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Abstract

An investigation on the existence of projective objects and projective resolutions has been carried out
in some categories more general than the category of compact spaces and continuous maps.

1980 Mathematics subject classification (Amer. Math. Soc): 18 G 05, 18 G 10.

1. Introduction

Gleason [1] has determined the projective spaces in the category of compact
Hausdorff spaces and continuous maps and has proved the existence of essen-
tially unique minimal projective resolutions. In this note we shall study the same
problems in the category of paracompact spaces and perfect maps, and in other
categories containing the category of compact Hausdorff spaces as a full subcate-
gory. All topological spaces are assumed Hausdorff. Prerequisite category theory
can be obtained from Mitchell [3].

2. Definitions

A continuous map /: X -» Y, where X and Y are arbitrary Hausdorff spaces, is
called perfect if / i s closed and the set fl(y) is compact for eachy in Y.

For a Tychonoff space X, we write fiX for the Stone-Cech compactification and
Tjx: X -» ftX for the reflector map.
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The following results of Henriksen and Isbell [2] will be used:
(a) a continuous map / : X -» Y between Tychonoff spaces is perfect if and only if

its extension F: PX - /iY takes fiX - i\x{X) into /?Y - i j y (7 ) ;
(b) / / / : X -> Y is a perfect onto map between Tychonoff spaces, X is paracompact

if and only if Y is paracompact.

3. The categories P and T

Let P be the category of all paracompact spaces and perfect maps and T be the
category of all Tychonoff spaces and perfect maps. It is to be noted that both of
these categories contain C, the category of compact spaces and continuous maps,
as a full subcategory. P is also a full subcategory of T. Let us first examine
whether these categories have pullbacks. Let us remember that in the above
categories epimorphism, monomorphism and isomorphism stand for onto, one-one
and homeomorphic maps respectively.

THEOREM 1. The category P has pullbacks.

PROOF. Let / : X -» Z and g: Y -> Z be two morphisms in the category P (that
is, X, Y, Z be paracompact spaces and / , g are perfect maps). We have to show
the existence of a pullback diagram for / and g. Let P = {(x, y) G X X Y:
f(x) = g(y)} and px and p2 be the projection on X and Y respectively. Suppose
there exist/)',: P' -> Xandp'2: P' -» Ysuch that fp\ = gp'2. Define h: P' -> X X Y
as follows:

Kt) = {p\(t),p'2(t)), tGP'.

Since fp\ = gp'2, h(t) G P that is, h: P' -> P such that pxh = p \ and p2h = p 2 . It
is easy to see that the map h is unique. Thus the diagram

is a pullback f o r / a n d g. We show that this diagram belongs to P, that is, that the
maps p , and p2 are perfect.
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Consider the pullback diagram

PY

V

pz

for the maps F: fix -> fiZ and G: jlY -> /?Z where F and G are the extensions of
the map / and g onto flX and /?Y respectively ({IX, fiY and /?Z are the
Stone-Cech compactifications and J\X, i\Y and 17 z are the reflector maps of X, Y
and Z respectively). We have FT\X = TJZ/, Grjy = VZS an<3 P* = {(•**, .y*) G
jS^X y87: F(x*) = G(y*)}. qx and ^2 are projections of P* to 0X and $Y
respectively. Again, \ttp^\ (iP -> px,p%: fiP -> flYbe the extensions of/7, and/>2

onto fiP. Hence T J ^ , =/?fT)P, i\Yp2 = p$t\P. Since /p , = gp2, r1zfpx = •qzgp2.
Note that Fp*t)P = Ft]xpl — t]zfpx and Gp|7)P = Gi\Yp2 = r\zgp2. Therefore,
Fp\f\p = Gp2r\P. Since t\P(P) is dense in /JP we have //?* = Gp* on jSP. From
the definition of pullback there exists a (unique) mapping h: fiP -» P* such that
^* = ^,/i and ^* = ^2^- Again, for the maps T\XP\'- P ~~* P% and r]Yp2: P -> fiY
we have F-t]xP\ ~ GriYp2 (this equality is already noted earlier).

From the definition of pullback once again we get a map k: P -> P* such that

VxPi ~ <l\k a n d
 VYPI - <lik-

It is easy to see that the map k is as follows:

k(x, y) = (VxPiix, y),i\Yp2{x, y)) = (-qx(x), i)Y(y)), (x, y) G P.

k clearly turns out to be a homeomorphism into P*. Moreover it is not difficult to
notice that k — h-r\P. Now A: is a homeomorphism of P onto k(P) C P*. From the
property of Stone-Cech compactification it follows that

(1) h(pP-rip(P))c~k(P)-k(P)CP*.

Now q2k = i)Yp2, that is,

*
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is a commutative diagram. So we consider the pullback diagram for q2: P*
and T)Y: Y - 0Y say

[4]

• p Y

W

TT,

v
*

TT3
• ^ Y

where W is given by {(s, y) G P* X Y: q2(s) = yY(y)} and ir, and 772 are the
respective projections to P* and y.

Since #2(s) = q2(x*, y*) = y*, q2(s) - i)Y(y) implies y* = yY(y). Conse-
quently, W = {((x*, VY(y)), y)GP*X Y: VY(y) = y*} = {((x*, i}Y{y)), y) £
(PX X pY) X 7: F{x*) = G(r,Y(y))}.

If F(x*) = G(t]Y(y)) then F(x*) = G(r\Y{y)) = T)zg(y). Since / is a perfect
map, F(/1X — i]x{X)) C /8Z — TJZ(Z). AS a consequence, x* G ̂ (A"), that is,
x* = TJ^X) for some x G l S o we have W = {((Vx(x)> VY(y)X y) G ( ^ X
pY) X 7: F(T,^(X)) = G(i»yO0)}- Again r,zg(j) = G(r,y(j))
TJZ/(X) and this naturally implies/(x) = g(y). We then get,

(2)

Since TJ Yp2 =

= {((rlx(x),VY(y)),y)E(pXXpY)X Y:f(x)=g(y)}

= {(k(x,y),y):(x,y) ePandp2(x,y) = y)

jk there exists a unique map j : P -> W &s follows:

j(x, y) = (k(x, y), p2(x, y)), (x, y) G P.

Easy to see from (2) that j(P) — W. In fact j is a homeomorphism of P and W.
Now W is, by construction, a closed subset of P* X Y which is paracompact (as
P* is compact and Y is paracompact). As a result W is paracompact. This makes
P paracompact and J is an isomorphism of P and ff in the category P. We then
obtain that the diagram

https://doi.org/10.1017/S1446788700019704 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019704


[ s ] Projectives in some categories of Hausdorff spaces 11

is a pullback diagram. Note that 17 y is a one-one map, that is, i ) y is a monomor-

phism. From the definition of inverse image we see that P = q2
l(Y) as a

subobject of P*. In terms of sets this means that k(P) = ^ ' C ) y ( ^ ) ) - As a

result q2(P* ~ k(P)) C $Y - i ) y ( 7 ) . We know from (1) that h(BP - -np(P)) C

k(P) - k(P) C P* - k(P), so that p*(/3P - T,P(P)) = q2h(/3P r 7,F(i>)) =
q2[h(PP - vP(P))] C <72(P* - fc(P)) C j8y - Tjy(7). Hence, by the characteri-
sation of Henriksen and Isbell mentioned at the beginning, p2 is a perfect map.
Similarly,/>, is a perfect map.

The proof of Theorem 1 also yields the following theorem.

THEOREM 2. The category T has pullbacks.

Let us observe that each of the two categories P and T satisfies the following
three conditions:

(a) all admissible maps are continuous;
(b) if A is an admissible space and {p, q} is a two-element space, then

AX{p, q) and the projection map of this space onto A are admissible;
(c) if A is an admissible space and B is a closed subspace of A, then B and the

inclusion map of B into A are admissible. Now from Theorem 1.2 of Gleason [1]
it follows:

THEOREM 3. A projective space in either of the categories P or T is extremally
disconnected.

THEOREM 4. Let X be any extremally disconnected object from the category P.
Any perfect mapping f: A -> X of another object A onto X is a retraction.

PROOF. We have /: -> X onto. Then we can draw the following diagram

f

where F is the unique continuous extension of / onto ftA taking values in jiX.
Since/is a surjection, F is also onto. But (IX is extremally disconnected and F is
an onto map. Since fiX is projective in the category C (see Gleason [1]), F is a
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retraction, that is, there exists a mapping g: 0X -> fiA such that Fg = \pX — the
identity map on fiX. Since / is a perfect map, .F(/L4 — ~qA(A)) — fiX — T\X(X).

Therefore, g(j,x(X)) C VA(A). Put h = vA
lgVx- A"-» ^ . Now

/Tj^'gTjA-Cx). But .F(g7}A.(.x)) = TJ^(JC) and g(iix(x)) G ^(^4), that is,
= 1^(0) for some a G ^ . Therefore, rix(x) = F(r)A(a)) = r\xf(a). So, a =
TJ7'(17^(0)) = Tj^'gij^x) and x = / ( « ) and hence,/(a) = ff)A

xgi)x(x) = x. Con-
sequently fh(x) = x for each x £ l , that is, fh= \x. Naturally/is a retraction.

REMARKS. Let us first observe that Theorem 1 is true in the category T as well
and the proof is identical. In fact Theorem 4 is valid in any category which is a
subcategory of T and which contains C as a full subcategory. The role of perfect
maps is clearly brought out through the proof of Theorem 1. This is primarily the
reason behind our choice of perfect maps as morphisms in P and T.

THEOREM 5. Projective objects of P are the objects for which perfect maps onto
them are retractions.

PROOF. The result follows from Proposition 14.2 [3, page 70] as P has
pullbacks.

REMARK. Because of Theorem 2, the assertion of Theorem 5 holds true in the
category T also.

THEOREM 6. In the category P, the projective objects are precisely the extremally
disconnected paracompact spaces.

PROOF. Follows from Theorems 3, 4 and 5.

THEOREM 7 (Flachsmeyer [6]). In the category T, the projective objects are
precisely the extremally disconnected ones.

PROOF. Follows from Theorem 3 and remarks following Theorems 4 and 5.

THEOREM 8. The category P has projectives, that is any paracompact space is the
perfect image of a projective object. In fact, for every object X there is a projective
object P and an onto perfect mappingpx: P -» Xsuch that p, maps no proper closed
subspace of P onto X. For any other such object P' and p\: P' -» X there is an
isomorphism e: P -> P' such that p^ — p\e.
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PROOF. Let X be any object of P. Look at fiX, the Stone-Cech compactification
of X. There exists an extremally disconnected compact space Y and a continuous
onto map/: Y -» /JA'such that/(S) ¥= (SXtor any proper closed subspace S of Y.
(see Theorem 3.2 of [1]). Consider the pull-back diagram

for the morphisms -qx: X -> /3X and /: 7 ->• 0A; where P = {(x, y) G X X Y:
t\x{x) — f{y)} and px and /?2 are projections to X and y respectively. We do not
claim that this is a pullback in P. Clearly, f\xP\ = fPi- Since t)x is a monomor-
phism, /?2 i

s a monomorphism. Since / is onto, p, is onto. Again, P is a closed
subset of X X Y and the latter is paracompact. P is, hence, paracompact. p x is
also closed so that/?, becomes a perfect map. fp2 = VxP\ =* fPii?) — T)A-(^)- Let
H/ = />2(P). Since/is a closed map,/O2(P)) = /(*F) = /?X Observe that JFis a
closed subset of Y and /(W) = fiX. From the choice of Y it follows that W — Y,
that is, W = /?2( -P) is dense in y. y is extremally disconnected rendering W
extremally disconnected. Now it is not very difficult to see that p2 is a perfect map
onto W. Since P is paracompact and p2 is a perfect map onto W, W is a
paracompact. By Theorem 4, />2 is a retraction. Since p2 is a monomorphism and a
retraction also, it is an isomorphism, that is, p2 is a homeomorphism of P and Jf.
Thus P is an extremely disconnected paracompact space. So P is projective due to
Theorem 6. Since p{ is a perfect map of P onto X, X is a perfect image of a
projection object. Let Q be a proper closed subset of P. Then p2(Q) is a proper
closed subset of p2(P) = W. Write p2(Q) — W{ )F where F is a closed subset of
y. Sincep2(Q) is a proper closed subset of W, Fis a proper closed subset of K If

= A'then

=/PI(Q) =f{W()F) Cf(F).

Since/is a closed map of X onto {IX, f(F) is closed and hence equals [IX. This is
a contradiction. Consequently P enjoys the property that no proper closed
subspace of P is mapped onto Xbyp,.

If possible let P' be a projective paracompact space with a perfect map p\:
P' -* X such that p\(P') = X and if Q is any proper closed subspace of P' then
P\(Q) ^ X- Then there exist a morphism e: P -> P' and a morphism e': P' -> P
such that /?, =p',e and />', =p t e ' . Then p,(^) = ^r = /'i(^') ^P'i^(-P) = X =
p^e'(P'). Naturally, e and e' are onto; we shall show that e'e = \P, that is, e is a
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coretraction. If e'e ¥= \P, by Lemma 1 of Rainwater [5], there exists a proper
closed subset S of P such that

d~\S) U S = P whered = e'e.

Obviously, d(d~\S)) C S whence p}d(d~'(S)) Cp^S). But pld = p]e'e = p\e
= Pl, hence P](S) O Pld(d'\S)) = Pl(d-\Sy, so that P](S) = Px{P) = X, a
contradiction as S is a proper closed subset of P. We thus conclude that e is a
coretraction. Already e is a retraction; hence e is an isomorphism, that is, e is a
homeomorphism of P onto /".

REMARKS. In the proof of Theorem 8 the use of Theorem 6 in order to
demonstrate that P is projective can be avoided as follows. Let Q and R be
objects of P such that there exist an onto morphism g: Q -» R and a morphism
h: P -> R. Let G: £(? -> 0R, H: 0P -* 0R be the respective Stone-Cech exten-
sions. As P is extremally disconnected [iP is extremally disconnected. /3P is hence
a projective object in C (see Gleason [1]) and G is onto. Naturally there exists a
cont. map K: fiP -> /3Q such that H = GAT. Since g and /i are perfect maps.
G(PQ - VQ(Q)) = PR ~ r)R(R) and H(/3P - Vp(P)) C/3R - VR(R). Hence
î (y8P - TjP(/

>)) CPQ-T)Q(Q) and K(r,P(P)) C T}e(g). Naturally we can define
a cont. map k: P -> Q such that K ° -qP = T)Q° k. This map A: is a perfect map
such that h = g&. As a result P is projective.

Theorem 8 provides a specific projective resolution for each object of P.
Incidentally, an alternative proof of Theorem 6 can now be obtained through

Theorems 3, 4, 8 and Proposition 14.2 of [3, page 70]. Theorem 8 is valid also for
the category T.

4. Some other categories

According to the terminology of Henriksen and Isbell, we say that a class K of
Tychonoff spaces is perfect if for every two Tychonoff spaces X and Y for which
there exists a perfect mapping /: X -> Y onto Y, the conditions I 6 K and Y G K
are equivalent.

It is known that the classes of compact spaces, locally compact spaces, regular
Lindelof spaces, countably compact Tychonoff spaces, countably paracompact
Tychonoff spaces and spaces complete in the sense of Cech are perfect (see
Engelking [4])'.

We can also consider the following full subcategories of T in addition to C, P
and T:

(i) the category of locally compact spaces and perfect maps;
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(ii) the category of regular Lindelof spaces and perfect maps;
(iii) the category of countably compact Tychonoff spaces and perfect maps;
(iv) the category of countably paracompact Tychnoff spaces and perfect maps;
(v) the category of spaces complete in the sense of Cech.
In each of the above categories the statements corresponding to Theorems 1, 4,

5, 7 and 8 are true. The proofs are omitted. Gleason [1] obtained these results for
the category of locally compact spaces and perfect maps.
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