
Canad. Math. Bull.Vol. 34 (3), 1991 pp. 295-300 

ON RINGS WITH ENGEL CYCLES 

H. E. BELL AND A. A. KLEIN 

ABSTRACT. A ring R is called an £C-ring if for each JC, y G R, there exist distinct 
positive integers m, n such that the extended commutators [JC, y]m and [JC, y]n are equal. 
We show that in certain £C-rings, the commutator ideal is periodic; we establish com-
mutativity of arbitrary EC-domains; we prove that a ring R is commutative if for each 
JC, v G R, there exists n > 1 for which [JC, v] = [JC, y]„. 

Let R denote an arbitrary ring. For each JC, y G R define extended commutators [JC, y]* 
as follows: let [JC, y] \ be the ordinary commutator jcy—yjc, and for k > 1 extend the notion 
inductively by taking [x,y]k = [[JC,V]^_I , vl. We say that R satisfies an Engel condition 
(or alternatively, R is an £-ring) if for each JC, y G R there exists a positive integer r, 
depending on JC and y, such that [jc,y]r = 0. We call R an Engel-cycle ring (£C-ring) if 
for each JC, y £ R there exist distinct positive integers r and s for which [jc,y]r = [Jc,yL. 
In the event that we can choose r (resp. r and s) independent of JC and y, we call R an 
£*-ring or £C*-ring respectively. 

Prompted by questions from Luise-Charlotte Kappe and Rolf Brandi, we explore com-
mutativity in EC-rings and £C*-rings, of which £-rings and £*-rings are special cases. It 
has been known for some time that E*-rings have nil commutator ideal [8]; however, it is 
apparently still an open question as to whether general £-rings have the same property— 
a situation which is an impediment in our study of EC-rings. Moreover, all finite rings 
are EC-rings, so the commutativity theory of EC-rings cannot in general be better than 
that of finite rings. As we shall see, the class of periodic rings—a class which includes 
all finite rings—plays a central role in our study. 

Throughout the paper, the center of the ring R will be denoted by Z or Z(R), and the 
set of nilpotent elements by N or N(R). The symbols C(R), 9^(R) and J(R) will denote 
respectively the commutator ideal, the nil radical, and the Jacobson radical. The symbols 
Z and Tp will stand for the ring of integers and the ring of integers mod p. 

1. Remarks on periodic and algebraic ideals. Define a ring R to be periodic if 
for each JC G R there exist distinct positive integers m and n such that JC"1 = JC". Periodic 
rings entered the arena of commutativity theorems early—with Wedderburn's theorem 
on finite division rings; and various authors have investigated their special commutativity 
properties. One of the most useful results on periodic rings is one due to Chacron ([6], 
[2, Theorem 1]): 

The first author was supported by the Natural Sciences and Engineering Research Council of Canada, 
GrantNo.A3961. 

Received by the editors October 18, 1989. 
AMS subject classification: 16A70,16A15,16A38. 
© Canadian Mathematical Society 1991. 

295 

https://doi.org/10.4153/CMB-1991-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-048-x


296 H. E. BELL AND A. A. KLEIN 

LEMMA 1. Suppose that for each x in the ring R, there exists a positive integer n = 
n(x) and a polynomialp(X) = px(X) G Z [X] such thatxn = xn+lp(X). Then R is periodic. 

As an immediate application, we establish the existence of a maximal periodic ideal. 

LEMMA 2. Let R be any ring. Then R contains a maximal periodic ideal (P(R), and 
Tp̂ r has no nontrivial periodic ideals. 

PROOF. Let <P(R) be the sum of all periodic ideals of R, which is obviously an ideal. 
To show it is periodic, we need only show that the sum of two periodic ideals I\ and h is 
again periodic. Since IAJ^ = j^f, we see that I-r~^L is periodic; hence for each x G I\ +h, 
there exist distinct n, m such that xn—xm G I\. Thus, there exist distinct k and; for which 
(JC" — xmy' — (Y1 — JC"1)*; and I\ + h is periodic by Lemma 1. Another easy application of 
Lemma 1 shows that ^ r has no nonzero periodic ideals. 

In [4] Bergen and Herstein discuss the related notion of algebraic ideals. They assume 
that R is an algebra over a field F, with algebraic having its usual meaning. They define 
the algebraic hypercenter A(R) to be the set of all a G R such that for each x G R, there 
exists p(X) G F[X], of positive degree and depending on a and JC, for which ap{x) = 
p(x)a. One of their principal results is 

LEMMA 3 [4, THEOREM 1.6]. If R is an algebra over afield and has no nonzero 
algebraic ideals, then A(R) — Z(R). 

This lemma is of interest to us because any ring of prime characteristic p may be 
regarded as an algebra over Zp\ and in this case, a simple application of Lemma 1 shows 
that an ideal is periodic if and only if it is algebraic. 

2. A basic result on EC-rings. The standard measure of near-commutativity is that 
C(R) is nil. In the case of EC-rings, we cannot hope to prove this, since it does not hold 
for all finite rings. However, for a significant class of EC-rings, we can establish that 
C(R) is periodic. 

THEOREM 1. If R is any EC-ring for which (R, +) is a torsion group, then C(R) is 
periodic. 

Before beginning the proof, we single out some computational details in a lemma. 
Part (a) is well-known; part (b) is clear. 

LEMMA 4. (a) Let R be any ring of prime charcteristic p. Then if m — pk, [JC, y]m = 
[x,yr]forallx,yÇ:R. 

(b) If [x,y]r = [x,y]r+d for r, d > 0, then [x,y]m = [x,y]n for all m, n with r < 
m < n and n = m (mod d). In particular, ifR is an EC-ring, then for any x\y x^, y\, 
y2 G R, there is a single pair m,n of positive integers for which [jci,vi]m = [xi,yi]n and 

[X2,yi\m = [X2,yi\n. 

To avoid further interruption, we state an additional lemma, which will be used in this 
section and in subsequent sections. 
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LEMMA 5 [7,8]. (a) IfR is a (Jacobson) semisimple E-ring, then R is commutative. 

(b) IfR is any E*-ring, then C(R) is nil. 

PROOF OF THEOREM 1. Consider R = -^—, and write it as the direct sum of its 

primary components /£,-. Since R has no nontrivial nil ideals, we have pRt = { 0} , where 

p is the prime associated with /?,-; hence Rj is an algebra over Zp. Let R* = ~3^, which 

has no nontrivial periodic ideals, hence no nontrivial algebraic ideals. 
Now consider*, y G /?*, and choose r, d > 0 such that [x,y]r — [x9y]r+d. Since there 

are only finitely many congruence classes mod d, there must be two distinct powers of/?, 
say pa and/ / , both at least r and congruent mod d. By Lemma 4(a), we have [x,yPa] = 
k / ] - i . e . [x,?* -fa] = 0. Thus x G A(/Ç) for each * G #* and by Lemma 3, 
R* is commutative. Thus C(Ri) Q !P(Ri), so that C(Ri) is periodic. Since each element 
of C(R) has nonzero components in only finitely many of the Rt, it follows that C(R) is 
periodic. We now have C(R) periodic mod 9{£R), and an application of Lemma 1 shows 
that C(R) is periodic. 

One consequence of this result is 

THEOREM 2. If R is any EC*-ring, then C(R) is periodic. 

PROOF. Let R satisfy the identity 

(1) [x,y]r = [x,y]5, s > r. 

Replacing y by 2y, we obtain the identity 

(2) (2s-2r)[x,y]r = 0. 

Suppose temporarily that R has no nonzero nil ideals. Then there exists a family { Pa | 
a G A} of prime ideals such that C\aeA Pa = { 0} and R is a subdirect product of the 
factor rings Ra = ~-, each of which is prime with no nonzero nil ideals and satisfies 
(1) and (2). If char Ra is 0 or a prime not dividing 2s — 2r, then Ra satisfies the identity 
[JC, y]r = 0—i.e. Ra is an £*-ring; and Ra is therefore commutative by Lemma 5(b). Note 
that there are only finitely many primes dividing 2s — 2r, which we call exceptional. 

Let Ai = {a G A | char/?a is not exceptional }, and A2 = A\ Ai. Define Pi = 
HoreAi Ra and P2 = CiaeA2 Pa- Then P\ Pi P2 — {0}, so R is a subdirect product of 
R\ = Y and R2 = jr. Now the argument already given shows that R\ is commutative; 
and since there are only finitely many exceptional primes, (R2, +) is a torsion group. Since 
/?2 clearly satisfies (1), Theorem 1 shows that C{R2) is periodic; and it follows at once 
that C(R) is periodic. 

Returning to the case of a general ring R satisfying (1), we have C[ Ô T ^ ) periodic, 

so that C(R) is periodic mod 9\C(R). Applying Lemma 1 again, we conclude that C(R) 
is periodic. 

It is interesting to note that while £C-rings have seldom been studied in the past, 
groups with Engel cycles have been studied by various authors for some time. The liter­
ature contains theorems asserting that EC-groups with some additional finiteness condi­
tion have a particular structure—for example, a recent theorem of Brandi [5] asserts that 
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if G is a finitely-generated soluble EC-group, then G is finite-by-nilpotent. Our Theo­
rems 1 and 2 have a similar character; in each case there is a sort of finiteness hypothesis 
in addition to the basic assumption that R is an EC-ring, and the conclusion is that (in 
group-theory terminology) R is periodic-by-commutative. 

3. EC-domains and related rings. Our major goal in this section is to prove the 
following theorem. 

THEOREM 3. IfR is any EC-domain, then R is commutative. 

We dispose at once of the characteristic p case. Indeed, if we assume C(R) ^ { 0} , 
then by Theorem 1 C(R) is a periodic domain, which must be commutative by Jacobson's 
an = a theorem; and this contradicts the fact that a domain with a nonzero commutative 
ideal must itself be commutative. 

If R has characteristic 0, then for JC, y G R choose r and s such that [JC, y]r = [jc,yL 
and [JC, 2y]r = [JC, 2y]5, this being possible by Lemma 4(b). It follows easily that (2s — 
2r)[x>y]r = 0, so that R is an E-ring. Thus, Theorem 3 will be proved once we prove the 
following theorem. 

THEOREM 4. Let R be any E-domain of characteristic 0. Then R is commutative. 

PROOF. If R does not have 1, we can embed it in an E-domain with 1. (If Z ^ {0} 
localize at Z\ { 0} ; otherwise, use the Dorroh embedding.) Thus we assume that R has 
1. Since semi-simple E-rings are commutative by Lemma 5, we have [jc,y] G J{R) for 
each JC, y G R\ hence 1 + [jc,y] is invertible for all JC, y € R. 

Assume R is not commutative. Then by Lemma 5, R is not an E*-domain; and we can 
find x, y € R and an integer n > 3 such that [JC, y]n = 0 ^ [JC, y]n_ i. Taking z = [JC, y]n-i, 
we see that [z,yh = 0 ^ [z,y]. Now since n > 3, z is a commutator, so u = 1 + z is 
invertible; and we clearly have [w,y]2 = 0 ^ [w,y]. Defining d to be the inner derivation 
x —* jcy — yjc, we thus have d2(u) = 0 ^ d(u). 

NowO = d(uu~l) = ud(u~l)+d(u)u~l, hence d{u~x) = —u~xd(u)u~l. Using the fact 
that d2(u) = 0, we can show in a straightforward way that d2(u~l) = l[urxd{u)\ u~l; 
and proceeding by induction, we get dn{u~x) = (— \)nn\ [u~xd(u)\ u~x for all positive 
integers n. Since d(u) ^ 0 and R is of characteristic 0, we see that dn(u~x) / 0 for 
all positive integers n—that is, [u~x,y]n =£ 0 for all positive integers n. This of course 
contradicts the fact that R was an E-ring. 

Since rings without nilpotent elements are subdirect products of domains, Theorem 3 
yields the following useful corollary. 

COROLLARY 5. If R is an EC-ring with no nonzero nilpotent elements, then R is 
commutative. 

Another corollary, extending the known results on E-rings, is 

https://doi.org/10.4153/CMB-1991-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-048-x


ON RINGS WITH ENGEL CYCLES 299 

THEOREM 6. IfR is an E-ring with no nonzero nil right ideals, then R is commutative. 

PROOF. We show that R has no nonzero nilpotent elements. Let u2 = 0, and for 
x G R choose k = k(u,x) such that [u, ux]k = 0. Then (ux)ku = 0, and it follows that the 
right ideal generated by u is nil. Therefore, u = 0. 

From Corollary 5, it is immediate that any EC-ring R satisfying a condition which 
forces N to be an ideal must have C(R) nil. For example, an £C-ring with N Ç Z must 
have nil commutator ideal. In fact, we can get a better result, reminiscent of Theorem 1 
of[l] . 

THEOREM 7. IfR is an EC-ring in which N is commutative, then C(R) is nil. 

PROOF. We show that N is an ideal. It is immediate that N is an additive subgroup 
of R', and we proceed to show by induction on k that if uk = 0, then {xu)k = (ux)k = 0 
for all x G R. We shall require the well-known fact that 

(3) [x,y]n = £ ( - l ) ' ( " W - ' 

for all JC, y G R and all positive integers n. 
Suppose that u2 = 0. For x G R, we get r and s such that [u,xu]r = [u,xu]s\ and 

this equality reduces at once to u(xu)r = u(xu)s. It follows that (wjt)r+1 = (ux)s+1 ; hence, 
there exists an integer y such that e = (uxy is idempotent. Since xe — exe G N9 we have 
[M, xe — exe] = 0—that is, 

(4) u{x(ux)f — (uxyx(uxy) = (x(uxy — (uxyx(uxy}u. 

Multiplying on the right by u shows that (uxy+2 — (xuy+2 = 0. We now know that ux 
and xu are in N, hence commute with w; therefore (ux)2 = (xu)2 = 0 as required. 

Now suppose our result holds for all y with y™ = 0, m < k; and suppose w* = 0. For 
x G R, choose distinct r and s greater than k — 2 such that [«, xu]r = [u, xu]s. By (3) we 
see that 

(5) u(xu)r — u(xu)s = J2 wq> 

where each wq is a product of w's and JC'S with at least k w's, including two adjacent w's. 
Since each u\ i = 2 , . . . , k — 1, has (u1)' = 0 for some t < k, our inductive hypothesis 
allows us to rewrite each wq as a product having uk as a factor; thus, each wq = 0, and (5) 
yields (ux)r+l = (ux)s+l. Again there exists j such that (uxy = e is idempotent. Looking 
at (4) again and right-multiplying by ux, we see that there exist v,w eR for which 

(uxy+2 = u2v + wu2x. 

Since the right side of this equation is in Af by the inductive hypothesis, we conclude that 
ux and xu are in N, hence [w, ux] = [u, xu] = 0 and (xu)k = (ux)k = 0. 
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4. A further commutativity theorem. Theorem 4 of [3] asserts that if R has the 
property that for each y € R there exists n = n(y) > 1 for which [x,y] — [x,y]n for all 
JC G R, then R is commutative. We can now prove an extension of this result. 

THEOREM 8. Let Rhea ring such that for each x,y G R there exists n = n(x, y) > 1 
for which [x,y] — [jc,y]n. Then R is commutative. 

PROOF. AS in [3], we use results of Streb [9] to reduce the problem to showing 
commutativity in the absence of nil ideals. 

Suppose, then, that R has no nonzero nil ideals, and write R as a subdirect product of 
prime rings Ra, each with no nonzero nil ideals. Suppose first that Ra has characteristic 0. 
Then for je, y G Ra choose a single n > 1 for which [JC, y] = [JC, y]n and [JC, 2y] = [JC, 2y]n. 
As usual we obtain (2n — 2)[jc,y] = 0, hence [x,y] = 0. 

Now consider the case of Ra with prime characteristic p. For JC G R and u G N, there 
exists n > 1 such that [JC, u] = [JC, u]n. Using Lemma 4(b) and the pigeonhole principle, 
we get k G { 2 , 3 , . . . , n} for which there exist arbitrarily large powers of p congruent to 
k (mod n — 1); and invoking Lemma 4(a), we see that [JC, u\k = 0, hence [JC, U] = 0. 
Thus, N Ç Z, so that N is an ideal, necessarily trivial; and commutativity follows by 
Corollary 5. 
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