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1. Introduction. Let A be an associative ring. Given a e A, an element be A is called a
left identity for a if

ba = a. (1)

Given a subset S of /4, an element bs A is, called a left identity for Sif (1) is satisfied for all
a e S. An element of A need not have a left identity; for example, if A is nilpotent then no
non-zero element of A has a left identity. If a does have a left identity, the latter need not be
unique; if every element of a subset S of A has a left identity, then it is not necessarily true
that S has a left identity.

Divinsky [4] has shown that every ring A has a unique two-sided ideal A(A) with the
following properties:

(i) every element of A{A) has a left identity,
(ii) A{A) contains every left ideal I such that every element in I has a left identity,

The ideal A (A) is a radical in the sense of Amitsur [1]; it is called the left Divinsky radical of A.
The right Divinsky radical of A is defined similarly in terms of elements which possess right
identities.

The ideal A 04) and the Jacobson-Perlis radical T(A) have many properties in common,
despite the fact that they are to a certain extent complementary (for a nilpotent ring r(A) = A
but A(A) = 0). In some respects, A(A) is better behaved than T(A). For example, as one of
us has shown recently elsewhere [7], the Jacobson-Perlis radical of the ring ̂ P(A) of row-finite
matrices over A is given by

if and only if T{A) is right-vanishing in the sense of Levitzki [6]. For A(A), however, we have

in all cases; this is a consequence of Theorem 11 below.
In the present paper, we discuss a generalisation of the concept of the Divinsky radical.

In (1), the important fact is not so much that b is an element of A, but that x -* bx is an A-
endomorphism which leaves a fixed. In our generalisation, the ring A is replaced by an
.4-module M and left identities for elements of A are replaced by ^-endomorphisms of M,
belonging to some fixed set F, which is a semi-group with respect to the circle operation. The
Divinsky radical A(M, F) of the pair (M, F) is defined by considering the elements m e M for
which there exists an element / e F such that/(m) = m.

In §§ 2 to 4 we establish the basic properties of A(Af, F). The properties proved in § 3
can be compared with those given by Bourbaki [2] for the (Jacobson-Perlis) radical of a module.
Those proved in § 4 are concerned with showing that, under finiteness assumptions of various
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kinds, there is an element of F which leaves fixed every element of A(Af, F). This property
corresponds in the special case of A(A) to the existence of a left identity for A (A). In §§ 5 and 6
we consider cases in which F is a ring of y4-endomorphisms of M. In these cases, M can be
regarded as an (F, ^4)-bimodule. In particular, we prove the theorem referred to above on
row-finite matrices and an analogous result concerning polynomials.

2. Definition of the generalised Divinsky radical. Let A be a ring, let M be a right A-
module and let F be a set of /4-endomorphisms of M closed under the circle operation, so that

f°9=f+9-f9 (2)

belongs to F whenever/and g belong to F. An additive subgroup H of M will be called an
F-subgroup if, for all x e H and/e F, we have/(x) e H. An F-subgroup H of M will be called
F-permissible if, for each x e H, there exists g e F such that g (x) = x.

Let 3f be the collection of F-permissible subgroups of M. Then 3/P satisfies the following
propositions.

PROPOSITION 1. If He 3^ and ae A, then Ha e 3%".
The proof of this is trivial, and so is omitted.

PROPOSITION 2. IfHuH2e Jf, then Hx + H2e Jf.

Proof. If * o Hx + H2, then x = xt +x2, where xt e /ft and x2 e H2. Given fe F, we
have

and so H1 + H2 is an F-subgroup. Since //j ejf, there exists g e f such that g(xy) =
since g(x2)—x2 e H2

 a nd #2 e ^ there exists /i e F such that

Then
(h+g-hg)(x) = x

and h+g—hgeFbecause Fis closed under the circle operation. It follows that H^ + H2 is
F-permissible. Thus Proposition 2 is proved.

The following proposition, which is used frequently in the sequel, can be proved by means
of an elementary inductive argument based on the method used in the proof of Proposition 2.

PROPOSITION 3. Ifxlt x2,..., xn are elements of F-permissible subgroups ofM, there exists
an endomorphism g e F which leaves each ofxu x2, ..., xnfixed.

Let A(M, F) denote the union of all F-permissible subgroups. From Propositions 1 and
2 it follows quickly that A(M, F) is a sub-module of M; moreover A(M, F) is itself an F-
permissible subgroup. We shall call A(M, F) the Divinsky radical of the pair {M, F).

Given any A -endomorphism/ of M, let/* be the ^-endomorphism of M defined by

f* = e-f,

where e: M -* M is the identity. Let F* be the set of all endomorphisms/* such that /e F.
Then F* is a semi-group, since F is closed with respect to the circle operation. The definition
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given above of an /"-permissible subgroup can be restated in terms of F* as follows: a subgroup
H is F-permissible if

(i)for allxeHandallf* eF*, we havef*(x) e H,

(ii) for each x e H, there exists g* e F* such that g*(x) = 0.

This alternative is in some ways simpler, but is unsuitable for the discussions in §§ 5 and 6
concerning matrices and polynomials. In these cases we take F to be a ring (with respect to the
usual operations) of endomorphisms, so that Fis automatically closed with respect to the circle
operation. To this ring there corresponds a matrix ring of endomorphisms, and in studying
this situation we find that the first definition of /"-permissibility fits in more naturally.

If F is taken to be a ring of ^-endomorphisms of M, the latter can be regarded as a
bimodule; as well as being a right A -module, it is a left /"-module and the fact that the elements
of F are endomorphisms of M ensures that M is a bimodule. In proving the basic properties
of A(M, F), however, the only restriction that we make on Fis that it be closed under the circle
operation.

3. The basic properties of the Divinsky radical. In this section, we show that the sub-
module A(M, F) satisfies the standard properties of radicals (cf., for example, Bourbaki, [2]).

Let M, M' be right /^-modules and let a: M-> M' be an /4-epimorphism. If F is a set of
^-endomorphisms of M closed under the circle operation and the kernel of a is an /"-subgroup,
then the set F' of ̂ -endomorphisms of M' induced by a is also closed under the circle operation.
To each/e F there corresponds a unique/' e F' satisfying

«/=/'« (3)
and to each/' e F' there corresponds at least one/e F satisfying (3). We shall write CL(M),

<*(/") for M', F' respectively.
THEOREM 1. Let a. be an epimorphism such that the kernel of a. is an F-subgroup. Then

Proof. Clearly oc(A(Af, F)) is an additive subgroup of a(Af). If x' e a (A (A/, F)), then
x' = OL{X) for some x e A(M, F) and, given/' e a(F), we have

/'(*') =/'(«(*)) = *(/(*))

for some/e F. Hence/'(x')ea(A(Af, F)), so thata(A(M, F)) is an F'-subgroup. Moreover,
there exists an element g e F such that g(x) = x; hence there exists g' e F' such that

g'(x') = g'(a(x)) = «(g(x)) = «(x) = *'.

Therefore a(A(M, F)) is /"-permissible.

THEOREM 2. Let N be an F-permissible sub-module of M. Then

A(M,F)IN=A(r,(M),r,(F)),

where r\\ M-* MjN is the natural homomorphism.
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Proof. By Theorem 1, we have

A(M, F)jN = r,(HM, F)) c A(n(M), r,(F)).

Let H be the complete inverse image of A(t\{M), tj(F)) under rj. Then, if x e H and/ e F,
we have

for some/' e t](F) and so

for all/; therefore/(x) e H for a l l / e F, so that H is an F-subgroup.
Since q(x) e A(jj(M),f/(F)), there exists g' e f/(F) such that g'(ri(x)) = n(x). Hence

there exists g e F such that ^(g(x)) = ri(x). Then g(x)-x e Â  and so g(x)-x e A(Af, F).
It follows that there exists h e F such that

*(»(*)-*) = fl(*)~*
and so

This proves that H is F-permissible and hence H c A(M, F). Therefore

A(rKM), >KF)) c A(M, F)/JV
and so Theorem 2 is proved.

THEOREM 3. Ifr\: M-* M/A(M, F) is //ie natural homomorphism, then

A(r,(M),n(F)) = 0.

Let L be a submodule of M which is also an F-subgroup. If A(Q(M),0(F)) = 0, where
8: M -* M/L is the natural homomorphism, then

Proof. The first part follows at once from Theorem 2 if we take N = A(M, F). To prove
the second part, we observe that

0(A(M,F))cA(0(M),0(F))

by Theorem 1; whence A{M, F) c L.

THEOREM 4. If N is a sub-module of M which is also an F-subgroup, then

,F) = A(M,F)nN.

Proof. If x e A(M, F) n N, then/(x) e A(M, F) because A(M, F) is an F-subgroup, and
f(x) e N because N is an F-subgroup. Hence A(M,F)nN is an F-subgroup. Since
A(M, F) n A' is contained in A(M, F), it is F-permissible and so we have

A(M,F)nN<=A(N, F).

The opposite inclusion is trivial; thus Theorem 4 is established.
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Suppose now that / is any set and that [Af,], e / is an indexed family of right ^-modules.
Let F, be a set of y4-endomorphisms of Mt closed under the circle operation. Given any family
F/Ji s /> where/, e F,, we define/by

Then/is an /4-endomorphism of the direct product

M = n Mi-
iel

Clearly if g = [g,], 6 h then

fog = [fiog,']teI

and so we have a set F of v4-endomorphisms of M closed under the circle operation.

THEOREM 5. For the direct product

Y
ie

we have
A(M, F) = r ] A(M() F,).

I e

Proof. The projection/;,: M-* Af, is an ^-epimorphism whose kernel is an F-subgroup;
hence, by Theorem 1,

, F))

Clearly/>,(F) = F,; hence

and so

A(M, F) <= n A(M,( F,).n
i s /

If x,6A(M,, F,), then, for all / , eF , , we have /,(*,) e A (M,, F,). Hence, for all
x 6 n A(Mi. ^i) a n d / e ^. we have /(x) 6 [ ] A(M,, F,). It follows that f ] A(M,, F,) is an F-

1<=I iel iel

subgroup.
For each x, e A(M,, F,), there exists g, e F, such that 0,(x,) = x,, and hence, if

x e [1 MM,, F,),
iel
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there exists g e F such that g(x) = x. Therefore \\ A(M,-, F.) is F-permissible and so is
isl

contained in A(M, F). Thus Theorem 5 is proved.
We now examine a more general case in which the result established in the second part of

the proof of Theorem 5 is extended. Suppose that / is any set and that Mt(i e I) is an Ar

module. With each indexed family [x,], 6 It where xf e Mh we associate an element x of an
.4-module M. With each family [/J,- 6 , , where ft is an ^,-endomorphism of Mh we associate
an ^-endomorphism/of M such that/(x) is the element corresponding to [/((*,)], e , . Thus,
if we write

we have
] (4)

(where, for convenience, we have abbreviated [JCJ, e t to [xf]).
It is easily seen from (4) that r [ / f ] is the zero homomorphism of M iff, = 0 for all i and

that T[x(] is the zero element of M if jcf = 0 for all i. As an example, let /consist of the integers
1 and 2, let A/1 be a right A ̂ module, let M2 be a left A ̂ module and let M be the tensor product
M1®M2; thus M is a Z-module, where Z is the ring of integers. Defining T[xv x2~\ to be
xt ® JC2 and r[ / \ , / 2 ] to be/ t ®/2. we obtain a correspondence satisfying (4).

Let Ff be a set of ^rendomorphisms of Mt closed with respect to the circle operation.
Write F* for the semi-group of ̂ rendomorphisms of the form e,-/;, where e,: Mt -»Af, is the
identity and /f e f f. The set of ^-endomorphisms of M of the form / * = r [ / * ] , where
/ * 6 F*, is a semi-group which we denote by F*. If F is the set of y4-endomorphisms of M
of the form/= e-f*, where/* e F* and e: M-» Af is the identity, then F is closed with
respect to the circle operation. (We cannot go directly from the F, to F because we do not
assume additive properties for T.)

THEOREM 6. Let H be the additive subgroup of M generated by the elements of the form
T[xi], where xt e A(Mh Ft). Then

Proof. If x = r[*j], where xt e A(Mt, Ft), then, for a l l / e F, we have

Since A(M(,/",) is anFj-subgroup./j^Xj) e A(M,-, F,). Hence *- / (*) e Hand so/(x) e 7/.
This is true for each generator r[x,] of / / and so H is an F-subgroup.

Since xt e A(Mh F,), there exists g* e Ff such that gf(x) = 0. Then
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Hence, for each generator x = T[xi] of H, there exists a g e F such that g (x) = x; but every
element of H is a finite sum of elements of this form and so, by Proposition 3, for each y e H
there exists h e F such that h(y) = y. Therefore H is F-permissible and we have

HcA(M,F).

4. Endomorphisms which leave fixed each element of the Divinsky radical. In general, there
is no element/ e F such that /(x) = x for all x e A(M, F). However, as we show in the
present section, the existence of such an element is implied by certain nniteness conditions:
ascending or descending chain conditions, or compactness with respect to a suitable topology.

We begin by considering the ascending chain condition for ,4-submodules.

THEOREM 7. IfA{M, F) satisfies the ascending chain condition for A-submodules, then there
is an element g e F which leaves fixed every element of A(M, F).

Proof. The ^-module A(M, F) is finitely generated; suppose that xt,x2, ..-,xk is a
system of generators. By Proposition 3, there exists an element g e F such that

g(xi) = xi ( j = l , . . . , k)

and so, for all x e A(M, F), we have
g(x) = x.

In fact, we have assumed more than is necessary in the statement of Theorem 7, as the
following argument shows. Given/ e F, define the set Sf by

Sf = {x\xeA(M,F),f(x) = x}.

Then Sf is an ,4-submodule of A(M, F). Suppose that, for each/ e F, we have Sf + A(M, F).
Then, given/ e F, there exists y e A(M, F) such that

But f(y)-y G A(Af, F) and so there exists/ ' e Fsuch that

f'(f(y)-y)=f(y)-y-
Hence

(f'of)(y)=y,
and it follows quickly that

where g = / ' of. By hypothesis Sg ^ A(M, /•") and so we can repeat the process to obtain an
/1-submodule Sh for which

Continuing in this way, we can construct an infinite ascending chain of ^-submodules of the
form Sf, and this chain does not terminate. Thus, if A(M, F) satisfies the ascending chain
condition for /4-submodules of the form Sf, there exists an element g e F such that g(x) = x
for all x e A(M, F).
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In the remaining theorems of this section, we consider cases in which finiteness conditions
are imposed on the structure of the semi-group (F, o) consisting of the set F together with the
circle operation. Up to now, we have not taken the structure of (F, o) into account, but it is
easily seen that this structure is important. For example, if every element of Fis quasi-regular
(so that 0 e F and, for each/ e F, there exists/' e F such t h a t / o / ' = 0 = / ' of), we have
A(M, F) = 0. In the general case the elements of F which are not quasi-regular form an ideal
Fo of (F, o), and A(M, F) c A(M, Fo).

THEOREM 8. If (F, o) satisfies the descending chain condition on left ideals, then there is
an element g e F which leaves fixed every element ofA(M, F).

Proof. Let O be a subset of A(M, F). If

T» = {f\fe F, f(x) = x for all x e <&},

then 7^ is a left ideal of (F, o). By Proposition 3, T9 is not empty when 0 is finite.
Suppose that there is no element g e F which leaves fixed every element of A(Af, F). Let

<S>i be a finite subset of A(M, F). If <S>2 is any finite subset of A(M, F) containing O^ then

We can always choose <t>2
 t 0 be s u c n that

for otherwise there would be an element of F which leaves fixed every element of A(M, F).
Repeating the process, we can find a finite subset <J>3 such that

and
7*3-

Continuing in this way, we can construct a non-terminating descending chain of left ideals of
(F, o). It follows that (F, o) does not satisfy the descending chain condition.

The result of Theorem 8 is not true if the descending chain condition on left ideals is
replaced by the ascending chain condition on left ideals: neither is it true under the ascending
chain condition on right (or two sided) ideals, as the following example shows.

Let Z be the set of positive integers, and let [M,], 6 z be an indexed family of Abelian
groups, for which Mt = M for all / e Z. If [JCJ, 6 z denotes any element of the discrete direct
sum N = £ M{, then, for each r e Z, we define an endomorphism/. of N by

leZ

2. where < ' '
0 for j > r.

It is easily verified that the set F of all such endomorphisms of N is closed under the circle
composition. Evidently A(N, F) = N, and there is no element of F which leaves fixed every
element of N. However (F, o) has the ascending chain condition on ideals.
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We now consider the case in which F is a ring (with respect to the usual operations). The
argument used in the proof of Theorem 8 can be adapted to show that the theorem still holds if
the descending chain condition on the left ideals (in the ring sense) of/"is satisfied. However,
we give an alternative proof based on the structure theory of rings satisfying the descending
chain condition either on left ideals or on right ideals.

THEOREM 9. IfF is a ring and satisfies the descending chain condition either on left ideals or
on right ideals, then there is an element of F which leaves fixed every element of A(M, F).

Proof. If F is nilpotent, then A (M, F) = 0 and the theorem is trivial. If F is not nilpotent,
there exists an idempotent e such that f—fe is nilpotent for all f e F. Suppose that
x e A(M,F)and that

y = x-e(x).

Then y e A(M, F) and so there exists/ e F such that

Therefore
(f-fe)(x) = y.

Since e is idempotent, we have e(y) = 0, and so

(J-fe)\x) = (f-fe) GO =/O0 = y.

We can now prove by a simple inductive argument that

(f-feT(x) = y,

for all positive integers n. But/—fe is nilpotent; hence y = 0 and therefore e(x) =x. Thus
e leaves fixed every element of A(M, F).

We conclude this section with a result, similar to the preceding propositions, which has
topological connections. If x e A(M, F), we write

Tx = {f\feF;f{x) = x).

THEOREM 10. If there exists a topology for F such that F is compact and the sets Tx are
closed, then there is an element of F which leaves fixed every element of A{M, F).

Proof. By Proposition 3, the intersection of any finite number of the Tx is non-empty;
but F is compact and therefore, by the finite intersection property, the intersection of all the
Tx is non-empty. The theorem follows at once.

By a similar argument, the following result is easily proved.
Let F be a compact topological ring and let M be a topological F-module. Then there is an

element of F which leaves fixed every element of A(M, F).

COROLLARY. If every element of a compact topological ring has a left identity, then the ring
itself has a left identity.
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5. The Divinsky radical of a module of matrices. In this section and the next we assume
that Fis a ring. Let 5 be any set and let A be any ring. A matrix (see [3]) of type S over a
ring A is a mapping a: Sx S-> A; the image of (r, s) e SxS under a is denoted by ars. The
matrix a is said to be row-finite if for each r e S, ocrs is the zero element of A for all but a finite
number of elements s e S; column-finite matrices are defined similarly. Addition and multi-
plication of matrices are defined in the usual way. With respect to these operations, the set of
all row-finite matrices over A is a ring ^P(A) and the set of all column-finite matrices is a
ring J?y(A).

Suppose now that M is a right /4-module. A matrix of type S over M is a mapping
fi: SxS-* M. Defining right-multiplication of such a matrix by an element of -^y(A) in the
natural way, we obtain a right ^y(A)-modu\e Jl{M)\ in this module the matrices over M are
unrestricted. If we consider instead the set of row-finite matrices over M, then we obtain a
right ~^p(.4)-module, which we denote by Jl p(M).

Let F be a ring of ,4-endomorphisms of M. If <f> is any element of Jlf
p(F) and \i is any

matrix over M, then we define <f>(ji) to be the matrix obtained by applying the usual rule for
matrix multiplication to <j> and \i. Then $ becomes an ^v(y4)-endomorphism of ^(M), or
an ^p(/4)-endomorphism of ^p(M). Thus we can define Divinsky radicals for the pairs
(Jl(M), -^P{F)) and (J(p{M), Jtfp(F)). Our main result on matrices is concerned with the
second of these.

THEOREM 11. The Divinsky radical of the pair {J?p{M), ~#P(F)) is given by

A(jrp(M), Jtp(F)) =J(P(L{M, F)).

Proof. For fixed p,qeS, let Bpq be the set of all elements f}pq e M such that fipq is the
(p, q)th element of a matrix /? e h.(JKp(M), JKp(F)). Then Bpq is an additive subgroup of M.
If/ e F and <j> is the element of ^P{F) defined by

4>rs = 0 unless r = p and s = p,

then, since </>(£) e A(^P(M), Jtp(F)) for all 0 e A (^ P (M) , ^P{F)), we have/0?M) e 5 M

for all ppq e Bpq. Moreover, given /S e t±(Jtp(M), Jlp(F)), there exists ^ e Jtp{F) such
that \p(fi) = P; let e be the element of JlP{F) defined by

Sincee(fi) e A(^P(M), JKp{F)), there exists 6 e JHp(F) such that 9(e(Ji))=e(P) and hence

Since 8PP e F, it follows that Bpq is an impermissible subgroup of M\ hence Ppq e A(M, F) for
,. Therefore
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It is clear that ^P{A{M, F)) is an additive subgroup of ^t P(M) and that, for any element
H e Jtp(F) and any element a. e J(P(A(M, F)\ we have n(a) e J(p{A{M, F)). Further, if
P is any element of JZP(A{M, F)) and r e S, then Prs = 0 for all but a finite number of s e S,
since p is row-finite. Hence, by Proposition 3, there exists / r e F such that

fr(Prs)=Prs (*eS).

Let (j> be the matrix in JtP{F) defined by

then <j>(J}) = p. It follows that *# P(A{M, F)) is an ^p(F)-permissible subgroup and so we have

-*p(A(Af, F)) «= A(^P(M), Jtp(F)).

Theorem 11 follows at once.

THEOREM 12. The Divinsky radical of{JH{M), J?P(F)) satisfies

A(^(M), Jtp{F)) <=uf (A(A/, F)).

To prove this, we need only observe that the argument used in the proof of the first part
of Theorem 11 does not depend on the row-finiteness of the elements of JKp{M).

Similar results to Theorems 11 and 12 can also be proved, by analogous methods, for
other types of matrices.

Suppose, for example, that S is any totally ordered set. An upper triangular matrix of
type S is a mapping a such that ars = 0 if r>s. We denote the ring of all row-finite upper
triangular matrices over A by ̂ P{A) and we denote the u^(/4)-module of all row-finite upper
triangular matrices over M by ^tf'p(M). Then the result corresponding to Theorem 11 is

A(^(M) , JTJiF)) = ^ ( A ( M , F)).

6. The Divinsky radical of a polynomial module. Let A be a ring and let 0>(A) be
the polynomial ring over A. If M is a right /t-module, then we can define a ^"(^)-module
& (M) whose elements are polynomials over M. If F is a ring of -4-endomorphisms of M, then
the polynomial ring &(F) can be regarded as a ring of ^OO-endomorphisms of &(M). The
following is the resultf for polynomials analogous to Theorem 11 for matrices.

THEOREM 13. The Divinsky radical of(0>(M), &{F)\ is given by

, F)).

Proof. If n e &{F) and a £ 0>(A(M, F)), then clearly /i(oc) e 0"(A(M, F)). Let a be
any polynomial over A(M, F), with coefficients <x0, au ..., <xn. By Proposition 3, there exists an

t This theorem holds for polynomials in any number of indeterminates, but it is convenient here to give the
proof in the case of one indeterminate.
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element/e F such that/(a,) = a, (i = 0, 1, ...,n). Hence, if <p is the element of £P(F) such that

4>o=f, <̂ i = 0 (i *<)),

then $(<x) = a. It follows that the subgroup &(A(M, F)) is ^^-permissible and hence

9 (A (M, FJ) c A (&> (M), & (F)).

Given any integer i ̂  0, let 2?, be the set of elements /?, such that /?, is the jth coefficient
in a polynomial /? e A(^(M), ^(F)). Clearly 5, is an additive subgroup of Af and, if/?, e 5,,
then /(/?,) e Bt for all f e F. We now prove that 5, is an F-permissible subgroup of M by
establishing the existence, for each /?, e 5(, of an element/, e Fsuch that/,(/?,) =/?,.

Suppose first that p0 is an element of Bo. Then fi0 is the constant term in a polynomial
0 G A(^(M), ^(F)). There exists an element </> e ^(F) such that <j>(fi) = p and so, if <£0 is
the constant term of <£, then

Hence 5 0 is an F-permissible subgroup of M.
Assume that 5, is F-permissible for 0<Zi£k. Let yk+1 be an element of Bk+1. Then
is the (k+ l)th coefficient in a polynomial y e A(^(A/), ^(F)). There exists an element

6 0"(F) such that î (v) =y; hence

r = 0

and so

r = l

Since y0, yu ..., yt belong to Bo, Bu ..., Bk respectively, then, by hypothesis,

y*+i-*o(y*+i) e A(M,F).

Therefore there exists g e F such that

and so

Hence there is an element/= tyo+g—gtyo of Fsuch that/(yt+1) = yk+i, so that 5 t + 1 is an
F-permissible subgroup. Therefore, by induction, 5, is F-permissible for all i ̂  0 and we have

This completes the proof of Theorem 13.
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