
5
Pairing vibrations

When the strength G of the pairing interaction is greater than a critical value
Gc, the gap equation has a non-zero solution for the gap parameter � and the
BCS ground state of a system of nucleons is stable. Single nucleon levels are
partially occupied in an energy range � around the Fermi energy λ. The BCS
state is not an eigenstate of nucleon number and violates gauge invariance. Pairing
vibrations, which are fluctuations about the BCS state, were studied in Chapter
4 and it was shown that gauge invariance was restored within the framework of
the random phase approximation (RPA). In this chapter we study the question
of pairing vibrations within a more general context, considering also pairing
vibrations in normal nuclei which have pairing strengths G < Gc and� = 0. To
a first approximation single-particle levels are occupied with unit probability up
to the Fermi energy and with zero probability for states above the Fermi level.
Pairing vibrations modify this simple picture and are associated with fields which
change the number of particles by 2. They produce correlations which enhance
or modify pair transfer amplitudes. Parts of this chapter is based on Broglia and
Riedel (1967a,b) and Broglia et al. (1973) (see also Anderson (1958), Högaasen-
Feldman (1961), Bes and Broglia (1966), Bohr and Mottelson (1975), Ring and
Schuck (1980), Wölfle (1972, 1978), Schmidt (1972)).

5.1 The two-level model

The simplest model which displays fluctuations of the pairing gap contains two j-
shells which may have the same or different degeneracy, and which are separated
by a distance D. Pairs of particles are scattered in these orbitals by a pairing force
with constant matrix elements. A solution of the two-level model was given by
Högaasen-Feldman (1961). More generally the exact eigenstates for a pairing
force with constant matrix elements distributed in an arbitrary number of levels
was found by Richardson and Sherman (1964) (see Section 2.8).
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The two-level model Hamiltonian can be written as

H = D

2
(N j2 − N j1 )−

1

4
G(P†

j1
+ P†

j2
)(Pj1 + Pj2 ), (5.1)

where

P†
j1
=

∑
m>0

(−1) j+ma†
jma†

j−m = −
√
�[a†

j a
†
j ]

0
0 ,

N j =
∑

m

a†
jma jm, � = 2 j + 1

2
, ( j = j1, j2). (5.2)

The two-level model does not have an analytical solution, although it allows for
a rather simple numerical solution in the orthonormal basis

|m, n − m〉 = M−1
m (P†

j1
)m(P†

j2
)n−m |0〉, (5.3)

n being the total number of pairs of particles in the system. The matrix element
of the Hamiltonian (5.1) in this basis is

〈m ′, n − m ′|H |m, n − m〉 = δ(m,m ′)
× [(n − 2m)D − G(m(�1 + 1− m)+ (n − m)(�2 + 1− n + m))]1/2

− δ(m ′, (m − 1))G[m(�1 + 1− m)(n − m + 1)(�2 − n + m)]1/2

− δ(m ′, (m + 1))G[(m + 1)(�1 − m)(n − m)(�2 + 1− n + m)]1/2. (5.4)

To obtain the solution of the model one has thus to diagonalize a codiagonal
matrix.

As discussed in Chapters 2 and 3, two-particle transfer processes are the spe-
cific tools to study the pairing degrees of freedom, in particular pairing vibrations.
The model operator which induces such processes is defined as

T = P†
1 + P†

2 . (5.5)

In the basis (5.3) the T operator has the following matrix elements

〈m ′, n + 1− m ′|T |m, n − m〉
= δ(m ′,m)[(n − m + 1)(�2 − n + m)]1/2

+ δ(m ′, (m + 1))[(m + 1)(�1 − m)]1/2. (5.6)

The two-particle transfer cross-section can be shown to be proportional to the
square of the matrix element (5.6) (see e.g. Broglia et al. (1973)).

From the commutation relation [Ni , P†
j ] = 2δ(i, j)P†

j one can calculate the
occupation number of the two orbits

〈α|N1|α〉 = 2
∑

m

m|cn,m |2,

〈α|N2|α〉 = 2
∑

m

(n − m)|cn,m |2, (5.7)
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94 Pairing vibrations

where the eigenfunction of the total Hamiltonian is

|α〉 =
∑

m

cn,m |m, n − m〉. (5.8)

For �1 = �2 = � there are two dimensionless parameters in the model. The
first is chosen to be � (see equation (5.2)) and it gives a measure of the phase
space which the particles have at their disposal to correlate. The second is

x = 2G
�

D
(5.9)

and measures the interplay between the pairing strength and the shell effects.
In Fig. 5.1 we display the energies, cross-sections and occupation amplitudes

associated with a system �1 = �2 = � = 20 and x = 0.5 and x = 2.0 as a
function of the number of pairs n (18 ≤ n ≤ 22). When n = �, the lower level
is full and the upper level is empty in the limit x → 0. In the case x = 0.5
the coupling is weak and there is only one characteristic energy, the spacing D
between the two single-particle levels.

Any level lies at approximately an integer number of times this energy with
respect to the ground state, forming a (harmonic) pairing vibrational band. The
two-nucleon transfer cross-section associated with transitions between ground
states is proportional to |n −�|, i.e. to the absolute value of the number of
pairs missing from or in excess of the closed shell. All the first-excited-state
stripping cross-sections for n −� < 0 are equal and their common value is
close to |〈gs(n = 20)|T | gs(n = 19)〉|2. On the other hand, none of the lowest
excited states with n −� ≥ 0 is populated in such reactions. This is also true for
the second and higher excited states for n −� ≤ 0. A similar pattern is observed
for two-nucleon pickup processes.

For the case of x = 2 the energy of the states follows a parabolic distribution
(pairing rotational band, see Chapter 4) as a function of the number of particles.
There are two characteristic energies, corresponding to interband and intraband
spacing. The situation is very similar to the one encountered in the case of a single
j-shell (see equation (4.57), also Appendix H). In this case, however, there is a
finite cross-section to the excited states, although an order of magnitude smaller
than between states lying in the same energy parabola. The situation for x = 1.2
is intermediate to the one observed for x = 0.5 and x = 2.

The probability amplitude |cn,m |2 associated with the ground state of the
closed-shell system (n −� = 0) is also given in Fig. 5.1 as a function of n − m.
Note that a major change takes place in going from x = 0.5 to x = 2.0, indi-
cating a change in the coupling scheme of the nucleons correlated through the
pairing interaction. Similar results to those displayed in Fig. 5.1 are obtained for
�1 �= �2 (see Broglia and Sørensen (1968)). One can, however, distinguish in
this case two typical energies and two basic two-particle transfer cross-sections,
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(a)

(b)

Figure 5.1. Schematic representation of the solution of the two-level model for�1 = �2 = 20
and for different values of x and n. In (a) the results for x = 0.5 are displayed. Because of
the particular degeneracy of the model, the energy of the ground state of the system with
n = �± 1 pairs of particles is the same when measured with respect to the closed-shell system
(see, however, Sections 5.2 and 8.4). All two-particle transition probabilities are measured in
terms of a = σ (gs(�1)→ gs(�1 + 1)) and of r = σ (gs(�1)→ gs(�1 − 1)). Because of the
particular symmetry of the model a = r . For each level of the spectrum, which is identified
by the quantum numbers (N , n), a schematic representation of the main component of the
wavefunction is shown. The corresponding square amplitudes |cn,m |2 (see equations (5.7) and
(5.8)) associated with the ground state and low excited states of the n = �1 system are also
shown. In (b) the energies and two-particle cross-sections for x = 2.0 associated with the
ground and the first excited states of the systems with n ≥ �1 are displayed. The quantities
|cn,m |2 corresponding to the ground state and two lowest excited states are also displayed.

one associated with the removal of a pair and the other with the addition of a
pair (see Figs. 5.5 and 8.17).

5.1.1 Collective treatment of pairing vibrations; normal systems (x < 1)

The different levels of the pairing spectrum obtained by diagonalizing the Hamil-
tonian defined in equation (5.1) for x < 1 and reported in Fig. 5.1 can be labelled
by the number of pairs n and by a number N indicating their energy sequence
in the spectrum. The lowest state corresponds to a closed-shell system and has
(N = 0, n = �). The two lowest excited states have the same energy E and are
labelled (N = 1, n = �+ 1) and (N = 1, n = �− 1) respectively. The next
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96 Pairing vibrations

excitation energy is 2E and corresponds to a triplet of states comprising the two
states (N = 2, n = �± 2) and (N = 2, n = �). This spectrum is characteris-
tic of a two-dimensional harmonic oscillator, where N indicates the number of
phonons, while �n plays the role of the angular momentum in two dimensions.
The values of the transfer cross-sections as well as the associated selection rules
further confirm the harmonic structure of the spectrum. One of the degrees of
freedom of the two-dimensional oscillator is associated with the change in the
number of pairs in the shell above the Fermi surface (pair addition mode) and
the other with the change in the number of pairs in the shell below the Fermi
surface (pair removal mode).

It is thus natural to rewrite the Hamiltonian (5.1) as

H = (Wa�
†
a�a +Wr�

†
r�r), (5.10)

where �†
a and �†

r are the creation operators of the pair addition and pair removal
modes, which are expressed in terms of the operators P†

j and Pj as

�†
a = a2 P†

2 + a1 P†
1 ,

�†
r = r1 P1 + r2 P2. (5.11)

Note that the definition introduced in equation (5.10) is equivalent (in the quasi-
beam approximation) to the relations [H, �†

a] = Wa�
†
a and [H, �†

r ] = Wr�
†
r (see

Appendix A, equation (A.68)).
Assuming the relation

[Pj , P†
j ′] = (�− N j )δ( j, j ′) ≈ �δ( j, j ′) (5.12)

to be valid for any state of the system under discussion, one obtains

a2 = r1 = − 2G
√
�

(1− x)1/4(2D −W )
(5.13)

and

a1 = r2 = 2G
√
�

(1− x)1/4(2D +W )
, (5.14)

where

W = Wa = Wr = 2D(1− x)1/2 (5.15)

is the common energy of the pairing modes of excitation. The intensity with
which the pair addition and pair removal modes are excited is

|〈na = 1, nr|T |na = 0, nr〉|2 = (a2 − a1)2�2

= |〈na, nr = 1|T |na, nr = 0〉|2 = (r2 − r1)2�2

= �(1− x)−1/2. (5.16)
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The above results reproduce the main features of the exact calculations for x < 1.
Acting with �†

a and �†
r on the vacuum state, one can build the whole pairing

spectrum. A general state is given by

|na, nr〉 = 1√
na!nr!

(�†
a)na (�†

r )nr |na = 0, nr = 0〉. (5.17)

The RPA solution is valid for small values of x . As x increases, W decreases
and the cross-sections associated with the two modes tend to∞. The transition
between the normal and the superfluid phase takes place for x = 1. Similar fea-
tures to the one discussed above are also observed in the phase transition between
spherical and quadrupole deformed nuclei. In this case the electromagnetic-
transition probability plays the role of the two-nucleon transfer cross-section.
The analogy between surface and pairing modes can be carried quite far as dis-
cussed in Broglia et al. (1973) (see also Belyaev (1972) and Schmidt (1972)).
The theory of pairing vibrations can also be cast in terms of the collective vari-
ables α, φ as done in the case of pairing rotations. In fact, in these variables it is
possible to formulate the problem of the pairing modes through a Hamiltonian
which treats rotations and vibrations on an equal footing (see Bes et al. (1970)).
For� ∼ 0, the energies associated with fluctuations in α and φ are comparable.

5.1.2 Collective treatment of pairing vibrations; superfluid systems (x > 1)

The main static effects of the pairing correlations for x > 1 can be taken
into account through the quasiparticle transformation, which implies a com-
plete hybridization of particles and holes, and thus an intrinsic system
connected with the laboratory system through a rotation in gauge space (see
Chapter 4 and Appendix I). As discussed in Chapter 3 and in Appendix G,
the pairing Hamiltonian approximately reduces to the independent quasiparticle
Hamiltonian

H11 =
∑

j

E j [α
†
jα j ]

0
0, (5.18)

where E j are quasiparticle energies and α†jm, α jm are quasiparticle creation and
annihilation operators respectively. The symbol [ ]0

0 implies that these operators
are coupled to angular momentum zero, and consequently also zero magnetic
quantum number. In the present section we review the different types of collective
modes generated by the residual interaction between the quasiparticles.

We consider the system n = �1 = �2, in which case λ = 0. The BCS occu-
pation parameters are in this case

U 2
2 = V 2

1 =
1

2

(
1− 1

x

)
(5.19)

https://doi.org/10.1017/9781009401920.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.006


98 Pairing vibrations

and

U 2
1 = V 2

2 =
1

2

(
1+ 1

x

)
, (5.20)

while the quasiparticle energy is

E = G�. (5.21)

The two-level system displays a pairing distortion (gap) of magnitude

� = G〈0|T |0〉 = G�(U1V1 +U2V2)

= G�

(
1− 1

x2

)1/2

, (5.22)

|0 > being the BCS ground state. Note that � is a collective deformation re-
ceiving contributions from all the pairs of particles, and thus is proportional to
�. The expression given in equation (5.22) should coincide with the single j-
shell expression given in equation (H.4) (for N = �, see also Section 3.7) in
the case D = 0. Note, however, that in this case the total degeneracy of the two
degenerate shells is 2�, thus leading to � = G�.

The fluctuations around this equilibrium distortion are induced by the residual
interaction among the quasiparticles H ′p and H ′′p (see equations (4.23) and (4.24))
leading to the secular equation (see Appendix J, equation (J.31))

W 2
n

[(
W 2

n − 4�2
)

A − B
] = 0, (5.23)

where

A =
(∑

i

�i

2Ei (4E2
i −W 2

n )

)2

, (5.24)

B =
(∑

i

�i fi

4E2
i −W 2

n

)2

(5.25)

and

fi = U 2
i − V 2

i . (5.26)

The forward-going and backward-going RPA amplitudes are

ani = �1n fi +�2n

2Ei −Wn

√
�i , (5.27)

bni = −�1n fi +�2n

2Ei +Wn

√
�i , (5.28)
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while

�2n

�1n
= −

∑
i

�i fi

4E2
i −W 2

n

Wn
∑

i
�i

2Ei (4E2
i −W 2

n )

(5.29)

and

�1n = 1

2

[
Wn

(∑
i

f 2
i 2Ei�i

(4E2
i −W 2

n )2

)
+

(∑
i

fi (4E2
i +W 2

n )�i

(4E2
i −W 2

n )2

)
�2n

�1n

+ Wn

(∑
i

2Ei�i

(4E2
i −�i )2

)(
�2n

�1n

)2
]−1/2

. (5.30)

The elements a11 and a22 in the 2× 2 determinant (see equation (J.27)) cor-
respond to the dispersion relations resulting from the linearization conditions
[H11 + H ′p, �

′†
n] = W ′

n�
′†
n and [H11 + H ′′p , �

′′†
n] = W ′′

n �
′′†

n , respectively, the
corresponding collective modes being the pairing vibrations and the Anderson–
Goldstone–Nambu (AGN) mode (see Chapter 4). Aside from the root at Wn = 0,
all roots of (5.23) fulfil the condition Wn ≥ 2�. In fact, because A and B are posi-
tive quantities, the dispersion relation cannot be zero for Wn < 2�. If Wn = 2�
is a possible root, then the coupling term between the AGN and the pairing
vibration, i.e. between the even and odd solutions of the pairing Hamiltonian,
must be zero. Thus∑

i

�i fi

4E2
i −W 2

n

∣∣∣∣∣
Wn=2�

=
∑

i

�i

4Ei (εi − λ)
= 0, (5.31)

which holds true if there is a symmetric distribution of levels around the Fermi
surface. This is the case in the model under discussion. Thus

W = 2� (5.32)

and

�2n/�1n = 0. (5.33)

Utilizing the fact that f1 = − f2 = −ε/G�, and equations (5.20), (5.21) and
(5.30), we obtain

�1n =
[

Wn

2

(∑
i

2Ei�i f 2
i

(4E2
i −W 2

n )2

)]−1/2

= ε
√

G

2�
. (5.34)

Thus

a1 = − ε2

2(G�−�)

√
1

2�G�
= −b1 . (5.35)

https://doi.org/10.1017/9781009401920.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.006


100 Pairing vibrations

From this result and the expression of the two-body transfer operator

T = √
� jU

2
j

(∑
n

ani�
†
n −

∑
n

bni�n

)
+ √

� j V
2
j

(∑
n

ani�n −
∑

n

bni�
†
n

)
+ � jU j Vj , (5.36)

we obtain

σgs = |〈gs(�)|T |gs(�− 1)〉|2 =
( ∑

j=1,2

� jU j Vj

)2

=
(

1− 1

x2

)
�2 (5.37)

and

σ1 = |〈n = 1(�)|T |gs(�− 1)〉|2 =
[∑

j

√
� j (U

2
j anj + V 2

j bnj )
]2

= �

2x2(1− 1/x2)1/2
, (5.38)

for intraband and cross-over two-particle cross-sections, respectively.
All pairs of particles participate in the transition between members of the

ground-state rotational band, and the cross-section is proportional to �2. This
transition is very large compared with the transition to the pairing vibration. The
corresponding ratio

σ1

σgs
= 1

2x2

(
1+ 3

2

1

x2

)
1

�
(5.39)

is about 10−2 for x = 2 and � ≈ 10, which can be considered typical numbers
for superfluid systems.

Thus, the pairing vibration, which can be viewed as a coherent transfer of
quasiparticles across the Fermi surface, gives rise to a pairing rotational band
weakly connected with the ground-state band (see Chapter 4, in particular
Fig. 4.2).

5.1.3 Pairing phase transitions

In the case of the quadrupole surface modes of excitation, changes of coupling
scheme from the spherical-phonon scheme to the deformed-rotational scheme
take place in different regions of the mass table. This change in coupling scheme
is usually referred to as a quadrupole phase transition (see, e.g. Bohr and Mottel-
son (1975)). The pairing order parameter can also be subjected to a ‘macroscopic’
change and the system undergoes a phase transition from the normal (pairing
vibrational) to the superconducting (pairing rotational) state. In both cases the
polarization effects of particles outside closed shells give rise to a static field
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5.1 The two-level model 101

Figure 5.2. Ratio |< n = 1(�)|T |gs(�− 1) > |2/|< gs(�)|T |gs(�− 1) > |2 calculated by
utilizing the exact functions of the two-level model (� = 20) as a function of x .

which violates, in one case, rotational invariance and, in the other, particle num-
ber conservation, leading to a privileged orientation in normal and in gauge
space. The associated fluctuations which restore rotational and gauge invariance
give rise to quadrupole (see Bohr and Mottelson (1975)) and to pairing rota-
tional bands (Bes and Broglia (1966), Chapter 4). The specific probes to study
quadrupole phase transitions are Coulomb excitation and inelastic scattering. In
a similar way, (t, p) and (p, t) reactions are the specific probes to study the change
in the pairing coupling elements.

The most conspicuous feature associated with a pairing phase transition is
the behaviour of the ratio σ1/σgs. Equation (5.16) shows that σ1/σgs ≈ 1 for the
normal phase while equation (5.39) shows that it tends to zero in the superfluid
phase. The exact variation of this ratio as a function of x for the two-level
model is displayed in Fig. 5.2. Both the RPA pairing vibration scheme for x < 1
(equation (5.16)) and the BCS for x > 1 (equation (5.38)) diverge at x = 1,
while the exact calculation predicts a smooth transition. The approximate results
are in good agreement with the exact ones for x � 0.5 and for x � 1.5.

The variation of the two-particle transition intensities have been studied as a
function of the number n of pairs in Broglia et al. (1968b). The cross-section
σgs from the ground state of the initial nucleus to the ground state of the final
nucleus has a rather smooth variation with n and increases as the strength x of
the pairing interaction increases. The cross-section σ1 associated with the pair
addition mode to the first excited state is strongly affected by the pairing phase
transition. For x > 1.4, the crossing of the closed shell at n = � is smooth while
for x < 1.2 there is a sudden drop in σ1 at n = �. This is because, in the normal
phase, the pairing vibration is a two-phonon state, whereas, in the superfluid
case, it is a one-phonon type of excitation, the closed shell being defined as the
state containing no phonons. In both cases, the two-body transfer operator can
change the number of phonons in one.
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102 Pairing vibrations

There is a pairing phase transition in high spin states of deformed nuclei
which is induced by the nuclear rotation. The Coriolis field plays the role of an
external magnetic field in a superconductor. This phenomenon will be discussed
in Chapter 6 of this book.

5.2 Applications

In what follows we apply the concepts developed above to the case of pairing
vibration in closed- and in open-shell nuclei.

5.2.1 Normal systems (Pb isotopes)

The nucleus 208Pb provides the best example of a closed-shell nucleus.
There is a neat separation between particles and holes. In fact D ≈ 3 MeV
and 2G� ≈ 0.2× 5 ≈ 1.0 MeV (G ≈ 21.5/A MeV, j1 = p1/2, j2 = g9/2, see
Table 5.1), which results in x ≈ 0.3.

Systematic (t, p) and (p, t) experiments carried out in this region show a well-
developed monopole pairing vibrational band (see Fig. 5.5) which encompasses
states with up to three phonons of the same type (gs(202Pb)) or of different type

Table 5.1. Forward-going and backward-going am-
plitude (5.51) describing the motion of two particles
(210Pb) and two holes (206Pb) around 208Pb. A coupling
constant G = 21.4/A MeV was utilized to reproduce
the extra binding energy (5.46) of 210Pb, while the cor-
responding quantity (5.45) for 206Pb was reproduced
for G = 21.7/A MeV (see also Fig. 8.17).

Single-particle states 206Pb 210Pb

0 h9/2 r1(γ ) 0.11 a1(γ ) 0.09
1 f7/2 0.14 0.10
0 i13/2 0.27 0.16
2 p3/2 0.24 0.10
1 f5/2 0.41 0.14
2 p1/2 0.84 −0.10
1 g9/2 r1(ω) 0.13 a1(ω) 0.82
0 h11/2 0.11 0.44
0 j15/2 0.11 0.35
2 d5/2 0.06 0.20
3 s1/2 0.03 0.09
1 g7/2 0.06 0.17
2 d3/2 0.04 0.11
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(excited state in 206Pb). The identification of 0+ states excited in either (t, p) or
(p, t) reactions is rather simple due to the well-developed diffraction pattern of the
associated angular distribution (see Broglia et al. (1973)). Two quantum numbers
are needed to classify the different states of this two-dimensional harmonic
oscillator. We utilize (nr, na) which indicate the number of pair removal and pair
addition modes in each state.

The energy of the (1, 1) state in 208Pb predicted by the pairing vibrational
model is

W (1, 1) = (B(208)− B(206))− (B(210)− B(208))

= (14.110− 9.123) MeV = 4.987 MeV, (5.40)

where B(A) is the binding energy of the Pb isotope with mass A.
For pedagogical purposes we require the pair addition and pair subtraction

modes to have the same energy. Thus

W = W (0, 1) = W (1, 0) = 2.494 MeV. (5.41)

The excitation energy of any state of the model can be then written as

W (nr, na) = (na + nr)2.494 MeV. (5.42)

The experimental magnitude to be compared is

E(N ) = (B(208Pb)− B(N ))+ 5.808(N − 126) MeV. (5.43)

The linear term ensures E(124) = E(128), which corresponds to the condition
(5.41). The different transitions associated with these states are given in terms
of the basic cross-section

a = σ (gs(208Pb→ gs(210Pb))) and r = σ (gs(208Pb→ gs(206Pb))).

(5.44)

The experimental data associated with (t, p)–(p, t)-reactions on the Pb isotopes
around 208Pb are displayed, in term of these elements, in Fig. 5.5.

A microscopic description of the pair addition and pair subtraction modes
is obtained by diagonalizing the pairing Hamiltonian in the RPA. The particles
and holes are allowed to move in the six levels below and the seven levels
above the Fermi surface which are experimentally known (see Table 5.1). The
discussion here follows Broglia and Riedel (1967a) and Broglia (1985c). The
strength of the coupling constant is determined by fitting the extra binding energy
E(124) = E(128), which corresponds to the condition (5.41).

The pairing energies of the two holes and two particles are

�(206) = 2[B(208)− B(207)]− [B(208)− B(206)]

= 14.750 MeV− 14.110 MeV = 640 keV (5.45)
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and

�(210) = 2[B(210)− B(208)]− [B(209)− B(208)]

= 9123 MeV− 7886 MeV = 1237 keV. (5.46)

The pair addition and pair removal creation operators can be written as

�†
n(β = 2) =

∑
ω

an(ω)�†(ω)+
∑
γ

an(γ )�(γ ) (5.47)

and

�†
n(β = −2) =

∑
γ

rn(γ )�†(γ )+
∑
ω

rn(ω)�(ω), (5.48)

where

�†(ω) = a†(ω)a†(ω̄),

�†(γ ) = a(γ̄ )a(γ ), (5.49)

and n labels the states according to their energy. The indices ω and γ are the
shell model quantum numbers of single-particle orbits above and below the Fermi
surface, while β = 2 refers to pair addition and β = −2 to pair removal modes,
β being the transfer quantum number. The RPA equations are the same as those
given in equations (5.10)–(5.14) but now for a general distribution of single-
particle levels. The energy Wn obtained by linearizing the pairing Hamiltonian
is the nth root of the dispersion relation

1

G(±2)
=

∑
ω

1

2ε(ω)∓Wn(β = ±2)
+

∑
γ

1

2ε(γ )±Wn(β = ±2)
. (5.50)

The coefficients an and rn are equal to (see Table 5.1, as well as Fig. 8.17)

an(ω) = �n(β = 2)

2ε(ω)−Wn(β = 2)
, an(γ ) = − �n(β = 2)

2ε(γ )−Wn(β = 2)
,

rn(ω) = − �n(β = −2)

2ε(ω)−Wn(β = −2)
, rn(γ ) = �n(β = −2)

2ε(γ )−Wn(β = −2)
, (5.51)

where

< 0|�(β = ±2)Hpa†( j)a†( j̄)|0 >= �n(β = ±2)

=
[
±

∑
ω

[2ε(ω)∓Wn(β = ±2)]−2

∓
∑
γ

[2ε(γ )∓Wn(β = ±2)]−2

]−1/2

, (5.52)
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Figure 5.3. Graphical representation of the forward-going and backward-going amplitudes
(5.51) of the pairing modes. The vertex strength is equal to�n(β = ±2) (see equation (5.52)).
The pairing boson is represented by a double arrowed line, while a single arrowed line
represents a fermion.

is the normalization constant of the phonon wavefunction as well as the strength
with which a pair of particles in time-reversed states couples to the pairing mode.

Note that the amplitudes (5.51) are obtained by dividing the normalization
constants �n(β = 2) and �n(β = −2) by the corresponding energy denomina-
tors (see Fig. 5.3). This is a common feature of separable forces. The central role
played by �n(β) in the study of the interplay between the different modes of
excitation will become apparent in the following sections. The cross-section as-
sociated with the transfer of two particles starting from the N0 − 2 ground-state
system and leading to the closed-shell (N0) ground state is

r ≡ σ (0s)((1, 0)→ (0, 0)) ∝ �2
1(β = −2). (5.53)

For the cross-section leading to the pair addition mode one obtains

a ≡ σ (0s)((0, 0)→ (0, 1)) ∝ �2
1(β = 2). (5.54)

The values of the pairing strengths obtained by fitting the energy of the 206 and
210 ground states are G(2) = 0.10 MeV and G(−2) = 0.14 MeV. The resulting
absolute cross-sections are reproduced within a factor of 2. Details of the calcu-
lations of the two-particle transfer cross-section are given in Broglia and Riedel
(1967a), Broglia et al. (1973) and Broglia (1985c). By utilizing the microscopic
results it is possible to give a measure of the collectivity of the pair addition and
pair removal modes by expressing the corresponding cross-sections in terms of
absolute two-particle units. Typical enhancements

ε = σexp/σ2p, (5.55)
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of order 12 are obtained, where σ2p is the average value of the two-particle cross-
section to pure two-particle states (see Broglia et al. (1971d)). This number can
be compared with the value of 10 Bsp which is typical of the B(E2) transition
rate connecting the lowest 2+ with the ground state of spherical nuclei.

Note that the contributions of all the different two-particle and two-hole com-
ponents of the microscopic wavefunction to the corresponding transfer am-
plitudes associated with the excitation of the n = 1 mode are constructively
coherent.

5.2.2 Superfluid systems (Sn isotopes)

The Sn isotopes are probably the best example of superfluid spherical nuclei,
with a large number of particles outside the closed shell and a large value of the
pairing parameter� (≈ 1.4 MeV). (t, p) and (p, t) data is shown in Fig. 5.4 (see
also Fig. 4.2). The ground-state transition dominates the spectrum, the interband-
to-intraband ratio never becoming larger than 0.18. The behaviour of the (t, p) and
(p, t) intensities is rather asymmetric, indicating a competition between pairing
and shell effects, as shown below. We discuss first the reaction 118Sn(t, p)120Sn.

Figure 5.4. Experimental (Bjerregaard et al. (1968, 1969), Flynn et al. (1970) Fleming et al.
(1970)) (solid line and open circles) and theoretical (dashed line and crosses) cross-sections
corresponding to the Jπ = 0+ states below 3 MeV excited in the reactions (a) A+2Sn(p, t)
and (b) A−2Sn(t, p). When more than one excited state was observed, the numbers reported
are the centroid energy and the summed cross-section. The normalization between theory and
experiment was done in both cases to the 118Sn(p, t)→120Sn(p, t) reactions.

https://doi.org/10.1017/9781009401920.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.006


5.2 Applications 107

Table 5.2. Wavefunctions (see equations (5.27) and (5.28))) and energies as-
sociated with the lowest Jπ = 0+ states of 118Sn. The valence particles were
allowed to move in the five single-particle states displayed. The corresponding
BCS occupation parameter U is also given for each single-particle state.

2d5/2 1g7/2 3s1/2 2h11/2 2d3/2

U 0.2449 0.3489 0.4438 0.7861 0.8494

0+1 a −0.0143 −0.0278 −0.0212 0.4340 0.9003
W = 2.61 MeV b 0.0122 0.0155 0.0075 −0.0034 −0.0005

0+2 a −0.1903 −0.4773 −0.7384 −0.4128 0.1638
W = 2.73 MeV b 0.0163 0.0160 0.0039 0.0629 −0.0450

0+3 a −0.1768 −0.7429 0.6243 −0.1605 0.0666
W = 3.24 MeV b 0.0050 0.0029 −0.0013 0.0458 −0.0313

The Hamiltonian H = H11 + H ′p + H ′′p (see Section 4.2.1 and Appendix J) was
diagonalized in the RPA. A coupling constant G = 23/A MeV was utilized,
determined by fitting the 118Sn pairing gap (�n = 1.39 MeV). This procedure
yields the occupation parameters, energies and wavefunctions given in Table 5.2
(see also Broglia et al. (1968a)).

Making use of these wavefunctions the following enhancement factors (see
equation (5.55)) were obtained,

ε = 220 (gs), ε = 4 (0+1 ), ε = 4 (0+2 ) . (5.56)

The square root of the value associated with the ground state gives a measure
of the number of twofold degenerate levels contributing to the static pairing
distortion �. This number is ≈ 15 (see (3.68)). Thus, all the levels considered
in solving the BCS equation contribute to the ground-state transition (in fact∑

j ( j + 1/2) = 18). The enhancement factor ε(gs)= 220 associated with an in-
terband transition should be compared with the enhancement factors obtained for
the E2 decay of the 2+member of the ground-state rotational band in quadrupole
deformed nuclei. Typical numbers are 200 Bsp implying that about

√
200 ≈ 14

twofold degenerate levels contribute to the quadrupole static deformation Q0.
The systematic comparison between the intensities predicted by the pairing

vibrational model and the experimental data is carried out in Fig. 5.4. A rather
considerable change of the order parameter �/<δε> takes place through Sn
isotopes. The quantity <δε> is the average distance between the levels around
the Fermi surface. Thus �/<δε> plays a similar role to that played by x in
the case of the two-level model (see Section 5.1, equation (5.9)). It may be
approximated by the number n�(A) of double degenerate single-particle levels
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in the interval �(A) around λ(A). We obtain (see also equation (3.68))

n�(112Sn) = 8, n�(116Sn) = 3 (5.57)

and

n�(120Sn) = 8. (5.58)

These changes in�/<δε> give rise to a partial distinction between particles
and holes and, consequently, to two collective transitions similar to the case of
normal systems, in particular for the case of 114Sn.

5.3 Multipole pairing vibrations

In the previous sections we have concentrated our attention in the monopole
pairing modes. Thus, we have restricted the distortions and vibrations of the
Fermi surface to be isotropic. The condensation in p-wave observed in the case
of 3He gives an example, at the macroscopic scale, of non-isotropic distortions
of the Fermi surface, produced by a pairing interaction acting in an l = 1 state of
relative motion (see Chapter 1). In fact, the three superfluid phases correspond-
ing to ↑↑,↓↓ and ↑↓ (m = ±1, 0) have been observed (see e.g. Vollhardt and
Wölfle (1990)). Experimental evidence indicates that high-Tc superconductors
(cuprates) display a mixture of s- and d-pairing (see, e.g. Tinkham (1996) Sec-
tion 9.6). In nuclei the only component of the short-range part of the residual
interaction which gives rise to a condensate is the monopole pairing force. It is,
however, expected that multipole vibrations, which change the number of parti-
cles by two, can play an important role in the dynamics of the nuclear spectrum
(see also Section 8.4).

5.3.1 Normal systems (Pb isotopes)

There is specific evidence for the existence of multipole pairing vibrations pro-
vided by the strong L = 2, 4 and 6 cross-sections associated with (t, p) and
(p, t) transitions in the Pb isotopes (Bjerregaard et al. (1966b), Igo et al. (1971),
Landford and McGrory (1973)). A microscopic description of these modes can
be obtained as in the case of the monopole pairing vibration, in the framework
of the random-phase approximation, allowing the particles to correlate through
the schematic interaction (Bes and Broglia (1971))

H (2λ) = − πGλ

2λ+ 1

∑
μ

P†
λμPλμ, (5.59)

where

P†
λμ =

∑
j1 j2

< j1||Yλ|| j2 > [a†
j1

a†
j2

]λμ . (5.60)
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Figure 5.5. The many-phonon pairing spectrum around 208Pb. The energies predicted by the
pairing vibrational model are displayed as dashed horizontal lines. The harmonic quantum
numbers (nr, na) are indicated for each level. A schematic representation of the many-particle
many-hole structure of the state is also given. The transitions predicted by the model are
indicated in units of r and a (see equation (5.44)). The corresponding experimental numbers
are also given together with their errors, above each level. The dashed line between the
states (0, 0) and (2, 1) indicates that the 208Pb(p, t)206Pb reaction to the three-phonon state
in 208Pb was carried out and an upper limit of 0.03r for the corresponding cross-section was
determined (see Flynn et al. (1972) Broglia et al. (1973), also Landford and McGrory (1973)).

The coupling constant Gλ can be determined through dispersion relations
similar to that shown in equation (5.50), by fitting the binding energy of the two-
particle and two-hole system, respectively. The resulting values corresponding
to the multipolarities λ = 0, 2, 4 and 6 and to both 206Pb (pair-removal modes)
and 210Pb (pair-addition modes) are very similar to each other and equal to (see
Broglia et al. (1974b))

Gλ ≈ 27/A MeV. (5.61)

Using the corresponding wavefunctions one obtains the (t, p) and (p, t) cross-
sections displayed in Table 5.3.

The quadrupole transition probability between the lowest 2+ and the ground
state of 210Pb is given in the present model by

B(E2; 0→ 2+) = (eeff)
2

[
2
∑
j1 j2

a( j1 j2; 2+)a( j2
1 ; gs)

< j2||r2Y2|| j1 >√
2 j1 + 1

]2

.

(5.62)
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Table 5.3. Ratio of experimental (Landford and McGrory
(1973), Bjerregaard et al. (1966a), Igo et al. (1971)) and the-
oretical (Broglia et al. (1974b)) cross-sections associated with
the reactions 208Pb(t, p)206Pb leading to the lowest states of each
spin and parity.

208Pb(p, t) 206Pb(Jπ ) 208Pb(t, p) 210Pb(Jπ )

Jπ E (MeV) [dσ (Jπ )/d�]exp

[dσ (Jπ )/d�]th
E (MeV) [dσ (Jπ )/d�]exp

[dσ (Jπ )/d�]th

0+ 0.000 0.94 0.000 1.47
2+ 0.803 0.75 0.795 0.78
4+ 1.684 0.88 1.094 1.21
6+ 3.253 0.49 1.193 0.77

Using the calculated amplitudes and the experimental data (B(E2)206 = 7Bsp =
0.5B(E2)210), one obtains for the effective charges (see Bohr and Mottelson
(1975) and references therein)

eeff(
206Pb) = 0.98, eeff(

210Pb) = 1.03. (5.63)

These values are consistent with the effective charges obtained from transitions
among single-particle states in 207Pb and 209Pb (see Bohr and Mottelson (1975)
and references therein). This result provides further support for the description
of the 2+1 of 210Pb as a pairing vibration of 208Pb.

The existence of a μ = 0 quadrupole pairing force of strength approximately
equal to (5.61) has been shown (Ragnarsson and Broglia (1976)) to play a basic
role in the 0+ spectrum of the actinide nuclei (see next section). As discussed in
Hamamoto (1977), the μ = 1 component of the quadrupole pairing force plays
an important role in determining the value of the moment of inertia of deformed
nuclei (see also Migdal (1959) and Belyaev (1961)).

5.3.2 Superfluid systems (heavy deformed nuclei)

In normal spherical nuclei the Hamiltonian (5.59) generates the α ± 2 modes,
but has no systematic effect on the particle–hole states, i.e. states with transfer
quantum number α = 0. The part of the nuclear interaction which generates
isoscalar surface vibrations can be written schematically as (see also Section 3.4)

H (0λ) = −κλ
2

∑
μ

Q†
λμQλμ, (5.64)
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where

Qλμ = − 1√
2λ+ 1

∑
a1a2

< a1||rλYλ||a2 > [a†
1a2]λμ. (5.65)

In superfluid nuclei, because the distinction between particles and holes is lost,
the two-quasiparticle states (λ, π = (−1)λ) are correlated by both the multi-
pole pairing and the particle–hole interaction. Note that while the correlations
generated by (5.59) specifically enhance two-nucleon transfer reactions, (5.65)
enhances inelastic scattering and Coulomb excitation processes (see Broglia et al.
(1971d), (1973)). Consequently, the presence of both particle–hole and multi-
pole pairing interaction lead to ground-state correlations (zero point fluctuations)
which, being opposite to each other (blocking effects), stabilize low-lying vibra-
tions displaying both enhanced B(Eλ) as well as (t, p) and (p, t) cross-sections.
The consequences of the interplay between multipole particle–hole and pairing
(particle–particle) correlations in the nuclear spectrum is still an open question
(see e.g. Volya et al. (2001, 2002), Zelevinsky and Volya (2004)).

Because of the conservation of angular momentum, the BCS pairing gap,
which can be related to the odd–even mass difference, is determined by the
monopole pairing interaction. This is also true, as discussed above, for the fluc-
tuations of the gap giving rise to two-quasiparticle 0+ pairing vibrational states.

For deformed nuclei this restriction is no longer valid. The pairing gap now
receives contributions from different pairing multipoles, i.e.

�i = �0 +
∑
λ>0

�λQ(λ)
i , (5.66)

where

Q(λ)
i = < i ||Yλ||i >, (5.67)

�0 = G0

∑
i

Ui Vi (5.68)

is the standard (monopole) pairing gap and

�λ =
√

π

2λ+ 1
Gλ

∑
i

< i ||Yλ||i > Ui Vi (5.69)

measures the multipole distortion (departure from anisotropy) of the Fermi sur-
face (see Broglia et al. (1969a)). The index i labels Nilsson single-particle levels.
Specialized to the case of λ = 2, the pairing matrix elements are equal to

〈i ĩ |(H (2, 0)+ H (2, 2))| j j̃〉 = −G0 − G2 Qi Q j , (5.70)

where we have used Qi = Q(2)
i . The violation of both angular momentum and

particle number conservation brings a new dimension to the role that multipole
pairing correlations play in nuclear structure (Bes et al. (1972)).
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In particular, the gap (5.66) can become very small for certain levels as well
as the matrix element (5.70). This phenomenon is analogous to the phenomenon
of gapless superconductivity in solid-state physics. There, an impurity traps a
magnetic field which is larger than the critical magnetic field Hc, thus giving
rise to some quasiparticles for which �i ≈ 0. In nuclei, it is the shell structure
which acts as impurity, displaying particular signs of the quadrupole moment
for particular values of the angular momentum (see Sections 6.2.1 and 6.2.2).

One can distinguish two different types of pairing matrix elements: (i) those
that are related with the scattering of particles between pairs of single particles
having the same sign of the quadrupole moment, i.e.

Goo = < ioīo|H (20)+ H (22)|i ′oī ′o >= −Go − G2 Qio Qi ′o, (5.71)

Gop = < ipīp|H (20)+ H (22)|i ′pī ′p >= −Go − G2 Qip Qi ′p, (5.72)

and (ii) those between pairs of orbitals with opposite sign of the quadrupole
moment, i.e.

Gpp =< ipīp|H (20)+ H (22)|i ′pī ′p >= −Go + G2|Qip Qi ′p |. (5.73)

The label o denotes oblate orbitals which have a negative sign of Q, while p
stands for prolate orbitals corresponding to a positive sign.

In general,

|Goo| ≈ |Gpp| � |Gop|. (5.74)

In this case we can distinguish, as in the case of closed-shell system, between
two groups of single-particle levels which are uncoupled from each other. In the
closed-shell system< i ī |H (20)|i ′ī ′ > has similar values for the scattering of any
pair of particles. However, if i > iF, i ′ < iF′ , the scattering amplitude G0/�ε

becomes very small,�ε being twice the single energy gap (for Pb,�ε ≈ 7 MeV
and G ≈ 0.1 MeV). There is thus a static decoupling between the single-particle
levels.

In the case of deformed nuclei, on the other hand, the single-particle levels are
closely spaced and �ε is of order of G (e.g. the average spacing of the single-
particle levels of 234U around the Fermi energy shown in Fig. 5.6 is 360 keV).
However, because of the inequality (5.74), the scattering amplitude between
oblate and prolate single-particle orbitals can become very small. In this case
there is a dynamical decoupling between the single-particle levels due to the
correlations among the particles.

Let us consider the effect of the monopole plus quadrupole pairing force acting
on a system of particles moving in the single-particle levels displayed in Fig.
5.6. Around the Fermi surface there is a predominance of prolate levels, while
≈ 0.7 MeV below the Fermi surface there is a group of oblate single-particle
levels.
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Figure 5.6. The occupation probability V 2
i for levels around the Fermi surface EF of 234U

for G2 = 0.08 MeV (dashed line). For each level the asymptotic quantum numbers are given
as well as the value of the single-particle quadrupole moment in fm2.

When the residual monopole and quadrupole pairing interactions are switched
on, one can construct essentially two ground states. The ground state of nucleus
A, based on the levels around the Fermi surface, and the ground state of the
A − 2 system (pair-removal mode), based on the states with negative value of
the quadrupole moment. Thus, this latter state has a similar relation to its ground
state as the N0 − 2 system has to the closed N0 system ground state. Note that
all the different terms which contribute to the two-nucleon transfer amplitude of
the excited state can produce constructive coherence and still be orthogonal to
the ground state, because the two states have components appreciably different
from zero on different single-particle orbitals and thus are orthogonal ab initio.

Although the deformed nucleus 234U is superfluid, the quadrupole pairing
correlations allow for the existence of real particles (Vi ≈ 1), almost uncoupled
from the superfluid ground state and moving rather close to the Fermi surface.
Because of the non-conservation of the number of particles, the states based on
the oblate orbitals become an excited state of the A-system, namely an isomeric
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pairing state with a rather differerent average value of the gap parameter than
the ground state.

The existence of a pairing isomer in a pairing deformed nucleus is evidenced
by the unusually large two-nucleon transfer cross-section to excited 0+ states, in
a similar way that a shape isomer in a quadrupole deformed nucleus displays a
very retarded electromagnetic-transition probability. Giving the same weight to
the different configurations, we get, for the ground-state (t, p) and (p, t) cross-
sections,

σ (gs→ gs) =
(∑

i

Ui Vi

)2

= (�/G)2. (5.75)

The corresponding cross-sections to an excited 0+ state are given by

σ (p,t)(gs→ 0+) ≈
(

2
∑

i

ai V
2

i

)2

(5.76)

and

σ (t,p)(gs→ 0+) ≈
(

2
∑

i

aiU
2
i

)2

, (5.77)

where ai denotes the two-quasiparticle component (forward-going amplitude)
of the single-particle state i .

In the actinide region a typical value for (5.75) is 100, while (5.76) and (5.77)
depend strongly on the amplitude ai . If the first excited state is below the small-
est two-quasiparticle energy 2Ei and is mainly generated by vibrations of the
monopole pairing gap, all the ai below the Fermi surface have one sign and all
those above the opposite sign. This sign change is necessary for the excited state
to be orthogonal to the ground state. If G2 = 0, the low-lying excited states will
mainly be built out of the states close to the Fermi surface (with Ui ≈ Vi ≈ 0.5),
which means that (5.77) and (5.78) will be about equal and of the order of unity
because of cancellations from states below and above the Fermi surface.

The pairing isomer (G2 ≈ 0.1), on the other hand, is mainly built out of the
oblate levels below the Fermi surface and is, from the start, orthogonal to the
ground state which has very small components on these single-particle levels.
For these oblate levels, V 2

i ≈ 1(εi < εF) and the different contributions to (5.77)
add with the same sign resulting in a large (p, t) cross-section.

In a schematic model where the 0+ state has equal amplitudes on configura-
tions built out of the five oblate orbitals, we find

σ (p,t)(gs→ 0+) ≈
(

2
5∑

i=1

√
1

5

)2

= 20, (5.78)
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Figure 5.7. Dependence of the different parameters associated with the monopole and
quadrupole pairing degree of freedom as a function of G2, and for the nucleus 234U. The
labels n = 1 and n = 2 indicate the first and the second 0+ excited state, respectively.

while the (t, p) cross-section is essentially zero (Ui ≈ 0)(εi < εF) . Moreover, as
the oblate single-particle levels have a small average value of�, the quasiparticle
energies Ei =

√
(εi − λ)2 +�2 will be relatively small implying that the pairing

isomer will be found at a low excitation energy.
In Fig. 5.7 we display the change of the different physical magnitudes

(W, σ (t, p), σ (p, t),�0 and�2) as a function of G2 for fixed values of G0 and
of K2. According to the discussion connected with the results displayed in
Table 5.3, one should choose G2 = G0. For this value of G2 we display in
Table 5.4 the results of the model discussed above for nuclei in the ac-
tinide region, in comparison with the experimental data (see also Casten et al.
(1972)).

Before concluding this section it is interesting to mention the results of a
recent 160Gd(p, t)158Gd experiment by Lesher et al. (2002), in which 13 ex-
cited 0+ states with energy below 3.2 MeV have been observed. Calculations
making use of both particle–hole and pairing multipole interactions seem to be
able to explain the presence of so many low-lying 0+ states (N. Lo Giudice,
A. V. Sushkov and N. Yu. Shirikova, Key Topics in Nuclear Structure, Paestum
23–27 May 2004, abstracts, p. 76). While none of these states is found to lead
to collective electromagnetic transition probabilities, some of them are found
to display collectivity in the pairing channel. Note that Zamfir et al. (2002)
are able to account for essentially all of the 0+ states observed within a basis
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Table 5.4. The experimental (Maher et al. (1970) excitation energies, relative
(p, t) cross-sections and X = ρ2e2 R4

0/B(E2; 2→ 0) values associated with the
low-lying 0+ states are compared with the theoretical calculations (Ragnarsson
and Broglia (1976)) for the actinide region.

Excitation energy

(keV)

σ (excited 0+)

σ (g.s. 0+) X

Nucleus Experimental Theoretical Experimental Theoretical Experimental Theoretical

228Th 830 18 (0.83)
930 13.4 0.33

230Th 636 18 0.22± 0.10
1590 3

1040 16.8 0.35
1270 4.4 0.39

232U 695 13 0.17± 0.04
930 8.5 0.37

234U 812 13 0.50± 0.08
1020 16.5 0.41
1250 2.0 0.46

236U 920 13
950 11.7 0.39

1220 2.1 0.35
1760 1.6 0.97

240Pu 862 15 0.05± 0.01
1091 10

1070 6.0 0.41
1260 1.5 0.40

1450 2.6
242Pu 956 24

1100 9.0 0.39
1210 13.7 0.24

1610 5.9
246Cm 1176 11

1180 4.8 0.42
1300 5.2 0.24
1610 11.1

which include s, d and f bosons. This result seem sensible in keeping with the
fact that if one adds a g boson to the basis, the calculations would be essen-
tially equivalent to those of Lo Giudice et al. mentioned above; see Broglia
(1981).
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