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Abstract We study the biharmonic equation ∆2u = u−α, 0 < α < 1, in a smooth and bounded
domain Ω ⊂ R

n, n � 2, subject to Dirichlet boundary conditions. Under some suitable assumptions on
Ω related to the positivity of the Green function for the biharmonic operator, we prove the existence
and uniqueness of a solution.
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1. Introduction and the main results

In this paper we study the biharmonic elliptic problem

∆2u = u−α, u > 0 in Ω,

u = ∂νu = 0 on ∂Ω,

}
(1.1)

where 0 < α < 1, Ω ⊂ R
n (n � 2) is a smooth bounded domain in the sense that we will

describe in the following, ν is the exterior unit normal at ∂Ω and ∂ν = ∂/∂ν is the outer
normal derivative at ∂Ω.

The case of the Laplace equation with singular nonlinearities that corresponds to (1.1)
is well understood. More precisely, it is shown in [5] that the problem

−∆u = u−α, u > 0 in Ω, u = 0 on ∂Ω

has a unique solution for all α > 0. Boundary behaviour and nearly optimal regularity of
this solution have been investigated in [16], where it is proven that there exist c1, c2, M >

0 such that

c1δ(x) � u(x) � c2δ(x) in Ω (if 0 < α < 1),

c1δ(x) log1/2
(

M

δ(x)

)
� u(x) � c2δ(x) log1/2

(
M

δ(x)

)
in Ω (if α = 1),

c1δ
2/(1+α)(x) � u(x) � c2δ

2/(1+α)(x) in Ω (if 0 < α < 1).
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For a comprehensive account of second-order elliptic equations involving singular non-
linearities, we refer the reader to [8].

We denote by G(· , ·) the Green function associated with the biharmonic operator ∆2

subject to Dirichlet boundary conditions, that is, for all y ∈ Ω, G(· , y) satisfies in the
distributional sense:

∆2G(· , y) = δy(·) in Ω,

G(· , y) = ∂νG(· , y) = 0 on ∂Ω.

The study of the Green function for the biharmonic equation dates back to Boggio [1]
in 1901. He proved that the Green function is positive in any ball of R

n. Boggio [2] and
Hadamard [17] conjectured that this fact should be true at least in any smooth convex
domain of R

n.
Since the late 1940s, various counter-examples have been constructed that disprove the

Boggio–Hadamard conjecture. For instance, if a domain in R
2 has a right angle, then the

associated Green function fails to be everywhere positive [3]. A similar result holds for
thin ellipses: Garabedian [7] found that in an ellipse in R

2 with the ratio of the half axes
being approximately 2, the Green function for the biharmonic operator changes sign (for
an elementary proof, see also [21]). In turn, if the ellipse is close to a ball in the plane,
Grunau and Sweers [12] proved that the Green function is positive. Recently, Grunau
and Sweers [13–15] and Grunau and Robert [10] provided interesting characterizations
of the regions where the Green function is negative. They also obtained that if a domain
is sufficiently close to the unit ball in a suitable C4,γ-sense, then the biharmonic Green
function under Dirichlet boundary condition is positive.

It is worth noting here that the positivity property of the Green function for the
biharmonic operator is a special feature of the prescribed boundary condition. Indeed, if,
instead of the Dirichlet boundary condition, one assumes the Navier boundary condition
(that is, u = ∆u = 0 on ∂Ω), then a straightforward application of the second-order
comparison principle yields the positivity of the Green function. However, even under
Navier conditions there is in general no positivity result for the Green function when the
biharmonic operator is perturbed (see, for example, [4,18]).

In this paper we assume that Ω ⊂ R
n, n � 2, is a bounded domain that satisfies the

following assumptions:

(A1) the boundary ∂Ω is of class C16 if n = 2 and of class C12 if n � 3;

(A2) the Green function G(· , ·) is positive.

The assumption (A1) on the regularity of ∂Ω dates back to Krasovskĭı [19] and is taken
from [6], where sharp upper bounds for the Green function are obtained. The need for
condition (A2) will become clearer once we specify what it is understood by a solution
of (1.1). We say that u is a solution of (1.1) if

u ∈ C(Ω̄), u > 0 in Ω,
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and u satisfies the integral equation

u(x) =
∫

Ω

G(x, y)u−α(y) dy for all x ∈ Ω. (1.2)

The restriction 0 < α < 1 is needed in order to make the integral in (1.2) finite. It
will appear several times in the proofs in the following sections. Note also that condition
(A2) implies the standard maximum principle for the biharmonic operator in Ω.

Our main result concerning (1.1) is the following.

Theorem 1.1. Assume that 0 < α < 1 and conditions (A1), (A2) hold. Then, the
problem (1.1) has a unique solution u and there exist c1, c2 > 0 such that

c1δ
2(x) � u(x) � c2δ

2(x) in Ω, (1.3)

where δ(x) = dist(x, ∂Ω). Moreover, u ∈ C2(Ω̄) and if 0 < α < 1
2 , then u ∈ C3(Ω̄).

The existence of a solution will be obtained by means of the Schauder fixed-point
theorem. Towards this aim, we employ the sharp estimates for the Green function given
in [6]. The uniqueness relies heavily on the boundary estimate (1.3), which is obtained
by using the behaviour of the Green function (see Proposition 2.2).

We leave open the case α � 1. We believe that in this case the study of (1.1) is more
delicate: the solution will have a different boundary behaviour (this has already been
seen in the case of the corresponding Laplace equation) and a weaker regularity in Ω̄.

The remaining part of the paper is organized as follows. In § 2 we derive some prelim-
inary results concerning (1.1). Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminary results

In this section we collect some useful results regarding problem (1.1). The first result in
this sense is due to Dall’Acqua and Sweers [6, Theorem 12, Lemma C.2] and provides
upper bounds for the Green function of the biharmonic operator subject to Dirichlet
boundary conditions.

Proposition 2.1 (Dall’Acqua and Sweers [6]). Let k be an n-dimensional multi-
index. Then, there exists a positive constant c depending on Ω and k such that, for any
x, y ∈ Ω, we have the following.

(i) For |k| � 2:

(a) if n > 4 − |k|, then

|Dk
xG(x, y)| � c|x − y|4−n−|k| min

{
1,

δ(y)
|x − y|

}2

;

(b) if n = 4 − |k|, then

|Dk
xG(x, y)| � c log

(
2 +

δ(y)
|x − y|

)
min

{
1,

δ(y)
|x − y|

}2

;
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(c) if n < 4 − |k|, then

|Dk
xG(x, y)| � cδ(y)4−n−|k| min

{
1,

δ(y)
|x − y|

}n+|k|−2

.

(ii) For |k| < 2:

(1) if n > 4 − |k|, then

|Dk
xG(x, y)| � c|x − y|4−n−|k| min

{
1,

δ(x)
|x − y|

}2−|k|
min

{
1,

δ(y)
|x − y|

}2

;

(2) if n = 4 − |k|, then

|Dk
xG(x, y)| � c log

(
2 +

δ(y)
|x − y|

)
min

{
1,

δ(x)
|x − y|

}2−|k|
min

{
1,

δ(y)
|x − y|

}2

;

(3) if 2(2 − |k|) � n < 4 − |k|, then

|Dk
xG(x, y)| � cδ(y)4−n−|k| min

{
1,

δ(x)
|x − y|

}2−|k|
min

{
1,

δ(y)
|x − y|

}n+|k|−2

;

(4) if n < 2(2 − |k|), then

|Dk
xG(x, y)| � cδ2−|k|−n/2(x)δ2−n/2(y)

× min
{

1,
δ(x)

|x − y|

}n/2

min
{

1,
δ(y)

|x − y|

}n/2

.

Let ϕ1 be the first eigenfunction of (−∆) in H1
0 (Ω). It is well known that ϕ1 has

constant sign in Ω, so by a suitable normalization we may assume ϕ1 > 0 in Ω. Therefore,
ϕ1 satisfies

−∆ϕ1 = λ1ϕ1, ϕ1 > 0 in Ω,

ϕ1 = 0 on ∂Ω,

}
(2.1)

where λ1 > 0 is the first eigenvalue of (−∆). By the Hopf Maximum Principle [20] we
have ∂νϕ1 < 0 on ∂Ω. Also, by the regularity of Ω we have ϕ1 ∈ C4(Ω̄) and

cδ(x) � ϕ1(x) � 1
c
δ(x) in Ω, (2.2)

for some 0 < c < 1.

Proposition 2.2. Let u be a solution of problem (1.1). Then, there exist c1, c2 > 0
such that u satisfies (1.3).
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Proof. Let a(x) = ϕ2
1(x), x ∈ Ω̄. It is easy to see that, since ϕ1 ∈ C4(Ω̄), f := ∆2a

is bounded in Ω̄; so, by the continuity of u there exists m > 0 small enough such that

u(x) − ma(x) =
∫

Ω

G(x, y)[u−α(y) − mf(y)] dy � 0 for all x ∈ Ω.

Therefore,
u(x) � ma(x) � c0δ

2(x) in Ω, (2.3)

for some c0 > 0. This proves the first part of the inequality in (1.3). For the second part,
assume first n > 4 and let x ∈ Ω. Using Proposition 2.1 (1), for all y ∈ Ω we have

G(x, y) � c|x − y|2−nδ2(x) min
{

1,
δ(y)

|x − y|

}2

� c|x − y|2−nδ2(x) min
{

1,
δ(y)

|x − y|

}2α

= c|x − y|2−2α−nδ2(x)δ2α(y). (2.4)

Now, from (2.3) and (2.4) we have

u(x) =
∫

Ω

G(x, y)u−α(y) dy

� c1

∫
Ω

G(x, y)δ−2α(y) dy

� c2δ
2(x)

∫
Ω

|x − y|2−2α−n dy

� c2δ
2(x)

∫
0�|x−y|�diam(Ω)

|x − y|2−2α−n dy

= c2δ
2(x)

∫ diam(Ω)

0
t1−2α dt � c3δ

2(x). (2.5)

Now let n = 4. We use Proposition 2.1 (2) to derive an inequality similar to (2.4). More
precisely, for all y ∈ Ω we have

G(x, y) � c log
(

2 +
δ(y)

|x − y|

)
min

{
1,

δ(x)
|x − y|

}2

min
{

1,
δ(y)

|x − y|

}2α

� c|x − y|−2−2αδ2(x)δ2α(y) log
(

2 +
diam(Ω)
|x − y|

)
. (2.6)

If n = 3, let β = max{0, 2α − 1
2} < 3

2 , and by Proposition 2.1 (4) we have

G(x, y) � cδ1/2(x)δ1/2(y) min
{

1,
δ(x)

|x − y|

}3/2

min
{

1,
δ(y)

|x − y|

}3/2

(2.7)

� c|x − y|−3/2−βδ2(x)δβ+1/2(y)

� C|x − y|−3/2−βδ2(x)δ2α(y). (2.8)
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Finally, if n = 2, let β = max{0, 2α − 1} < 1, and by Proposition 2.1 (3) we have

G(x, y) � cδ(x)δ(y) min
{

1,
δ(x)

|x − y|

}
min

{
1,

δ(y)
|x − y|

}

� c|x − y|−1δ2(x)δ(y) min
{

1,
δ(y)

|x − y|

}β

� c|x − y|−1−βδ2(x)δ1+β(y)

� C|x − y|−1−βδ2(x)δ2α(y). (2.9)

We now use the estimates (2.6)–(2.9) to derive a similar inequality to that in (2.5).
This completes the proof of Proposition 2.2. �

Proposition 2.3. Let 0 < α < 1 and u ∈ C(Ω̄) be such that u(x) � c0δ
2(x) in Ω for

some c0 > 0. Consider

w(x) =
∫

Ω

G(x, y)u−α(y) dy for all x ∈ Ω̄.

Then

(i) w ∈ C2(Ω̄);

(ii) w ∈ C3(Ω̄) for any 0 < α < 1
2 .

Proof. With a proof analogous to that of Proposition 2.2 it is easy to see that v is
well defined. For 0 < ε < 1 small, define Ωε = {x ∈ Ω̄ : δ(x) < ε}. Set uε = max{u, c0ε

2}
and

wε(x) =
∫

Ω

G(x, y)u−α
ε (y) dy for all x ∈ Ω̄.

It is easy to see that wε = w on Ω \ Ωε. Since u−α
ε is bounded in Ω̄, by the estimates in

Proposition 2.1 it follows that wε ∈ C3(Ω̄) and

Dk
xwε(x) =

∫
Ω

Dk
xG(x, y)u−α

ε (y) dy for all x ∈ Ω̄

for any n-dimensional multi-index k with |k| � 3. The proof of this fact is similar to that
of [9, Lemma 4.1]. We employ in the following the same approach as in [9] to show that
w ∈ C2(Ω̄) (respectively, w ∈ C3(Ω̄) if 0 < α < 1

2 ).
First assume that n > 4 and let k be an n-dimensional multi-index with |k| � 2. Fix

β > 0 such that 2α < β < 2.
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By Proposition 2.1 (a) (if |k| = 2) and Proposition 2.1 (1) (if |k| � 1) we have

∣∣∣∣Dk
xwε(x) −

∫
Ω

Dk
xG(x, y)u−α(y) dy

∣∣∣∣ �
∫

Ωε

|Dk
xG(x, y)|(u−α(y) + (c0ε

2)−α) dy

� c1ε
−2α

∫
Ωε

|x − y|4−|k|−n min
{

1,
δ(y)

|x − y|

}2

dy

� c1ε
−2α

∫
Ωε

|x − y|4−|k|−n min
{

1,
δ(y)

|x − y|

}β

dy

� c1ε
−2α

∫
Ωε

|x − y|4−|k|−β−nδβ(y) dy

� c1ε
β−2α

∫
Ω

|x − y|4−|k|−β−n dy

� c1ε
β−2α

∫
0�|x−y|�diam(Ω)

|x − y|4−|k|−β−n dy

� c1ε
β−2α

∫ diam(Ω)

0
t3−|k|−β dt

� c2ε
β−2α

∫ diam(Ω)

0
t1−β dt

� c3ε
β−2α → 0 as ε → 0.

The case 2 � n � 4 can be analysed in the same way. For instance, if n = 3 and
|k| = 1, we use Proposition 2.1 (2) to derive

∣∣∣∣Dk
xwε(x) −

∫
Ω

Dk
xG(x, y)u−α(y) dy

∣∣∣∣
� c1ε

−2α

∫
Ωε

log
(

2 +
δ(y)

|x − y|

)
min

{
1,

δ(y)
|x − y|

}2

dy

� c1ε
−2α

∫
Ωε

|x − y|−βδβ(y) log
(

2 +
δ(y)

|x − y|

)
dy

� c1ε
β−2α

∫
Ωε

|x − y|−β log
(

2 +
diam(Ω)
|x − y|

)
dy

� c2ε
β−2α

∫ diam(Ω)

0
t2−β log

(
2 +

diam(Ω)
t

)
dt

� c3ε
β−2α → 0 as ε → 0.

We have obtained that

Dk
xwε →

∫
Ω

Dk
xG(· , y)u−α(y) dy uniformly as ε → 0
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for any n-dimensional multi-index k with 0 � |k| � 2. It follows that w ∈ C2(Ω̄) and

Dk
xw(x) =

∫
Ω

Dk
xG(x, y)u−α(y) dy for all x ∈ Ω̄

for any multi-index k with 0 � |k| � 2.
To prove (ii), let k be a multi-index with |k| = 3 and 2α < β < 1. From Proposi-

tion 2.1 (a) we have∣∣∣∣Dk
xwε(x) −

∫
Ω

Dk
xG(x, y)u−α(y) dy

∣∣∣∣ � 2(c0ε
2)−α

∫
Ωε

|Dk
xG(x, y)| dy

� c1ε
−2α

∫
Ωε

|x − y|1−n min
{

1,
δ(y)

|x − y|

}β

dy

� c1ε
β−2α

∫
Ω

|x − y|1−n−β dy

� c1ε
β−2α

∫ diam(Ω)

0
t−β dt

� c2ε
β−2α → 0 as ε → 0,

since β < 1. With the same arguments as above we find w ∈ C3(Ω̄). This ends the
proof. �

3. Proof of Theorem 1.1

Let a(x) = ϕ2
1(x), x ∈ Ω̄. Motivated by Proposition 2.2, we seek solutions u of (1.1) in

the form
u(x) = a(x)v(x),

where v ∈ C(Ω̄), v > 0 in Ω̄. This leads us to the following integral equation for v:

v(x) =
1

a(x)

∫
Ω

G(x, y)
aα(y)

v−α(y) dy for all x ∈ Ω̄. (3.1)

We can now regard (3.1) as the fixed-point problem

F(v) = v,

where

F(v) =
1

a(x)

∫
Ω

G(x, y)
aα(y)

v−α(y) dy.

Recall that F is an integral operator of the form

F(v) =
∫

Ω

K(x, y)v−α(y) dy,
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where the kernel K is given by

K : Ω̄ × Ω → [0,∞], K(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(x, y)
a(x)aα(y)

if x, y ∈ Ω,

∂2
νG(x, y)

∂2
νa(x)aα(y)

if x ∈ ∂Ω, y ∈ Ω.

Note that K is well defined since ∂2
νa(x) = 2(∂νϕ1(x))2 > 0 on ∂Ω.

We first need the following result.

Lemma 3.1.

(i) For any y ∈ Ω, the function K(· , y) : Ω̄ → [0,∞] is continuous.

(ii) The mapping

Ω̄ � x �→
∫

Ω

K(x, y) dy

is continuous and there exists M > 1 such that

1
M

�
∫

Ω

K(x, y) dy � M for all x ∈ Ω̄. (3.2)

Proof. Recall first that the biharmonic Green function

G : Ω × Ω \ {(z, z) : z ∈ Ω} → (0,∞)

is continuous. Also, by the estimates in [11, Theorem 1] we have

lim
(x,y)→(z,z)

G(x, y) = +∞ for all z ∈ Ω.

Hence, G : Ω × Ω → (0,∞] is continuous (in the extended sense). Therefore, K(· , y) is
continuous (in the extended sense) in Ω. It remains to prove the continuity of K(· , y) on
∂Ω. Let ε > 0. Since G(· , y) ∈ C4(Ω̄ \ {y}) and a ∈ C4(Ω̄), for any z ∈ ∂Ω we have

G(z + tν, y) = t2( 1
2∂2

νG(z, y) + G1(z, t)) as t ↗ 0,

a(z + tν, y) = t2( 1
2∂2

νa(z, y) + a1(z, t)) as t ↗ 0,

where
lim
t↗0

G1(z, t) = lim
t↗0

a1(z, t) = 0 uniformly for z ∈ ∂Ω.

Hence, as t ↗ 0 we have

|K(z + tν, y) − K(z, y)| =
∣∣∣∣ 1

2∂2
νG(z, y) + G1(z, t)

1
2∂2

νa(z, y) + a1(z, t)
− ∂2

νG(z, y)
∂2

νa(z, y)

∣∣∣∣
� |G1(z, y)|∂2

νa(z, y) + |a1(z, t)| |∂2
νG(z, y)|

∂2
νa(z, y)| 12∂2

νa(z, y) + a1(z, t)|
.
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Thus, there exists η1 > 0 such that

|K(z + tν, y) − K(z, y)| < 1
2ε for all z ∈ ∂Ω and − η1 < t < 0. (3.3)

Also, by the smoothness of the boundary ∂Ω there exists η2 > 0 such that

|K(z, y) − K(z̄, y)| < 1
2ε for all z, z̄ ∈ ∂Ω, |z − z̄| < η2. (3.4)

Define η = min{η1, η2}/2 and fix z ∈ ∂Ω. Now let x ∈ Ω̄ be such that |x − z| < η. Also,
let x̄ ∈ ∂Ω be such that |x − x̄| = δ(x) = dist(x, ∂Ω). Then |x − x̄| � |x − z| < η and
|x̄ − z| � |x − x̄| + |z − x| < 2η < η2, so by (3.4) we have

|K(x̄, y) − K(z, y)| < 1
2ε. (3.5)

Now, from (3.3) and (3.5) we obtain

|K(x, y) − K(z, y)| � |K(x, y) − K(x̄, y)| + |K(x̄, y) − K(z, y)| < ε

so K(· , y) is continuous at z ∈ ∂Ω. This completes the proof of (i).

(ii) First assume that n > 4. Using (2.2) and Proposition 2.1 (1) we have

K(x, y) � c1δ
−2(x)δ−2α(y)G(x, y)

� c2|x − y|2−nδ−2α(y) min
{

1,
δ(y)

|x − y|

}2

� c2|x − y|2−nδ−2α(y) min
{

1,
δ(y)

|x − y|

}2α

� c2|x − y|2−2α−n for all x, y ∈ Ω.

Since 0 < α < 1, the mapping x �→ |x − y|2−2α−n is integrable on Ω, so by means of
Lebesgue’s Dominated Convergence Theorem we deduce that

Ω̄ � x �→
∫

Ω

K(x, y) dy

is continuous. This fact, combined with K > 0 in Ω, proves the existence of a number
M > 1 that satisfies (3.2).

For 2 � n � 4 we proceed similarly with different estimates (as in the proof of Propo-
sition 2.2) to derive the same conclusion. This finishes the proof of Lemma 3.1. �

We are now ready to prove Theorem 1.1. Let M > 1 satisfy (3.2) and fix 0 < ε < 1
such that

ε1−α2 � M−1−α. (3.6)

Define

gε : R → R, gε(t) =

{
ε−α if t < ε,

t−α if t � ε,
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and, for any v ∈ C(Ω̄), v > 0 in Ω̄ consider the operator

Tε(v)(x) =
∫

Ω

K(x, y)gε(v(y)) dy for all x ∈ Ω̄.

If v ∈ C(Ω̄) satisfies v > 0 in Ω̄, then gε(v) � ε−α in Ω̄ so by (3.2) we find Tε(v) � Mε−α

in Ω̄. Now let
v1 ≡ M−1−αεα2

, v2 ≡ Mε−α.

and
[v1, v2] = {v ∈ C(Ω̄) : v1 � v � v2}.

By Lemma 3.1 it is easy to see that Tε([v1, v2]) ⊆ [v1, v2]. Further, by Lemma 3.1 and
the Arzela–Ascoli Theorem, it follows that

Tε : [v1, v2] → [v1, v2]

is compact. Hence, by Schauder’s fixed-point theorem, there exists v ∈ C(Ω̄), v1 � v � v2

in Ω̄ such that Tε(v) = v. By (3.6) it follows that v � v1 � ε in Ω̄, so gε(v) = v−α.
Therefore, v satisfies (3.1), that is, u = av is a solution of (1.1). Now, the boundary
estimate (1.3) and the regularity of solution u follow from Propositions 2.2 and 2.3,
respectively. In the following we derive the uniqueness of the solution to (1.1).

Let u1, u2 be two solutions of (1.1). Using Proposition 2.2 there exists 0 < c < 1 such
that

cδ2(x) � ui(x) � 1
c
δ2(x) in Ω, i = 1, 2. (3.7)

This means that we can find a constant C > 1 such that Cu1 � u2 and Cu2 � u1 in Ω.
We claim that u1 � u2 in Ω. Supposing the contrary, let

M = inf{A > 1: Au1 � u2 in Ω}.

By our assumption, we have M > 1. From Mu1 � u2 in Ω, it follows that

Mαu2(x) − u1(x) =
∫

Ω

G(x, y)[Mαu−α
2 (y) − u−α

1 (y)] dy � 0 for all x ∈ Ω,

and then

Mα2
u1(x) − u2(x) =

∫
Ω

G(x, y)[Mα2
u−α

1 (y) − u−α
2 (y)] dy � 0 for all x ∈ Ω.

We have thus obtained Mα2
u1 � u2 in Ω. Since M > 1 and α2 < 1, this last inequality

contradicts the minimality of M . Hence, u1 � u2 in Ω. Similarly, we deduce u1 � u2 in
Ω, so u1 ≡ u2 and the uniqueness is proved. This finishes the proof of Theorem 1.1.
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