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ON OPTIMAL SYMMETRIC ORTHOGONALISATION
AND SQUARE ROOTS OF A NORMAL MATRIX

NAGWA SHERIF

It is well known that the factors in the polar decomposition of a full rank real
m X n matrix, m ^ n possess best approximation properties. We propose an
iterative technique to compute the polar factors based on these best approximation
properties. For normal matrices, the polar decomposition is useful. It is applied
to compute the principal square roots of real and complex normal matrices.

1. INTRODUCTION

In view of the best approximation properties of the polar factors of a matrix,
techniques for computing the polar decomposition are of interest. While the factors
in the polar decomposition can be obtained via the singular value decomposition, this
approach is not always the most efficient or the most convenient.

In this paper, optimal properties of the polar factors are described in Section 2.
In Section 3, we present and analyse a one-sided Jacobi type method for computing
the polar factors which involves only matrix multiplication. Generally, the algorithm
consists of minimising the Frobenius norm of A — V at each stage, where A is a given
matrix and V is an orthogonal matrix. We illustrate the performance of the algorithm
by some numerical examples. We end this section by reporting other available methods
for computing the polar decomposition.

In Section 4, we propose a procedure to compute the principal square root of a
real normal matrix, if one exists, in real arithmetic. This will be an application of
the algorithm developed in the previous section. Finally, we show how to modify this
procedure to compute a principal square root of a normal complex matrix A.

2. POLAR DECOMPOSITION.

In this section, we describe the polar decomposition of a matrix. Let A £ R m x n ,
7n ^ n. Then there exists a matrix B £ R m x n , and a unique symmetric positive
semidefinite matrix H £ Kn x n , such that

(2.1) A = BH and BTB = I.
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234 N. Sherif [2]

If A has a full rank, then H is positive definite and B is uniquely determined. The
above decomposition is well known factorisation of the matrix A, [6]. This factorisation
can be derived from the singular value decomposition of A. The singular value decom-
position insures that there exists an m x n orthoronal matrix Q, an n X n orthogonal
matrix P and an n x n diagonal matrix D with non-negative diagonal elements, called
singular values of A, such that

(2.2) A = Q S P r , S = [D, 0]T

where

Z? = diag(Si(i4), S2(A), ...,Sn(A)) and S^A) > S2{A) > ... > Sn(A) > 0.

The fact that (2.1) can be derived from (2.2) follows by partitioning Q, as Q = [Qlt Q2],
Qj £ R m x n , QJ<?j = / . Now let

(2.3) B = Q1P
T and H = PDPT.

Then we have BH = Q1DPT = [Qi, Q2][D, 0]TPT = Q2PT = A.

In the sequel, the following notation will be used: \A\ = (ATA) denotes the
unique positive semidefinite square root of ATA. If A is an nxn matrix, the eigenvalues
of A will be denoted by ^j(A) (j = 1, 2, 3, . . . , n) with multiplicity counted, <r(A)
denotes the set of eigenvalues of A. The singular values of A (the eigenvalues of |yl|)
will always be counted with multiplicities and numbered in decreasing order: Si(A) ^

^(^ l ) ^ 0 . A norm on R m x n which satisfies the additional condition
= ||.4||, where Q 6 Rm X m and P £ Rn X n are orthogonal matrices, is called a

unitarily invariant norm. Examples of unitarily invariant norms are Ky Fan As-norms,
defined for k = 1, 2, 3, . . . , n by

Let X,Y E. K n x n . It is well known [12] that a sufficient and a necessary condition for
||X|| ^ ||Y|| in any unitarily invariant norm is

(2.4) \\X\\k < ||r||fc, fc = l, 2, 3 , . . . , n .

An extension to the case X, Y G Rm X n is straight forward. A particular unitarily
invariant norm is the Frobenius norm

1/2 , x 1/2

For normal matrices the polar factors possess additional properties, which characterise
the normality of the matrix.
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[3] Optimal symmetric orthogonalisation 235

THEOREM 2 . 1 . Let A e R n x n have a polar decomposition A = BE. Then the

following statements are equivalent:

(a) A is normal.

(b) BH = HB.

(c) AB = BA.
(d) AH = HA.
(e) There exists a permutation t i , 12, . . . , i n of the numbers 1, 2, 3, . . . , n

such that

\i{A) = Xj(B)Xij(H) for j = 1, 2, 3, . . . , n.

(f) moduius (<7(A)) - {Xi{H), ..., An(ff)}.
(g) argument [ff(A)] = {Ai(.B), . . . , An(B)}, (as long as A is non-singular).

PROOF: Since A is normal, we have ATA = AAT, which implies that B commutes
with H2. This implies that B commutes with H, since H is positive semidefinite. If
BH = HB, then A is normal, being the product of two commuting normal matrices
[7]. This establishes the equivalence of (a) and (b). Clearly, (b) is equivalent to each
of the conditions (c) and (d). A being normal implies (e). This obviously implies both
(f) and (g). That (g) implies (a) appears in [7]. U

The optimality of the polar factors is described by the following theorem.

THEOREM 2 . 2 . Let Ae K m x n have a polar decomposition A = BH. Then the

following statements are true:

(a) ||J4 — i?|| = min \\A — F| | , where •& is the subset of orthonormal matrices

of Rm X n. The result is true in any unitarily invariant norm.
(b) If A = B\H\, Bi is orthonormal and Hi is symmetric then Hi ^ H.

PROOF: (a) The case m = n was proved in [13]. An extension to the case m > n

goes in similar fashion. Our aim to show that for A: = 1, 2, 3, . . . , n

(2.5) \\A-B\\k$\\A-V\\k

hence the result will follow because of (2.4). Now Sj(A - B) = Sj(H -1) =

\^j(H — I)\. Let (Mi ^ . . . ^ nn be the eigenvalues of H with multiplicity counted.
Then by [12] we have

(2.6) £ Sj(A -B)= .^m
i

We define for any matrix X £ U m X n the symmetric matrix X = \ T of order

•m + n. It is easy to see that the eigenvalues of X are precisely the singular values of
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X, with their negatives and m — n zeros. Using singular value decomposition (2.2) of

A we have \\A - V\\ = | |S -U\\,U = QTVP. Let X = £ - U. The eigenvalues of X ,

£ and U are

fj,lt f i 2 , ..., f i n , 0 , 0 , . . . , 0 , - f i n , ..., - i n , 1 , 1 , . . . 1 , 0 , . . . , 0 , - 1 , - 1 , . . . , - 1 .

respectively. Again from [12] we have

(27) £
Now (2.6) and (2.7) imply (2.4).

(b) This is immediate, since H.\ = H2, and hence |27i| = H. But it is always true
that H1 < l^il, so Hx^H. D

REMARK 2.1. The symmetric polar factor has best approximation properties in the
particular case when A G R" x n is symmetric [8, 9].

In the next section, an algorithm for computing the polar decomposition of A G
R n x n is described. The general case of A G R m x " can be reduced to this case by
performing a QR factorisation step and applying the algorithm to the factor R.

3. POLAR DECOMPOSITION ALGORITHM

Let A G Rnx™ be a non-singular matrix having polar decomposition A = BH. We
construct the one-sided Jacobi type method to compute the polar factors B and H.
The technique is based on Theorem (2.2) (a), and we call it the polar decomposition
algorithm. Let Jn denote the plane rotations. For integers i, j (1 ^ i < j> ^ n) and
real 9 define the orthogonal matrix R(i, j , 6) = [Rrt]',

cos 6 if (r, a) = (i, i) or (j, j)

sin 6 if (T, 3) = (i, j)
Rr. = <

-s in0 if (r, s) = (j, i)

6r, for all other (r, a), Sr, the Kronecker delta.

In order to implement the minimising procedure (Theorem (2.2) (a)) we construct a

sequence of orthogonal matrices {#*} and a sequence of matrices {.Hi}, where

(3.1) Hk+1 = RkHk, Ho = A, Bk+1 = BkRj, Bo = / , /?* = fi*(u, jk,»k)-
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Here Rk G Jn (k = 0, 1, . . . ) , with parameters to be determined. Let us write

HL - \hW h{k) hW}T

where hff denotes the ith row of Hk. Let {trk} = {{ik, jk)}. This is called the
sequence of indexed pairs. We drop the subscript from the pair and write <rk = {%, j),
and it is understood that (i, j) is to be determined in the kth step by some strategy
considered later. In order to determine R[i, j , 6k) at the fcth step in our minimising
procedure let us define

(3.2) fi(i, j , 6) = ||A - Bk\\% - \\A - Bk+1fF = 2tr(Hk+1 - Hk) = 2tr((Rk - I)Hk).

We define

(3.3) ng> = Q(i, j , $„) = maxn(i, j , 0),

where the index pair <rk(i, j) is already chosen. In the Jfeth step, 0k will be called the
angle of rotation, ak = (»', j) is the index pair for rotation. Since Hk is premultiplied
by Rk, only the z'th and jth. rows are affected, indeed

(3.4) h\*+1) = cos 8 fc[f + sin 9 AJf, fcg+1) = - sin 0 h$ + cos 8 h$.

Let us write

Consequently, it follows from (3.2) that

(3.5) Cl(i, j , 8) = 2{(cos 9 - 1)/*^ + sin 9u\*)}.

It can be checked that 9k is defined by the following equations,

(3.6) 77.• cos6k = /*,•,• , J/J,- sin^i = !/•• ,

The following relations are easy to check,

(3.7) u\j = irilj'sin I -0* j , 4 i/̂ -

Let

(3.8) 6 = <r(JI4).

jf
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It follows directly from equations (3.5) and (3.7) that {£*} is a monotone increasing
sequence. Also, we have

Now we consider different strategies to choose the index pair tjk = (*, j) at each step

k.

(I) Process of maximising i/,-;-: The index pair tr* = (i, j) is chosen from the
condition

(3.10)

(II) Process of maximising Clij : The index pair <7* = (t, j) is chosen from the
condition

(3.11) ft!J>

(III) Cych'c Process: A procedure is called cyclic if in every segment of
n(n — l ) /2 consecutive elements of the sequence {»•*} every index pair
(i, j), 1 ^ i < j ^ n , occurs exactly once. Such a segment of n(n — l ) / 2
steps is called a sweep. In particular, we can define a cyclic process of
row-wise scanning. This is one that will be implemented in the numerical
examples given in this work.

Under most practical conditions, the sequence {I?*} converges to B while {27*}
converges to H. The next theorem discusses the convergence properties of the algo-
rithm.

THEOREM 3 . 1 . Let the sequence of matrices {Hk} and {-Bfc} be generated by

applying the polar decomposition algorithm to the matrix A, where A is non-singular.

Let Hk — Sk + Lk, where Sk is symmetric and Lk is skew symmetric. Then for any

strategy Lk —* 0 as k —» oo.

PROOF: The sequence {£*} defined in (3.8) is monotone increasing and bounded,
hence convergent. That {£«} is bounded, can be seen from the inequality

£ £ Si{Hk);
t=i »=i »=i

for the last inequality, see [5, p.41]. Now Si(Hk) = Si(A), 1 ^ i ^ n , hence

J2 Si(A) = {. From equation (3.2) it follows that
i=i

(3.12) nW -» 0 as k -» oo,
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for any process of choosing {o>}. The sequence {/x -̂'} is bounded. Then for any
strategy, (3.7) together with (3.12) gives

(3.13) i/j** -> 0 as fc -» oo.

To show that Lk —> 0, we prove it for the second strategy, that is, according to (3.11).

We define

,,(*) ,00
r . . " ' - I -

(3.14)

Then we have

Equation (3.7) together with the above inequality give

uv ]2 + [vUv ]2 - fJ-uv ] ̂  2[y £2 + [i/tu, ]2 — (] .

Consequently, from (3.12) it follows that «>„„ —» 0. By equation (3.14) we have If* —» 0
as k —> oo. U

REMARK 3.1. The sequence {Hk} is bounded (equation (3.9)) and satisfies

\\Hk+1-Hk\\^2S1(A) sinl<

where || || denotes the operator matrix norm. It is now clear, using (3.7) and (3.12),
that

(3.15) ll-ffjb+i - -Hk|| -» 0 as Jfc -» oo.

Also we have Hi - ATA = (Hk - H^Hk = 2LkHk, hence

(3.16) Hi -» ATA as k -» oo.

REMARK 3.2. Bounded sequences with property (3.15) were investigated in [1]. Ap-
plying that argument, it follows that {Hk}', the derived set of {Hk}, is a compact
connected set. In fact, {Hk}' either consists of only one single point, and we have con-
vergence in the usual sense, or it has uncountably many points. In case {Hk}' consists
of only one point, (3.16) implies that this limit point is a symmetric square root of
A A. In all our numerical experiments, the sequence {Hk} converges to the positive
definite square root H.

The following lemma shows that the convergence of {Hk} will be guaranteed under
some assumptions on A.
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LEMMA 3 . 1 . Let A £ RnXn be non-singular such that Sn(A) ^ a > 0. Let
\\A — PI\\p < \/2(a + /?), where /? = Si(A). If the polar decomposition algorithm is
applied to A, then the derived set of the sequence {27*} consists of the positive definite
matrix H.

PROOF: It follows from (3.1) that

(3.17) \\Hk - /3I\\F < ll-ffo - PI\\F = U ~

Then, for j = 1, . . . , n, \Xj(Hk)\ ^ Sn(Hk) = Sn(A) ^ a. Let H be a member of the
derived set of {Hk}. Since det (27) is positive, the number of negative eigenvalues of
H is even, and \j(H) satisfies

Hence \\H - (3I\\F > { E I^(B" - 0I)\*}1/2 > V2(<* +
i=i

This contradicts (3.17). Then r = 0 and hence H is positive definite. D

The above method belongs to the one-sided Jacobi-type techniques. These tech-
niques are appropriate to implement on the hyper cube or a linear array of processors
[4]. Applications of the polar decomposition can be found in [15, 18]. In particular
[9] gives a satisfactory presentation of the polar decomposition and its applications. In
Section 4 we present another application.

The polar decomposition algorithm is stable, that is, rounding errors made in
the actual multiplications do not lead to numerical instability. This is a well known
behaviour of multiplications by rotations [21, 3 Section 24]. The cost of the polar
decomposition algorithm is 2n3 per sweep. Further, the algorithm is easy to code
and it does not require library routines (important in a microcomputer environment).
Tests have shown that convergence is reached between 2-10 sweeps for well conditioned
matrices. The algorithm converges when A has real negative eigenvalues with even
multiplicities. However; if A has real negative eigenvalues with odd multiplicities, (that
is, det (.A) < 0), then we have to modify the initial values. In this case we set Bo — D
and Ho — DA, where D = diag ( - 1 , 1, . . . ) . This will guarantee that det (Hk) > 0 for
all k, and consequently, {If*} will converge to the positive definite square root H.

As compared to [9, 15], the polar decomposition algorithm has the additional
feature that it can be applied to singular matrices. However, for such matrices the
convergence is generally slow as illustrated by the following example. Let

• 1.50000 0.50000 -0.50000 -0.50000'
_ -0.50000 0.50000 -0.50000 -0.50000

0.50000 -0.50000 0.50000 0.50000
.-0.50000 0.50000 -0.50000 1.50000.
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[9] Optimal symmetric orthogonalisation 241

After 8 sweeps we have the residual E — ATA — H2, with max |e i j | = 1.19 i5 — 6. The
symmetric polar factor H is

- 1.70711
0.00000
0.00000

.-0.29289

0.00000
0.70711

-0.70711
0.00000

0.00000
-0.70711
0.70711
0.00000

-0.29289-
0.00000
0.00000
1.70711.

H =

with <r(H) = {0, 1.414214, 2}, the required positive semidefinite polar factor.
The polar decomposition can be obtained via the singular value decomposition

equations (2.2), (2.3). This is readily available in library routines such as LINPACK;
[3]. It is numerically stable, and it requires approximately 12n3 flops. In [9, 15]
quadratically convergent Newton-type iterations were suggested, with restrictions for
numerical stability.

4. THE PRINCIPAL SQUARE ROOT OF A REAL NORMAL MATRIX

If A is a matrix, then a matrix X is said to be a square root of A in the case that
X2 = A. No useful necessary and sufficient condition for the existence of X is known.
Even if X exists, it is not guaranteed to be a function of A. For the definition of a
matrix function, see [14, 17]. In particular, an excellent investigation of real square
roots functions of a real matrix A is presented in [11]. In this section, the existence of
normal real square roots functions of a real normal matrix is investigated (Theorem 4.1).
Then we propose an algorithm to compute the principal square root of a real normal
matrix, if it exists, in real arithmetic. This algorithm does not require the computation
of eigenvalues or eigenvectors. It is based on the application of the polar decomposition
algorithm described in Section 3.

The existence of a real matrix X such that X2 = A can be seen from the real
Schur decomposition of the matrix A, as given by the following Lemma [19].

LEMMA 4 . 1 . Let A £ K n x n . There is an orthogonal matrix U such that R =
U AU is quasi-triangular. Moreover, U may be chosen so that any 2 x 2 diagonal
block of R has only complex eigenvalues (which must therefore be conjugate).

If in addition, A is normal with no real negative eigenvalues, then the quasi-
triangular matrix R is block diagonal with diagonal blocks Rn, 1 ^ i ^ r , of the
form

(4.1) Rn=\? ^ 1 . bi?0 and/or Rii=fi,fi>Q.

Now let 5 be the block diagonal matrix with diagonal blocks Su, 1 ^ » ^ r ,

Sii = ±\CJ ~ d i ] , a n d / o r S« = ±y/fit * = [ _ — * * _ 1 , c< = - L .
ld c J 12[? + / \ \b\\\ 2<U
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It can be checked that each Su is a square root function of Ra. So S2 = R, and clearly
5 is normal. Setting X = USUT we have X2 = A. So X is a square root function of
A and is necessarily normal. We sum up these results in the following theorem. This
theorem is still valid for a general real matrix A £ R n x n , [11].

THEOREM 4 . 1 . Let A € Rn X n be a non-singular normal matrix. If A has real
negative eigenvalues, then A has no real square roots which are /unctions ol A. It A
has no real negative eigenvalues, than there are precisely 2q+p real square roots ol A
which are lunctions of A, where q is the number of distinct real eigenvalues, and p is
the number of distinct complex eigenvalue pairs.

We remark that the above theorem emphasises only the existence of square roots
that are functions of A. H A has negative eigenvalues with even multiplicity, then A

will have a real square root which is not a function of A. For example, X =
[ 1 0

[-1 01
is a real normal square root of A, A = , but X is obviously not a function

of A. For the matrix A described in Theorem 4.1, a particular real normal square root,
which is computationally stable and optimal in some sense, is the principal square root
of A.

DEFINITION: A real matrix N is said to be a principal square root of A if

(a) N2 = A.
(b) Re N = (N + NT)/2 is positive definite.

The following lemma characterises a principal square root of A. The proof follows
from Putnam's result [16].

LEMMA 4 . 2 . Let A e Rn X n. TAere is a principal square root ol A it and only
if N2 = A and ReN >0.

The next result describes the optimality of a principal square root among other
real normal square roots of A.

THEOREM 4 . 2 . Let A G Rn X n be a non-singular normal matrix with no real
negative eigenvalues. Let N be a principal square root of A. Then the following
statements are true:

(a) N is unique.
(b) If M is a real normal square root of A, then MN = NM and \\A — N\\ ^

||̂ 4 — M\\ in any unitarily invariant norm.

PROOF: (a) Suppose L is a principal square root of A, then

(L + LT)L = L2 + LTL = A + \A\ = N2 + NTN = (N + NT)N,
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moreover,

( i + LT)2 =L2 + 2LLT + (LT)2 = A + 2 \A\ + AT = (N + NT)2.

But A+2 |A|+^4T is positive definite. The last equation implies L-\-LT = N+NT, since
the positive definite square root of a positive definite matrix is unique. Consequently
L = N.

(b) Let M be a real normal square root of A, then MA = M s = AM, hence,
p(A)M = Mp(A) for any polynomial p(x). But N being the principal square root
is represented by such a polynomial in A, hence MN = NM. To prove the required
inequality, by equation (2.4) it is enough to prove it for the Ky Fan fc-norms. Now A
and M commute and consequently they have a common set of eigenvectors, hence

Sj{A - M) = |A,-(A - M)\ = \\j(A) - \j(M)\, S;(A - N) = {X^A) - A,-

Since N is the principal square root of A, it follows that Sj(A — N) ^ Sj(A — M),

1 < j ^ n , and consequently ||.A - JV||4 < \\A - M\\k. D

The next theorem establishes the theoretical basis to compute the principal squaxe
root of a non- singular normal matrix.

THEOREM 4 . 3 . Let A g K " x " be a non-singular normal matrix. Assume that

A has no real negative eigenvalues and let A = BH be the polar decomposition of A.

Then the following statements are true:

(a) I + B is non-singular; the orthogonal polar factor B\ of I + B is the

principal square root of B.

(b) If H = LLT is the Cholesky decomposition of H, and if LT = B2B2 is

the polar decomposition of LT, then Hi is the principal square root of

H.

(c) N = B1H2 is the principal square root of A.

PROOF: (a) If A = BH, then argument <r(A) = <r(B) (Theorem 2.2), hence
— 1 (£ <T{B), since A has no real negative eigenvalues. It follows that B is a rotation
and / + B is non-singular. Let I + B have the polar decomposition, I + B = B\H\,
where B\ commutes with Hi, since I + B is normal. Now we have

(/ + Bf = (tfitfi)2 = B\Hl = Bl(2I + B + BT).

On the other hand

(/ + Bf = 1 + 2B + B2 = B(2I + B + BT),
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hence (B2 -B)(2I + B + BT) = 0. Consequently B\ - B, since 2/ + B + BT is

positive definite ( - 1 $ (r(B)). Further, since (Bx + £?") J5Ti = 2I+B + BT,vre know

that Z?i + Bf is positive definite. So, indeed Bx is the principal square root of B.

(b) Clearly, H2 = LLT = H, H3 is positive definite hence H2 is the principal

square root of H.

(c) We note that both Bi and H2 are functions of A, so they commute. Conse-

quently, it follows that N2 = (BiH2)
2 = B\H\ = BH = A. So, it is left to show that

N + NT is positive definite. Since N + NT = (Bx + B*) H2, it foUows that N + NT

is positive definite. D

Now we summarise the computational procedure to compute the principal square
root of a normal non-singular A.

ALGORITHM. Let A € R n x " be as mentioned in Theorem 4.3. The following
steps compute the principal square root N of A:

1. Compute the polar factors B and H of A.
2. Compute the orthogonal polar factor B\ of I + B.
3. Compute the Cholesky decomposition, H = LLT.

4. Let H.2 be the symmetric polar factor of LT.
5. Set N = BxH2 .

In our implementation of the above algorithm, we set H = (H + HT)/2 to ensure
that H is symmetric. We remark that, if the input matrix A is positive definite, we
need to compute step 3 and step 4 only, and set N = H2 • Also, if the input matrix A
is a rotation then we carry only step 2 and set N = B\.

REMARK 4.1. The assumption that A is non-singular was made by many authors [2,

10, 20] to compute a square root of A. In many instances, however, a square root of a

singular matrix does exist. This is true for normal singular matrices, producing a square

root N such that Re N is positive semidefinite. This can be achieved as follows: we

use the Cholesky decomposition for symmetric positive semidefinite matrices [3], that

is PTHP = LL , where P is a permutation matrix and L is a lower triangular

matrix with non-negative elements on the diagonal. Then we proceed to the fourth

step to compute H2, the symmetric polar factor of L . We set H2 = PH2PT, hence

Hi = P~H\PT = PLLTPT = H.We illustrate this by the following example. Let

1.5 0.5 -0.5 -0.51
-0.5 0.5 -0.5 -0.5

0.5 -0.5 0.5 0.5
-0.5 0.5 -0.5 1.5.

cr(A) = {0, 1 ± i, 2}. A is a real normal matrix with no real negative eigenvalues,
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however A is singular. Applying the modified algorithm we have,

• 1.25645 0.22754 -0.22754 -0.157761

_ -0.22754 0.54934 -0.54934 -0.22754

0.22754 -0.54934 0.54934 0.22754

.-0.15776 0.22754 -0.22754 1.25645.

Also <r(N) = {0, 4v/2e± l 7 r /8, i/2}. Thus the desired principal square root of A is

obtained. The residual E = A — N2 after 10 sweeps is not greater than 10~8, for any

element e,-7-.

REMARK 4.2. If A 6 CnXn is normal with no real negative eigenvalues then we can

compute the principal square root of A by recasting the complex problem to a real

problem. Also if A has real negative eigenvalues then we can rotate A by small angle

to give Ax - AeiAe, where A0 is small positive real angle so that A1!2 = A\/2eiAe/2,

AY' is computed as outlined above.
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