\begin{aligned}
D \log \rho \otimes D(\chi \circ \rho)(X, X) & =\frac{D \rho}{\rho} \otimes D(\chi \circ \rho)(X, X) \\
& =\left.\frac{1}{\rho} \chi^{\prime} D \rho \otimes D \rho(X, X)\right|_{\rho \geqslant \tau 2} \\
& \geqslant-\frac{2(2+\varepsilon)}{\tau^{2}} \mathrm{~d} \rho \otimes \mathrm{~d} \rho(X, X)
\end{aligned}
$$

Combining the above inequalities, we get

$$
\begin{aligned}
& L \psi_{M, x}(X, X) \\
& \quad \geqslant-\log 4 \frac{4(2+\varepsilon)}{\tau^{2}}[\mathrm{~d} \rho \otimes \mathrm{~d} \rho(X, X)+\mathrm{d} \rho \otimes \mathrm{~d} \rho(J X, J X)]- \\
& \quad-\log 42+\varepsilon \tau a \operatorname{coth}\left(\frac{a \tau}{2}\right)[g(X, X)+g(J X, J X)]-\frac{8(2+\varepsilon)}{\tau^{2}} \mathrm{~d} \rho \otimes \mathrm{~d} \rho(X, X) \\
& \quad \geqslant-\left[(8+4 \log 4) \frac{2+\varepsilon}{\tau^{2}}+\log 4 \frac{2+\varepsilon}{\tau} a \operatorname{coth}\left(\frac{a \tau}{2}\right)\right](g(X, X)+g(J X, J X))
\end{aligned}
$$

We can now apply the L^{2}-estimates to construct sections which separate points and generate the first jet of the tangent bundle. Let x, y be arbitrary points on M. The functions ψ_{x} and ψ_{y}, as constructed above, are supported in $B(x, \tau)$ and $B(y, \tau)$, respectively. Note that for $\rho(x, w)$ sufficiently small, $\rho(x, w)^{2}$ is $|x-w|^{2}(1+\mathcal{O}(|x-w|)$, where $\mathcal{O}(|x-w|)$ is a bounded term tending to 0 as w approaches x. Hence, so does ψ_{x}. Let $\varphi=n\left(\psi_{x}+\psi_{y}\right)$. As h is the Hermitian metric for L and $h_{1}=\operatorname{det} g^{-1}$ is the metric for $K_{M}, h^{\varepsilon} h_{1} \mathrm{e}^{-\varphi}$ is a metric for $K_{M}+m L$. It
follows from our choice of φ that

$$
m c_{1}(L, h)+\sqrt{-1} \partial \bar{\partial} \varphi+c_{1}\left(K_{M}\right)-c_{1}\left(K_{M}\right)>\varepsilon_{1} \omega
$$

with some positive ε_{1} provided that the following inequality is satisfied:

$$
\begin{equation*}
\varepsilon_{1}=m c-2 n\left[(8+4 \log 4) \frac{2+\varepsilon}{\tau^{2}}+\log 4 \frac{2+\varepsilon}{\tau} a \operatorname{coth}\left(\frac{a \tau}{2}\right)\right]>0 \tag{4}
\end{equation*}
$$

Let $\lambda=\min \left(\tau, \frac{1}{2} \rho(x, y)\right)$. The line bundle $K_{M}+m L$ is trivial on the support of $B(x, \lambda)$ which is the ball of radius λ centered at x. Let s be the canonical section of the bundle $\left.\left(K_{M}+m L\right)\right|_{B(x, \lambda)}$. Consider now

$$
\zeta(w)=\chi\left(\frac{\rho(x, w)}{1 / 2 \rho(x, y)}\right) s(w)
$$

as a C^{∞} section of $K_{M}+m L$, which is 1 in a small neighbourhood of x and 0 in a small neighbourhood of $y . \bar{\partial} \zeta$ is an integrable $\bar{\partial}$-closed $K_{M}+\varepsilon L$-valued 1-form, as $\bar{\partial} \zeta$ is zero around x and y. Hence, from L^{2}-estimates as stated in Lemma 1, there is a solution of $\bar{\partial} f=\bar{\partial} \zeta$ satisfying

$$
\int_{M}\|f\|_{h}^{2} \mathrm{e}^{-\varphi}<\int_{M} \frac{\|\bar{\partial} \zeta\|_{h}^{2} \mathrm{e}^{-\varphi}}{\varepsilon_{1}}<\infty
$$

From the pole order of φ at x and y, we conclude that $f(x)=f(y)=0$. Hence, $\zeta-f$ is a holomorphic section of $K_{M}+m L$ which is 1 at x and 0 at y.

To prove that sections of $K_{M}+m L$ generate 1 -jet at any $x \in M$, let χ_{1} be a bumping function as χ supported in a normal coordinate chart of x so that $z=0$ corresponds to x. Let $\zeta_{i}(z)=z_{i} \chi_{1}(z) s(z)$ and extend by 0 so that ζ_{i} is a well-defined C^{∞} section of $K_{M}+m L$ on M. Let $\varphi=\left(n+\frac{1}{2}\right) \psi_{x}$. Then the same argument as above shows that we can solve $\bar{\partial} f=\bar{\partial} \zeta_{i}$ with f vanishing to order 2 at x corresponding to our choice of $\left(n+\frac{1}{2}\right) \psi_{x}$ in φ once the inequality (4) is satisfied. Hence, $\zeta_{i}-f$ is a holomorphic section of $K_{M}+m L$ satisfying $\partial / \partial z_{i}\left(\zeta_{i}-f\right)(x)$ $=1$. As z_{i} can be an arbitrary holomorphic coordinate function at x, this shows that the sections of $K_{M}+m L$ generates the 1-jet and, hence, together with earlier discussions the very ampleness of the line bundle if Equation (4) is satisfied. Note that we can always find an ε satisfying Equation (4) once equation (1) is true.

For the generation in the N th order jet, it suffices for us to consider $\zeta_{i_{1} \cdots i_{n}}(z)=z_{i_{1}} \cdots z_{i_{n}} \chi_{1}(z) s(z)$ instead of $\zeta_{i}(z)$ in the earlier argument. This concludes the proof of Theorem 1.

Proof of Remark to Theorem 1. We use $\tau_{o}=\min (\tau, \pi / 2 b)$ instead of τ in the proof of Theorem 1. The only modification to this case is the estimates for $L^{2} \log \rho^{2}(X, X)$ in Equation (3). Instead of comparing with M_{0}, we need to compare
with M_{b}. Instead of Equation (3), we get the new estimate

$$
\begin{align*}
& L^{2} \log \rho^{2}(X, X) \\
& \qquad \geqslant \tag{5}\\
& \quad-\frac{2}{\rho^{2}}[\mathrm{~d} \rho \otimes \mathrm{~d} \rho(X, X)+\mathrm{d} \rho(J X, J X)]+ \\
& \quad+\frac{2}{\rho} b \cot (b \rho)[h(X, X)+h(J X, J X)] .
\end{align*}
$$

Note that if X is a radial tangent vector, $J X$ is tangential to the geodesic sphere. We now observe that $\left((\rho b \cot (b \rho)-1) / \rho^{2}\right)^{\prime} \leqslant 0$ and, hence, the minimum of $(\rho b \cot (b \rho)-1) / \rho^{2}$ is achieved at τ_{o}. This concludes the proof of Remark 1.

As a detour, we consider the Seshadri constant of a line bundle L which is defined as follows (cf [De]): For each $x \in M$, let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x and E be the exceptional divisor. Let

$$
\begin{aligned}
s(L, x) & =\sup \left\{\varepsilon \geqslant 0 \mid \pi^{*} L-\varepsilon E \text { is } n e f\right\} \\
& =\inf _{C \in x} \frac{L \cdot C}{v(C, x)}
\end{aligned}
$$

where $v(C, x)$ is the multiplicity of C at x and the infimum is taken over all curves passing through x. The relation between the Seshadri constant and very ampleness is related by the following Lemma, which follows immediately from the definition of very ampleness (cf. [De], p.68).

LEMMA 3. Suppose $m L$ is very ample. Then $s(L) \geqslant \frac{1}{m}$.

As a corollary, we get

COROLLARY 2. Assume that M is an algebraic manifold with sectional curvature satisfying $-a \leqslant K \leqslant 0$ and the curvature of L is at least c with respect to the Kähler metric. Then the Seshadri constant of an ample line bundle L is bounded from below by $c /\left(2 n \delta_{\tau, a, c}+n a^{2}\right)$, where $\delta_{\tau, a, c}$ is the function considered in Theorem 1.

This follows immediately from Theorem 1, Lemma 3 and the estimates

$$
\left(\frac{n a}{c}+m\right) c_{1}(L) \geqslant c_{1}(K)+m c_{1}(L)
$$

2. Very Ampleness of Canonical Line Bundles in Some Hermitian Symmetric Manifolds and Negatively Curved Manifolds

In the following, we first assume that M is a Hermitian symmetric manifold of noncompact type and give a proof of Theorem 3. Later on we will modify the proof
to handle the case of negatively curved Kähler manifolds. $\left\{M_{j}\right\}$ is a tower of covering over $M_{0}=M$.

Before we go to the proof of Theorem 3, we need some preliminaries. On a compact manifold M, the space of L^{2} sections of K_{M} is finite-dimensional. Let $s_{i}, i=1, \ldots, n$ be an orthonormal basis with respect to the Hermitian inner product $\left(s_{i}, s_{j}\right)=\int_{M} s_{i} \wedge \overline{s_{j}}$. The Bergmann kernel is defined to be $H_{M}(x, y)=\sum_{i=1}^{n} s_{i}(x)$ $\wedge \overline{s_{j}(y)}$ on $M \times M$ and is independent of the basis chosen. For the universal covering \tilde{M}, the space of L^{2}-holomorphic section of $K_{\tilde{M}}$ form a Hilbert space with respect to a similar inner product $\left(t_{i}, t_{j}\right)=\int_{\tilde{M}} t_{i} \wedge t_{j}$. Take an orthonormal basis $t_{i}, i \in N$ and form the Bergman kernel $H_{\tilde{M}}(x, y)=\sum_{i \in N} t_{i}(x) \wedge \overline{t_{j}(y)}$. It is well known that the L^{2}-cohomology of a Hermitian symmetric space of noncompact type is trivial except for those corresponding to holomorphic n-forms which are infinite-dimensional. Hence, Theorem 1.1.1 of [Y] can be phrased as the following lemma:

LEMMA 4. The dimension of the space of holomorphic n-forms on M_{j} is asymptotically proportional to the volume of M_{j} with the proportional constant given by the von Neumann dimension of L^{2}-holomorphic n-forms on \tilde{M}.

Hence, both $H_{\tilde{M}}$ and $H_{M_{j}}$ are nontrivial. Let us now identify a point $x \in M$ with a point $\tilde{x} \in \tilde{M}$ in the fundamental domain of M in \tilde{M}. Let $p_{j, 0}: M_{j} \rightarrow M_{0}$ be the covering map. $p_{j, 0}^{-1} x$ consists of a finite number of points in M_{j}. Let x_{i} be one of the points in $p_{j, 0}^{-1} x . H_{M_{j}}\left(x_{j}, x_{j}\right)$ is independent of the point chosen as representative since the Bergman kernel is invariant under deck transformation which is an isometry. The following result is essentially due to Donnelly [Do]:

LEMMA 5. $H_{M_{j}}\left(x_{j}, y_{j}\right)$ converges pointwise to $H_{\tilde{M}}(x, y)$ in a C^{∞} way.
Donnelly stated in [Do] that $H_{M_{j}}\left(x_{j}, x_{j}\right)$ converges pointwise to $H_{\tilde{M}}(x, x)$ uniformly. As the kernel functions are holomorphic with respect to the first variable and antiholomorphic with respect to the second variable, it follows easily from power series expansion the uniform convergence of $H_{M_{j}}\left(x_{j}, y_{j}\right)$ to $H_{\tilde{M}}(x, y)$. Then we conclude the convergence in a C^{∞} way from Schauder estimates.

Proof of Theorem 3.

Base point freeness

Let us first prove that the global sections $\Gamma\left(M_{j}, K_{M_{j}}\right)$ generate s_{i}^{j} for sufficiently large M_{j}. Let $s_{i}^{j}, i=1, \ldots, N_{j} \leqslant \infty$ be an orthonormal basis of $\Gamma\left(M_{j}, K_{M_{j}}\right)$, here $0 \leqslant j \leqslant \infty$ with $M_{\infty}=\tilde{M}$, and B_{j} be the base locus of $\Gamma\left(M_{j}, K_{M_{j}}\right)$. As $p_{j+1, j}: M_{j+1} \rightarrow M_{j}$ is a
holomorphic covering map, $p_{j+1, j}{ }^{*}\left(s_{i}^{j}\right)$ is a holomorphic section of $K_{M_{j+1}}$ for each section s_{i}^{j} of $K_{M_{j}}$. Let D be a fundamental domain of $M=M_{0}$ in the universal covering \tilde{M} and $p_{j}: \tilde{M} \rightarrow M_{j}$ as before. It follows that $p_{j+1}^{-1}\left(B_{j+1}\right) \cap D \subset p_{j}^{-1}\left(B_{j}\right) \cap D$. Hence, $p_{j}^{-1}\left(B_{j}\right) \cap D=\cap_{k=0}^{j} p_{j}^{-1}\left(B_{k}\right) \cap D$ is a decreasing set. We claim that $\cap_{j=0}^{\infty} p_{j}^{-1}\left(B_{j}\right) \cap D=\emptyset$ so that from the relative compactness of $D, p_{j}^{-1}\left(B_{j+1}\right) \cap D$ is empty for all sufficiently large j. To prove the claim, note that the Bergmann kernel function specified at $x=y$ can be expressed as

$$
\begin{aligned}
& H_{M_{j}}(x, x)=\sup _{f \in \Gamma\left(M_{j}\right),\|f\|=1}|f(x)|^{2} \\
& H_{\tilde{M}}(x, x)=\sup _{f \in \Gamma^{(2)}(\tilde{M}),\|f\|=1}|f(x)|^{2}
\end{aligned}
$$

This follows from the fact that the Bergmann kernel is independent of the choice of base and, hence, we may choose s_{1} with maximal value at the point x. Suppose $x \in \cap_{j=0}^{\infty} p_{j}^{-1}\left(B_{j}\right) \cap D \neq \emptyset$ so that $H_{M_{j}}(x)=0$ for each j. From the above lemma, it follow that $H_{\tilde{M}}(x)=0$ as well. However, since \tilde{M} is homogeneous, the base locus of $K_{\tilde{M}}$ is empty and, hence, such a x does not exist. This concludes the proof of the claim and, hence, the statement that the global sections generate the bundle.

Separation of points

LEMMA 6. Assume that the L^{2}-canonical sections of the universal covering separates points. Also assume that for any $c>0$, there exists a number $\kappa>0$ such that for every pair of points $x, y \in \tilde{M}$ of distance $d(x, y) \geqslant c$, there is always a holomorphic section $s \in \Gamma^{(2)}(\tilde{M}, K)$ satisfying $\|s\|_{L^{2}}=1, s(x)=0,\|s(y)\| \geqslant \kappa$. Then $K_{M_{j}}$ separates M_{j} for all sufficiently large j.

Proof. Take a nested sequence of domains D_{j} on \tilde{M} so that each D_{j} is a fundamental domain of M_{j}. From the above discussion on base-point freeness, we may assume that sections of $\Gamma\left(M_{j}, K\right)$ is base point free for all $j \geqslant 0$. Let $t_{1}, \ldots t_{N}$ be a basis of $\Gamma\left(M_{0}, K\right)$.

Consider first the case that $x, y \in M_{j}$ both lying in some fundamental domain of M_{o} when pulled back to \tilde{M}. We may assume that $x, y \in D_{0}$ after a biholomorphism if necessary. Since $H_{M_{j}}(w, z)=\sum_{i} s_{i}^{j}(w) s_{i}^{j}(z)$ converges to $H_{M_{\infty}}(w, z)$ uniformly on any relatively compact set containing w, z according to Lemma 1 , and for $0 \leqslant j \leqslant \infty$,

$$
\begin{aligned}
& \sum_{i}\left(s_{i}^{j}(x)-s_{i}^{j}(y) \overline{\left(s_{i}^{j}(x)-s_{i}^{j}(y)\right.}\right) \\
& \quad=H_{M_{j}}(x, x)-H_{M_{j}}(y, x)-H_{M_{j}}(x, y)+H_{M_{j}}(y, y)
\end{aligned}
$$

we conclude the convergence of

$$
\sum_{i}\left(s_{i}^{j}(x)-s_{i}^{j}(y) \overline{\left(s_{i}^{j}(x)-s_{i}^{j}(y)\right.}\right) \rightarrow \sum_{i}\left(s_{i}^{\infty}(x)-s_{i}^{\infty}(y)\left(\overline{\left.s_{i}^{\infty}(x)-s_{i}^{\infty}(y)\right)} .\right.\right.
$$

For $0 \leqslant j \leqslant \infty$, define

$$
\begin{aligned}
C_{j}= & \left\{(x, w) \in p_{j}\left(D_{0}\right) \cap M_{j} \times p_{j}\left(D_{0}\right) \mid\right. \\
& \left.s^{j}(x)=s^{j}(w) \quad \text { for all } s^{j} \in \Gamma^{(2)}\left(M_{j}, K_{M_{j}}\right)\right\} .
\end{aligned}
$$

We easily see that C_{j} is nested in the sense that $C_{j+1} \subset C_{j}$. If C_{j} is nonempty for each $0 \leqslant j<\infty$, the above convergence of the kernel functions implies that sections in $\Gamma^{(2)}\left(\tilde{M}, K_{\tilde{M}}\right), \tilde{M}=M_{\infty}$, are not base-point free, contradictory to our assumption.

Consider now the case that $d(x, y) \geqslant \tau\left(M_{0}\right)$, the injectivity radius of M_{0}, for points $x, y \in M_{j}$. Let $t_{1}, \ldots t_{N}$ be a basis of $\Gamma\left(M_{0}, K\right)$. We claim that, after including a finite number of sections from linear combination of the above sections if necessary, we can assume that for every pair of points $z, w \in M_{0}$, there is an l such that $t_{l}(z) \neq 0, t_{l}(w) \neq 0, l$ depending on z, w. For the claim, let

$$
E=\left\{(z, w) \in M_{0} \times M_{0} \mid t_{l}(z) t_{l}(w)=0, \quad \text { for all } 1 \leqslant l \leqslant N\right\}
$$

For generic point $(z, w) \in E$, we can always find $t_{l_{1}}, t_{l_{2}}$ such that $t_{l_{1}}(z) \neq 0, t_{l_{2}}(w) \neq 0$. By taking suitable linear combinations of $t_{l_{1}}$ and $t_{l_{2}}$, we get a new t_{N+1} which neither vanishes on z nor w. Adding t_{N+1} cuts down the dimension of E by 1 . The claim follows by applying the above argument repeatly using the fact that M_{0} is algebraic. We use the same notation $t_{l}, 1 \leqslant l \leqslant N$, to denote its pull-backs to M_{j} for each $j>0$. For continuity, we conclude that for any two points $z, w \in M_{j}$, there exists δ_{1} and δ_{2} such that $\delta_{2} \geqslant\left\|t_{l}(z)\right\|,\left\|t_{l}(w)\right\| \geqslant \delta_{1}>0$. For the sections s_{i}^{j} of $\Gamma\left(M_{j}, K\right)$, let $f_{i}^{j, l}=s_{i}^{j} / t_{l}$, which are meromorphic functions on M_{j} for each l. Let

$$
\tilde{H}_{M_{j}}^{l}(z, w)=\sum_{i} f_{i}^{j, l}(z) \overline{f_{i}^{j, l}(w)}=\frac{H_{M_{j}}(z, w)}{t_{l}(z) t_{l}(w)} .
$$

From the uniform convergence of the Bergmann kernel on compacta, given any $\varepsilon>0$, there exists j_{o} such that for $j \geqslant j_{o}$,

$$
\left|H_{\tilde{M}}(z, z)-H_{M_{j}}(z, z)\right| \leqslant \varepsilon
$$

and,

$$
\left|H_{\tilde{M}}(z, w)-H_{M_{j}}(z, w)\right| \leqslant \varepsilon
$$

where z, w are two arbitrary points on the manifold M_{j}. Equivalently, $\varepsilon=\varepsilon(j)$ can be made sufficiently small so that the above inequalities hold when j is sufficiently large.

This implies that for any two points $z, w \in M_{j}$, there is an l such that

$$
\left|\tilde{H}_{\tilde{M}}^{l}(z, w)-\tilde{H}_{M_{j}}^{l}(z, w)\right| \leqslant \frac{\varepsilon}{\delta_{1}^{2}}
$$

Assume now that $d(x, y) \geqslant \tau=c$. We conclude that

$$
\begin{aligned}
\sum_{i}\left|f_{i}^{j, l}(x)-f_{i}^{j, l}(y)\right|^{2}= & \tilde{H}_{M_{j}}^{l}(x, x)-\tilde{H}_{M_{j}}^{l}(y, x)-\tilde{H}_{M_{j}}^{l}(x, y)+\tilde{H}_{M_{j}}^{l}(y, y) \\
\geqslant & \tilde{H}_{\tilde{M}}^{l}(x, x)-\tilde{H}_{\tilde{M}}^{l}(y, x)-\tilde{H}_{\tilde{M}}^{l}(x, y)+ \\
& +\tilde{H}_{\tilde{M}}^{l}(y, y)-\frac{4 \varepsilon}{\delta_{1}^{2}} \\
= & \sum_{i}\left|f_{i}^{\infty, l}(x)-f_{i}^{\infty, l}(y)\right|^{2}-\frac{4 \varepsilon}{\delta_{1}^{2}} \\
\geqslant & \frac{1}{\delta_{2}^{2}} \sum_{i}\left|s_{i}^{\infty}(x)-s_{i}^{\infty}(y)\right|^{2}-\frac{4 \varepsilon}{\delta_{1}^{2}} \\
\geqslant & \frac{\kappa}{\delta_{2}^{2}}-\frac{4 \varepsilon}{\delta_{1}^{2}}
\end{aligned}
$$

Here we use our assumption in the last step. Note that $\varepsilon=\varepsilon(j)$ tends to 0 uniformly as j tends to ∞. Hence, for all j sufficiently large, the above expression is positive and, hence, the sections of M_{j} separate x, y. Together with the previous argument for x, y both lying in some fundamental domain of M_{0}, we conclude that the sections of $\Gamma\left(M_{j}, K\right)$ separate points for j large enough.

We now apply the above Lemma to the case of a bounded symmetric domain. By homogeneity, we may assume that $x=0$, the origin in the standard realization. For the point $y \in \tilde{M}$ we simply choose

$$
s=\frac{y \mathrm{~d} z^{1} \wedge \cdots \wedge \mathrm{~d} z^{n}}{\int_{\tilde{M}}|y|^{2}}
$$

The denominator is finite as it is a bounded domain. Obviously s has norm 1, with its value at y bounded from below by some $\kappa>0$ once its distance from $x=0$ is sufficiently large. Hence the conditions of the Lemma are satisfied. This concludes the proof of the separation of points by the sections.

Generation of Jets

We need to prove that, given a positive integer k, there is a sufficiently large j_{o} such that sections of $K_{M_{j}}$ generate the k-jet of M_{j} for all $j \geqslant j_{o}$. Similarly, we define

$$
D_{j}=\left\{x \in M_{j} \mid \Gamma\left(M_{j}, K_{M_{j}}\right) \text { does not generate } J_{k}(x)\right\},
$$

where $J_{k}(x)$ denotes the k th jet of x. At a point $x_{j} \in D_{j}$, it follows by definition that
there is a multiderivative

$$
\partial_{i_{1} \cdots i_{k}}=\frac{\partial^{i_{1}+\cdots+i_{k}}}{\partial z^{i_{1}} \cdots \partial z^{i_{k}}}
$$

such that $\partial_{i_{1} \cdots i_{k}} s_{j}\left(x_{j}\right)=0$ for every section $s_{j} \in \Gamma\left(M_{j}, K_{M_{j}}\right)$. This is reflected by the statement that $\partial_{i_{1} \cdots i_{k}} H_{M_{j}}\left(x_{j}, y\right)=0$ for each $y \in M_{j}$. Again, the set D_{j} forms a nested set when pulled-back to the universal covering in the sense that $D_{j+1} \subset D_{j}$. Hence, by similar argument as before and using the previous lemma shows that if our statement is not true, there is a point $x \in \tilde{M}$ and a differential operator $\partial_{i_{1} \ldots i_{k}}$ such that $\partial_{i_{1} \cdots i_{k}} H_{\tilde{M}}(x, y)=0$ for every y, say, in a neighbourhood of x in \tilde{M}. Hence

$$
\sum_{i=1}^{\infty} \partial_{i_{1} \cdots i_{k}} t_{i}(x) \wedge \overline{t_{i}(y)}=0
$$

Letting $y=x$ implies that $\partial_{i_{1} \cdots i_{k}} t(x)=0$ for each section $t \in \Gamma^{(2)}\left(\tilde{M}, K_{\tilde{M}}\right)$. However, homogeneity again implies that this should hold for every $x \in \tilde{M}$, contradicting the fact that for generic point on \tilde{M}, the sections in $\Gamma^{(2)}\left(\tilde{M}, K_{\tilde{M}}\right)$ generate k th order jets.

This concludes the proof of Theorem 3.
Proof of Theorem 4. M is a Kähler manifold with sectional curvature R satisfying $-a^{2} \leqslant R \leqslant-b^{2}<0$. We only need to verify that the universal covering \tilde{M} satisfies the same L^{2}-cohomological properties as the Hermitian symmetric spaces. It follows from the result of Gromov and Stern [G], that there is no L^{2}-harmonic forms on the universal covering \tilde{M} of M except for L^{2} holomorphic n-forms which form an infinite-dimensional vector space. This latter fact is also stated in [GW]. In fact, the argument there can be modified to construct L^{2}-holomorphic sections of the canonical line bundle which generate a given high jet of \tilde{M} in the following way: Let $x \in \tilde{M}$. We can construct a smooth increasing function $\phi_{x}(w)$ on \tilde{M} satisfying

$$
0 \leqslant \phi_{x} \leqslant 1 \text { and } \partial \bar{\partial} \phi \geqslant b^{2}\left(\cosh \frac{b \rho}{2}\right)^{-4} \omega,
$$

where ω is the Kähler form ([GW], Theorem H). Let h_{1} be the canonical metric on $K_{\tilde{M}}$ and φ the same as used in the proof of Theorem 1. Consider a metric $h_{1} \mathrm{e}^{-\varphi-k \phi}$ of $K_{\tilde{M}}$ and apply the L^{2}-estimates of Hörmander as in the proof of Theorem 1. We easily conclude that the sections generate an arbitrarily high jet of \tilde{M} at the point x for k sufficiently large.

To prove that the sections separate points on M_{j}, it suffices to check the conditions of Lemma 6. Assume that $d(x, y) \geqslant c$ on \tilde{M}. As in the proof of Theorem 1, we used L^{2}-estimates to construct a section of K vanishing at x but nonvanishing at y. Following the notations of the proof of Theorem 1, we need to solve $\bar{\partial} f=\bar{\partial} \zeta$ for
a test function

$$
\zeta=\chi\left(\frac{\rho(x, w)}{1 / 2 \rho(x, y)}\right) s(w)
$$

and $s_{1}=\zeta-f$ is then a holomorphic section vanishing at 0 but having the value 1 at y. From the L^{2}-estimates, we get

$$
\int_{M}\|f\|_{h}^{2} \mathrm{e}^{-\varphi-k \phi}<\int_{M} \frac{\|\bar{\partial} \zeta\|_{h}^{2} \mathrm{e}^{-\varphi-k \phi}}{\varepsilon_{1}}<\infty
$$

and, hence,

$$
\left\|s_{1}\right\|^{2} \leqslant\|\zeta\|^{2}+\|f\|^{2} \leqslant\|\zeta\|^{2}+C_{1} \int_{M} \frac{\|\bar{\partial} \zeta\|_{h}^{2} \mathrm{e}^{-\varphi-k \phi}}{\varepsilon_{1}}
$$

with some absolute constant C_{1}. As $d(x, y) \geqslant c$ and $D \zeta=0$ on a small ball of the radius depending only on c around x and y, we immediately have the estimates of $D \zeta$ and, hence, $\left\|s_{1}\right\|$ in the above is finite with a constant upper bound C determined only by c. It suffices for us to divide s_{1} by C to get a section satisfying the conditions of Lemma 6. The arguments of Theorem 3 can then be carried over to conclude the proof of Theorem 4.

Corollary 1 follows immediately from Theorems 3 and 4 and Lemma 3.

Acknowledgements

This work is motivated in part by the results of Hwang and To [HW] where they gave effective estimates for the Seshadri constant of the canonical line bundle on complex ball quotients and thereby prove statements similar to Theorem 2 and Corollary 1 for complex ball quotients.
It is a pleasure for the author to thank Harold Donnelly and Wing Keung To for helpful comments and suggestions on the paper.

References

[De] Demailly, J.-P.: L^{2} vanishing theorems for positive line bundles and adjunction theory, In: Transcendental Methods in Algebraic Geometry, Lecture Notes in Math. 1646, Springer-Verlag, New York, 1996, pp. 1-97.
[Do] Donnelly, H.: Elliptic operators and covers of Riemannian manifolds, Math. Zeit. 223 (1996), 303-308.
[G] Gromov, M.: Kähler hyperbolicity and L_{2}-Hodge theory, J. Differential Geom. 33 (1991), 263-292.
[GW] Greene, R. and Wu, H.: Function Theory on Manifolds which Possess a Pole, Lecture Notes in Math. 699, Springer-Verlag, New York, 1979.
[Ha] Harish-Chandra: Representations of semisimple line groups, VI, Amer. J. Math. 78 (1956), 564-628.
[Ho] Hörmander, O.: An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1973.
[HT] Hwang, J.-M. and To, W.-K.: On Seshadri constants of canonical bundles of compact complex hyperbolic spaces, Compositio Math. 118 (1999), 203-215.
[Y] Yeung, S.K.: Betti numbers on a tower of coverings, Duke Math. J. 73 (1994), 201-226.

[^0]: * The author was partially supported by grants from the National Science Foundation.

