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The transient flow of a circular liquid jet impinging on a horizontal disk, and the hydraulic
jump formation, are examined theoretically and numerically. The interplay between inertia
and gravity is particularly emphasised. The flow is governed by the thin-film equations,
which are solved along with a force balance across the jump. The unsteadiness of the flow
is caused by a linearly accelerating jet from an initial to a final steady state. To validate
the predicted boundary-layer flow evolution, an analytical development is conducted for
small distance from impingement, and for small time. In addition, the predictions of the
film profile and jump location are compared against numerical simulation for the transient
flow, and are further validated against experiment for steady flow. The evolutions of the
film thickness and the wall shear stress in the developing boundary-layer region are found
to be similar to those reported for a fluid lying on a stretching surface. The flow responds
to the jet acceleration quasi-steadily near impingement but exhibits a long-term transient
behaviour near the jump. Analysis of the jump evolution is considered in the range
5 < Fr < 40 for the Froude number (based on the jet radius and velocity). For Fr < 10, the
jump reaches the final state instantly when the jet acceleration ceases. At higher Froude
number, the jump settles at a later time, exhibiting an overshoot in the thickness due to the
dominance of inertia.

Key words: shallow water flows, thin films

1. Introduction

When a circular liquid jet impinges on a solid surface, it spreads radially outwards as a
thin film, exerting a high shear stress on the surface, until it reaches a location at which
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the film thickness rises abruptly. This location is commonly referred to as the circular
hydraulic jump (Watson 1964). Physically speaking, the supercritical region upstream
of the jump is characterised by a higher rate of heat and mass transfer compared with
the downstream or subcritical region (White 2015). Consequently, the circular hydraulic
jump is a topic of pivotal importance in free-surface flows and in the design of relevant
practical applications. Circular liquid jet impingement flows are widely used in surface
cooling, quenching and cleaning applications (Guha, Barron & Balachandar 2011; Karwa
& Stephan 2013; Jagtap et al. 2017). A more efficient implementation of these types of
flows was sometimes reported under unsteady jet conditions (Xu et al. 2010; Tripathi et al.
2020).

Although a considerable body of work has been devoted to steady jet flow and
hydraulic jump structure, little attention has been paid to transient flow, particularly from a
theoretical perspective. The current study presents a theory to predict the evolution of the
developed circular hydraulic jump, and associated flow features, subject to an accelerated
flow from an initial to a final steady state. In particular, we examine the case of a linearly
accelerating jet. The jump radius corresponding to the final jet flow rate is larger than
the one corresponding to the initial jet flow rate. During the acceleration period, the
flow is unsteady, and the jump evolves. The evolutions of the jump radius and the film
thickness are not necessarily quasi-steady (the evolution cannot necessarily be considered
as a succession of steady states). Moreover, it is expected that, after the acceleration is
halted, the jump will slowly continue to expand in the radial direction for a short time, as a
result of its acquired inertia. This is what we refer to as the long-term transient behaviour
of the jump radius.

It is helpful to first summarise some of the work conducted for steady jet flow and a
hydraulic jump. An early theoretical investigation on the formation of hydraulic jumps as
shocks in channel flows (river bores) was carried out by Rayleigh (1914), assuming inviscid
flow. Although the influence of viscosity was considered by Tani (1949), its dominant
influence on the flow was considered much later by Watson (1964), who identified two
regions in the supercritical flow, namely a developing boundary-layer region and a fully
developed viscous region. These two regions are separated by a transition point at which
the boundary layer reaches the film thickness. Watson (1964) adopted a thin-film approach
in his theory and studied the radial jet spread over a horizontal stationary plate for
both laminar and turbulent flows under steady-state conditions. Watson’s theory showed
good agreement with experiment involving jumps of large radius and height but failed
in the limit of relatively weak jumps (Craik et al. 1981; Errico 1986; Liu & Lienhard
1993). Nevertheless, Watson’s thin-film approach was considered as a basis for subsequent
theoretical and experimental investigations.

Later, Bohr, Dimon & Putzkaradze (1993) averaged the axisymmetric Navier–Stokes
equations, including the hydrostatic pressure, over the fluid layer height to obtain the
shallow-water equations for the average radial velocity and fluid depth. They found that
the hydraulic jump radius scales as Q5/8ν−3/8g−1/8, where Q is the flow rate of the
jet, ν is the kinematic viscosity of the fluid and g is the acceleration due to gravity.
This scaling showed good agreement with Tani’s experimental data. A similar scaling
was found by Brechet & Neda (1999) based on their measurements. Following Watson
(1964), Bohr et al. (1993) considered the jump as a shock (sharp increase in the film
thickness). The boundary-layer approximation in and around the jump was considered
and solved numerically by Higuera (1994) to capture the (planar) jump structure. He also
carried out a matched asymptotic analysis of the flow near the edge to find the downstream
edge condition. Using the Kármán–Pohlhausen (KP) method and a varying cubic velocity
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profile, Bohr, Putkaradze & Watanabe (1997) and Watanabe, Putkaradze & Bohr (2003)
accommodated the separated flow and the internal eddy at the bottom of the circular
hydraulic jump region.

In an effort to ameliorate Watson’s theory, Bush & Aristoff (2003) included the radial
effect of surface tension, resulting from the circular curvature of the jump. The surface
tension correction was shown to be small for jumps of laboratory scale but appreciable
for a small jump. Several extensions of the classical circular hydraulic jump problem
were later implemented theoretically and numerically, including the jet impingement
on a rotating disk (Wang & Khayat 2018; Scheichl & Kluwick 2019; Ipatova, Smirnov
& Mogilevskiy 2021) and on a circular heated disk (Wang & Khayat 2020), and the
influence of slip (Prince, Maynes & Crockett 2012), gravity (Wang & Khayat 2019) and
surface tension (Bhagat et al. 2018). The latter study was, later, shown to be formally
flawed and misinterpreted results (Duchesne, Andersen & Bohr 2019; Bohr & Scheichl
2021; Duchesne & Limat 2022). The destabilisation of the circular to polygonal jump
was examined by Bush, Aristoff & Hosoi (2006), Martens, Watanabe & Bohr (2012)
and Teymourtash & Mokhlesi (2015). Numerous numerical simulation studies of the
free-surface flow and hydraulic jump were conducted, but were mostly limited to steady
flow (Passandideh-Fard, Teymourtash & Khavari 2011; Fernandez-Feria, Sanmiguel-Rojas
& Benilov 2019; Todkari & Kate 2019; Askarizadeh et al. 2020; Wang & Khayat 2021).

To our knowledge, unsteady flow has not been tackled yet from a theoretical perspective
for a circular hydraulic jump. However, some experiments and numerical simulations were
previously done to capture some of the transient aspects, but not necessarily the evolution
of the jump. Indeed, Bhagat et al. (2018) studied experimentally the case where the jump
initially forms, and the subcritical flow evolves with time but does not reach the edge
of the disk. They found that the jump remains essentially steady while the downstream
flow continues to spread. This aspect was also captured numerically by Askarizadeh et al.
(2019) and Wang & Khayat (2021). In contrast, the present study examines the evolution
of the developed jump as we accelerate the flow from one steady state to another, after the
film has already reached the disk edge.

Avedisian & Zhao (2000) studied experimentally the transient response of the circular
hydraulic jump upon rapidly lowering gravity to 2 % of the normal gravity level using a
drop tower. They found, from their top view and (digitised) side view photographs, that the
jump radius and width increase with time as the gravity level is dropped. In addition, they
found that the transient periods of the jump radius evolution and the drop in gravity are the
same. In other words, no long-term transient behaviour of the jump radius was observed
after the low-gravity environment was established. Similar findings were reported later
in the experiments of Phillips et al. (2008). Another time-dependent flow was observed
numerically (Yokoi & Xiao 1999) and experimentally (Craik et al. 1981; Bohr et al. 1996;
Ellegaard et al. 1996), upon a sudden increase in the controlled downstream depth of the
film. Depending on the type of fluid and the downstream film height, the circular jump
might either change in structure, typically from type I to type II, or completely disappear
(Bush et al. 2006; Askarizadeh et al. 2021). The reader is referred to figure 2 in Bush et al.
(2006) for the different types of jumps and their characteristics.

As to transient thin-film flows, in general, Wang (1990) and Usha & Sridharan (1995)
studied the fluid flow caused by an unsteady stretching surface for planar and for
axisymmetric flow, respectively. Accelerating and decelerating cases were considered.
They developed an exact similarity solution for a certain stretching profile and studied the
dependence of the film thickness on a non-dimensional unsteady parameter, involving the
stretching rate. This is one of the rare flow configurations where a similarity solution can
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be established for accelerated flows. Zhong, He & Longtin (2020) studied experimentally
the laminar flow of a thin film suddenly brought to fall under gravity inside a circular
vertical tube. They measured the film thickness evolution at different axial locations of the
inner wall of the tube after the liquid supply from a reservoir to the top of the continuous
film in the tube was suddenly stopped. They found that the film thickness slightly increases
at early time as the reservoir is emptying and providing fresh liquid to the film, then decays
with time as the film begins to drain by gravity. Lamiel et al. (2021) studied experimentally
the evolution of a circular thin film induced by the impingement of a spray generated by
a high-pressure injector on a horizontal plate, and found that the film continues to spread
radially for some time after the injection is halted, as a result of its acquired inertia. In the
present study, we seek conditions for similar long-transient behaviour to occur when the jet
ceases to accelerate. Long-term transients have also been examined for thin films under the
influence of flow inertia, gravity and substrate topography for Newtonian (Khayat & Welke
2001; Khayat, Kim & Delosquer 2004) and viscoelastic (Khayat & Kim 2006) fluids.
Long-term transients will be explored in this study under the effect of the jet acceleration
at different gravity levels.

The purpose of this paper is to study the effect of the jet acceleration on the flow
behaviour in the supercritical, subcritical and jump regions. The conditions for which the
jump radius and film thickness exhibit a long-term transient behaviour (changes with time
after the end of the acceleration period) are also discussed. In § 2, we describe the general
problem and physical domain. In § 3, we formulate the problem in terms of the general
governing equations, initial and boundary conditions in each region. The KP integral
approach is adopted to determine the evolution of the flow in the supercritical region, and
the lubrication theory is adopted to determine the evolution of the flow in the subcritical
region. The jump, treated as a sharp increase in the film thickness, is determined from
the radial force balance applied across it, connecting the supercritical and the subcritical
solutions. In § 4, we examine the flow response to a linearly accelerating jet, and we
compare our results against numerical simulation, based on the earlier work of Wang
& Khayat (2021). The fundamental assumptions are further validated by comparing our
predictions for steady flow against measurements of the film profile and jump location.
Finally, concluding remarks and discussion are given in § 5.

2. The general problem and physical domain

We consider the axisymmetric free-surface unsteady laminar incompressible flow of
a circular jet of a Newtonian liquid of density ρ, kinematic viscosity ν and surface
tension γ , emerging from a nozzle and impinging on a flat circular disk lying normal
to the jet direction. The flow configuration is depicted schematically in figure 1, where
dimensionless variables and parameters are used. We take a and V0 as the length
and velocity scales in all directions. The time and pressure scales are a/V0 and ρV2

0 ,
respectively. Here, a is the radius of the nozzle, and V0 is the jet mean velocity at the
initial steady state. In this study, the flow unsteadiness results from the dimensionless
time-dependent jet velocity, W(t).

The problem is formulated in the (r, θ, z) fixed coordinate system, with the origin
coinciding with the disk centre. The flow is assumed to be independent of θ , thus excluding
polygonal flow. In this case, u(r, z, t) and w(r, z, t) are the corresponding dimensionless
velocity components in the radial and vertical directions, respectively. The r-axis is taken
along the disk radius and the z-axis is taken parallel to the jet. Three main dimensionless
groups emerge in this case: the Reynolds number Re = V0a/ν, the Froude number Fr =
V0/

√
ag and the Weber number We = ρaV2

0/γ . Here, g is the acceleration due to gravity.
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hJ (t)
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1z
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r∞ r

Figure 1. Schematic illustration of the unsteady axisymmetric flow of a circular jet impinging on a flat
stationary disk and hydraulic jump formation. Shown are the developing boundary-layer region, the fully
developed viscous region and the subcritical region. All notations are dimensionless. In this case, the jet radius
is equal to one.

We adopt ranges of these parameters as typically encountered in the experimental literature
for laminar flow, namely O(100) for Re and We, and O(10) for Fr. In what follows, all the
equations are dimensionless.

Following the customary approach in the literature (Watson 1964; Bush & Aristoff
2003; Prince et al. 2012; Wang & Khayat 2018, 2019), we identify the supercritical region
upstream of the jump, consisting of the developing boundary-layer region and the fully
developed viscous region, and the subcritical region downstream of the jump. Throughout
this study, the stagnation or impingement region is not considered, and the boundary layer
is assumed to originate at the stagnation point. The velocity outside the boundary layer
rises rapidly from 0 at the stagnation point to the impingement velocity in the inviscid far
region. The impinging jet is predominantly inviscid close to the stagnation point, and
the boundary-layer thickness remains negligibly small. Obviously, this is the case for
a jet at relatively large Reynolds number. Indeed, the analysis by White (2006) shows
that the boundary-layer thickness is constant near the stagnation point, and estimated
to be O(Re−1/2). Ideally, the flow at the boundary-layer edge should correspond to the
(almost parabolic) potential flow near the stagnating jet, with the boundary-layer leading
edge coinciding with the stagnation point (Liu, Gabour & Lienhard 1993). However, the
assumption of uniform horizontal flow near the wall and outside the boundary layer is
reasonable. The distance from the stagnation point for the inviscid flow to reach uniform
horizontal velocity is small, of the order of the jet radius (Lienhard 2006). In the absence
of gravity, the steady flow acquires a similarity character. In this case, the position or effect
of the leading edge is irrelevant. This assumption was adopted initially by Watson (1964),
and is commonly used in the existing theories (see, for instance, Higuera 1994; Bush &
Aristoff 2003; Prince et al. 2012; Wang & Khayat 2018, 2019, 2020).

The boundary layer grows until it reaches the film surface at the transition location r =
r0(t). We denote by δ(r, t) the boundary-layer thickness. The leading edge of the boundary
layer is taken to coincide with the disk centre. Assuming the jet and stagnation flows to be
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inviscid and irrotational, the velocity magnitude outside the boundary layer remains equal
to W(t) at any instant of time, as the fluid here is unaffected by the viscous stresses. We
note that r0(t) is the location beyond which the viscous stresses become appreciable right
up to the free surface, where the whole flow is of the boundary-layer type. The potential
flow in the radial direction ceases to exist in the fully developed viscous region for r >

r0(t).
Finally, the hydraulic jump occurs at a location r = rJ(t), which is larger than r0(t)

since the jump typically occurs downstream of the transition point. Referring to figure 1,
we conveniently introduce the supercritical film thickness as h(r, t) = h(r < rJ, t) and
surface velocity as s(r, t) = u(r < rJ, z = h, t). The height immediately upstream of the
jump (upstream jump height) is denoted by hJ(t) = h(r = rJ, t). On the other hand, we
denote the subcritical film thickness and surface velocity by H(r, t) = h(r > rJ, t) and
S(r, t) = u(r > rJ, z = H, t), respectively. The height immediately downstream of the
jump (downstream jump height) is denoted by HJ(t) = H(r = rJ, t). The height at the
edge of the disk, H(r = r∞) = H∞, is assumed to be independent of time.

For transient axisymmetric thin-film flow, the mass and momentum conservation
equations are formulated using a thin-film or Prandtl boundary-layer approach, which
amounts to assuming that the flow variation is much stronger in the radial than in the
vertical direction (Schlichtling & Gersten 2000). By letting a subscript with respect to r,
z and t denote partial differentiation, the reduced dimensionless conservation equations
become

ur + u
r

+ wz = 0, (2.1a)

Re(ut + uur + wuz) = −Re pr + uzz, (2.1b)

pz(r, z, t) = −Fr−2. (2.1c)

Unless otherwise specified, the (local) acceleration term in (2.1b) is of the same order of
magnitude as the remaining convective terms.

The no-slip and no-penetration conditions are assumed to hold at the solid disk

u(r, z = 0, t) = w(r, z = 0, t) = 0. (2.2a,b)

At the free surface z = h(r, t), the kinematic condition must hold, and, for a thin film, the
shear stress vanishes, yielding (O’Brien & Schwartz 2002)

w(r, z = h, t) = ht + u(r, z = h, t)hr, uz(r, z = h, t) = 0. (2.3a,b)

Integrating the continuity equation (2.1a) across the film thickness, and using conditions
(2.2b) and (2.3a), we arrive at

rht + ∂

∂r

∫ h(r,t)

0
ru dz = 0. (2.4)

By integrating (2.4) over the intervals [0, r] and θ ∈ [0, 2π], and noting that the
dimensionless flow rate is simply πW(t), the conservation of mass equation at any location
upstream and downstream of the jump takes the following dimensionless form:

2
∫ r

0
rht(r, t) dr + 2r

∫ h(r,t)

0
u(r, z, t) dz = W(t). (2.5)

Equation (2.5) provides some insight as to the behaviour of the film thickness near
impingement. In fact, since h is well behaved for small r, the first integral on the left-hand
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side must vanish in the limit r = 0. Simultaneously, u(r, z, t) ∼ W(t). Consequently, we
are left with 2rhW ∼ W, indicating that h(r, t) ∼ 1/2r for small r, which is the same
behaviour as for a steady jet. We therefore deduce that, near impingement, the film
thickness is essentially independent of time. We shall see that this behaviour is the
leading-order solution when the flow is examined near impingement (see § 3.1).

Finally, a useful expression for the convective terms is obtained by first eliminating
the transverse velocity component by noting from (2.1a) and (2.2b) that w(r, z, t) =
−(1/r)(∂/∂r)(r

∫ z
0 u dz). In this case

uur + wuz = 1
r
(ru2)r − 1

r

(
u
∫ z

0
(ru)r dz

)
z
. (2.6)

The flow field is sought separately in the developing boundary-layer region for 0 < r <

r0(t), the fully developed viscous region for r0(t) < r < rJ(t) and the subcritical region
for rJ(t) < r < r∞. Additional boundary conditions are needed, which will be given when
the flow is analysed in each region.

Aside from some specific cases, the transient boundary-layer and thin-film flows are
generally non-self-similar in character (see e.g. Ma & Hui 1990; Burde 1995; Usha
& Sridharan 1995; Schlichtling & Gersten 2000; Drazin & Riley 2006; Sattar 2012).
Therefore, we seek an approximate solution in each flow region. An integral approach
of the KP type (Schlichtling & Gersten 2000) is adopted upstream of the jump in both
the developing boundary-layer and fully developed viscous regions where the thin-film
equations are parabolic. The classification of the equations as parabolic is the result of
neglecting the effect of gravity upstream of the jump (Scheichl, Bowles & Pasias 2018).
We also note that the KP method has been widely adopted in the literature for steady-state
jumps, not only when the thin-film equations are parabolic (Watson 1964; Bush & Aristoff
2003; Dressaire et al. 2010; Prince et al. 2012; Wang & Khayat 2018) but also when the
equations are weakly elliptic as well (Tani 1949; Bohr et al. 1993, 1997; Watanabe et al.
2003; Kasimov 2008; Fernandez-Feria et al. 2019; Wang & Khayat 2019; Dhar, Das &
Das 2020; Ipatova et al. 2021). The problem becomes weakly elliptic when the relatively
weak effect of gravity upstream of the jump is not neglected in the analysis. In this case,
the upstream influence, caused by the downstream condition, is small but not negligible.
It is well established from the literature for steady impinging jets and hydraulic jumps
(Bohr et al. 1997; Prince et al. 2012; Wang & Khayat 2018) that a cubic velocity profile
taken in the supercritical region leads to close agreement with Watson’s (1964) similarity
solution. Consequently, in this study, we also adopt a cubic profile for the velocity, which
is considered to be the leading-order solution in a comprehensive spectral approach when
inertia is included (Khayat & Kim 2006). Other profiles such as the parabolic profile were
also used in the literature (Bohr et al. 1993; Kasimov 2008).

3. General transient flow formulation

In this section, we present the general formulation of the transient flow in the developing
boundary-layer region, the fully developed viscous region, the subcritical region and
across the jump.

3.1. The transient developing boundary-layer formulation
The boundary layer grows with the radial distance, eventually invading the entire film
depth, reaching the jet free surface at the transition, r = r0(t), where the fully developed
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viscous region begins. For 0 < r < r0(t) and above the boundary-layer outer edge, at some
height z = h(r, t) > δ(r, t), lies at the free surface.

The flow in the developing boundary-layer region is assumed to be sufficiently inertial
for inviscid flow to prevail between the boundary-layer outer edge and the free surface
(see figure 1). In this case, the following conditions at the outer edge of the boundary layer
z = δ(r, t) and beyond must hold:

u(r < r0, δ ≤ z < h, t) = W(t), uz(r < r0, z = δ, t) = 0. (3.1a,b)

Although surface tension effect is negligible in the (r, z) plane, the pressure at the film
surface vanishes only downstream of the developing boundary-layer region (r ≥ r0(t)).
The jet velocity W(t) and the pressure p(r, t) in the inviscid region, between the boundary
layer and the free surface, are related through the (non-dimensionalised) radial momentum
equation by

Ẇ(t) = −pr(r, t) (0 < r < r0, δ < z < h), (3.2)

where an overdot denotes a total derivative with respect to time. Consequently, since the
pressure at the film surface must vanish in the fully developed viscous region, for r ≥ r0(t),
and recalling (2.1c), the pressure distribution in the boundary-layer and inviscid regions
takes the form

p(0 < r < r0, 0 < z < h, t) = (r0 − r)Ẇ + Fr−2(h0 − z), (3.3)

where h0(t) ≡ h(r = r0, t). The boundary-layer height δ(r, t) is determined by considering
the mass and momentum balance over the boundary-layer region. Recalling the pressure
from (3.3), the momentum equation (2.1b) becomes

Re(ut + uur + wuz) = Re Ẇ + uzz (0 < r < r0(t)). (3.4)

Consequently, upon integrating (3.4) across the boundary-layer thickness and considering
the integral form of the convective terms in (2.6), we obtain the following weak form:

∫ δ(r,t)

0
ut dz + 1

r

[
r
∫ δ(r,t)

0
u(u − W) dz

]
r

= δẆ − Re−1uz(r, z = 0, t). (3.5)

The height of the free surface in the developing boundary-layer region is then determined
from mass conservation inside and outside the boundary layer. Therefore, for r < r0(t),
(2.5) becomes

2
∫ r

0
rht dr + 2r

∫ δ(r,t)

0
u dz + 2rW(h − δ) = W(t). (3.6)

For simplicity, we choose a cubic profile for the velocity, satisfying conditions (2.2a) and
(3.1)

u(r < r0(t), z, t) = Wf (η) ≡ W
(

3
2η − 1

2η3
)

, (3.7)

where η = z/δ, and f (η) = 3
2η − 1

2η3.
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Transient spread of a circular liquid jet and hydraulic jump

Upon inserting (3.7) into (3.5) and (3.6), we obtain the following equations and
boundary conditions governing the boundary-layer and free-surface heights:

(W2r2δ2)t + 13
35 W(W2r2δ2)r = 8

Re W2r2, δ(r = 0, t) = 0, (3.8a,b)

2
∫ r

0
rht dr − 3

4 rδW + 2rWh = W, h(r → 0, t) ∼ 1
2r . (3.9a,b)

We recall that condition (3.9b) was already established from (2.5). In addition, initial
conditions are needed, which will be given once a specific problem is examined.

The Reynolds number in (3.8a) can be eliminated by introducing the following
transformation of variables:

r̄ = Re−1/3r, t̄ = Re−1/3t, h̄ = Re1/3h, δ̄ = Re1/3δ. (3.10a–d)

Introducing the change in variables

Z = W2r̄2δ̄2, Y = r̄h̄, (3.11a,b)

the problem (3.8) and (3.9) reduces to

Zt̄ + 13
35 WZr̄ = 8r̄2W2, Z(r̄ = 0, t̄) = 0, Z(r̄, t̄ = 0) = Z0(r̄), (3.12a–c)

Yt̄ + WYr̄ = 3

16
√

Z
Zr̄, Y(r̄ = 0, t̄) = 1

2
, Y(r̄, t̄ = 0) = Y0(r̄), (3.13a–c)

where the initial conditions Z0(r) and Y0(r) will be given once a specific problem is
examined. The quasi-steady state of the flow can be obtained by setting the time derivatives
in (3.12a) and (3.13a) to zero, yielding δ̄(r̄ < r̄0, t̄) = √

(280/39W)r̄ and h̄(r̄ < r̄0(t̄), t̄) =
1/2r̄ + 3

4
√

(70/39W)r̄1/2. We note that the problem (3.12) has an analytical solution
which is carried out in Appendix A. A couple of interesting observations about the
transformation are worth making. The original one-way coupling between δ and h is
preserved between Z and Y. While the original problem (3.8) is nonlinear, the transformed
problem (3.12) is linear. As we shall see, this is not the case for the flow in the fully
developed viscous region, where the problem is two-way coupled and nonlinear. This in
turn, reflects a fundamental difference in the transient behaviour between the two regions
(see next section).

Equations (3.12a) and (3.13a) are solved using a backward implicit finite-difference
discretisation in space of first-order accuracy, and integrating the resulting discretised
equations using the Runge–Kutta fourth–fifth-order method (ode45 solver in MATLAB
software). The absolute and relative tolerances were set to 10−12. Consequently, a
numerical solution for δ̄(r̄, t̄) and h̄(r̄, t̄) is obtained in the developing boundary-layer
region subject to the imposed time-dependent jet velocity profile W(t̄).

In an effort to validate our numerical approach and gain further insight into the nature
of the flow, we carry out an approximate solution of problem (3.12) and (3.13) based
on power series expansion for small r̄. We first note from (3.12) that Zr̄(r̄ = 0, t̄) = 0,
and, we also observe that, by differentiating (3.12a) with respect to r̄ and noting that
Zt̄r̄(r̄ = 0, t̄) = 0, we deduce that Zr̄r̄(r̄ = 0, t̄) = 0 as well. Consequently, we expand
Z as: Z(r̄, t̄) = ∑

k=3 Bk(t̄)r̄k for small r̄. Substituting in (3.12a) and comparing equal
power terms in r̄k, we obtain B3 = 280

39 W, and Bk≥4 = −35
13 (Ḃk−1/kW), where we recall

that an overdot denotes a total derivative with respect to t̄. Keeping two terms, the
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A. Baayoun, R.E. Khayat and Y. Wang

solution becomes Z = 280
39 Wr̄3 − 2450

507 (Ẇ/W)r̄4 + O(r̄5). Recalling (3.11a), we see that
the boundary-layer height becomes

δ̄(r̄ < r̄0, t̄) =
√

280
39W

r̄
(

1 − 35
104

Ẇ
W2 r̄

)
+ O(r̄5/2). (3.14)

Next, by integrating equation (3.13a) and using (3.13b), we have
∫ r̄

0 Yt̄ dr̄ + WY = W/2 +
3
8

√
Z. Noting that

√
Z can be expressed as

√
Z = ∑

k=1 Ck(t̄)r̄k+1/2, then Y takes the form
Y(r̄, t̄) = 1

2 +∑
k=1 Dk(t̄)r̄k+1/2. By substituting Y and

√
Z in the integral equation and

comparing terms of equal powers in r̄k, we obtain the coefficients Dk in terms of Ck.
Finally, recalling (3.11b), we find that the film height can be written as

h̄(r̄ < r̄0(t̄), t̄) = 1
2r̄

+ 3
4

√
70

39W
r̄1/2 − 213

2080

√
70

39W5 Ẇr̄3/2 + O(r̄5/2). (3.15)

From expressions (3.14) and (3.15), we see that the temporal evolution of δ̄ and h̄ is entirely
dictated by the transient jet velocity profile W(t̄), including the initial state. Therefore,
there is no need to impose Z0 and Y0 for small r̄; the initial state of δ̄ and h̄ depends
on the initial value of the jet velocity, W(t̄ = 0). The leading-order terms in (3.14) and
(3.15) represent the quasi-steady state (mentioned earlier) of δ̄ and h̄, respectively, while
the remaining terms reflect the deviation from that state. Consequently, the evolution of
the boundary-layer thickness and the film thickness, near impingement, is quasi-steady for
r̄ 
 (182/121)W2/Ẇ and r̄ 
 (520/71)W2/Ẇ, respectively.

As expected, expressions (3.14) and (3.15) suggest that an accelerating jet causes
thinning of the boundary layer and the film, whereas a decelerating jet causes them to
thicken. Although our focus in this study will be on an accelerating jet from one steady
state to another, it is helpful here to illustrate the nonlinear flow response for a sinusoidally
pulsating jet. The response up to the transition point of δ̄(r̄ < r̄0, t̄) and h̄(r̄ < r̄0(t̄), t̄) is
depicted in figure 2 for W(t̄) = 1 + 1

2 sin((π/5)t̄). The radial and time dependence of δ̄ and
h̄ is illustrated by three-dimensional surface plots in figure 2(a,c), where the locus of the
transition points is indicated by the black curve. The evolution of δ̄ and h̄ at different radial
positions is depicted in figure 2(b,d). We find that, even though the jet velocity profile is
sinusoidal (symmetric peak and valley), the flow response is asymmetric. As reflected in
figure 2(b,d), both δ̄ and h̄ exhibit a narrowing in the peak region and a widening in the
valley region.

3.2. The transient fully developed viscous formulation
As mentioned previously, the potential flow in the radial direction ceases to exist in the
fully developed viscous region, with the velocity at the free surface becoming dependent
on the radial distance

u(r0 < r < rJ, z = h, t) = s(r, t). (3.16)

In addition to the zero-shear-stress condition (2.3b), the pressure must also vanish at the
free surface. By integrating (2.1c), for r0 ≤ r ≤ rJ , with respect to z, subject to p(r0 ≤ r ≤
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Figure 2. Evolution of the boundary-layer thickness and film height for a pulsating jet of velocity W(t̄) =
1 + 1

2 sin((π/5)t̄). The evolution is plotted over two periods. A three-dimensional perspective is given in (a,c);
the black curve in the surface plots represents the locus of the transition points demarking the end of the
developing boundary-layer region at different times. The evolution of δ̄ and h̄ in (b,d) are plotted against time
at three different radial positions.

rJ, z = h, t) = 0, we obtain the expression of the hydrostatic pressure in this region as

p(r0 ≤ r ≤ rJ, z, t) = h(r0 ≤ r ≤ rJ, t) − z
Fr2 . (3.17)

We again assume a cubic velocity profile, but now subject to conditions (2.2a), (2.3b) and
(3.16). In this case, the radial velocity profile is given in terms of the surface velocity s(r, t)
as

u(r0 < r < rJ, z, t) = s(r, t)f (η) = s(r, t)
(

3
2η − 1

2η3
)

, (3.18)

where η = z/h(r, t). Here, we observe that f (η) is still given as in (3.7). Substituting (3.18)
into the mass conservation equation (2.5), we obtain the following equation for the film
thickness and surface velocity:

8
5

ht + shr + hsr + hs
r

= 0. (3.19)

Clearly, unlike the steady state, the surface velocity is not readily expressible in terms of
the film height; a second equation is needed, namely from momentum conservation. The
momentum equation in the fully developed viscous region is still given by (2.1b).
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Similar to (3.5), the integral form of the momentum equation reads

∫ h

0
ut dz + 1

r
∂

∂r

(
r
∫ h

0
u2 dz

)
+ sht = − 1

Fr2 hhr − 1
Re

uz(r, z = 0, t). (3.20)

However, upstream of the jump, the effect of gravity is weak, and the film depth and its
variation are small. Therefore, the term −(Re/Fr2)hhr becomes negligible. Substituting
(3.18) into (3.20), we obtain the second equation for the film thickness and surface velocity

5
8

hst + 5
8

sht + 17
35

s2hr + 17
35

s2h
r

+ 34
35

hssr + 3
2Re

s
h

= 0. (3.21)

Using the rescaling (3.10a–c), (3.19) and (3.21) can be recast as

8
5

ht̄ + sh̄r̄ + h̄sr̄ + h̄s
r̄

= 0, (3.22a)

5
8

h̄st̄ + 5
8

sh̄t̄ + 17
35

s2h̄r̄ + 17
35

s2h̄
r̄

+ 34
35

h̄ssr̄ + 3
2

s
h̄

= 0, (3.22b)

subject to the following boundary conditions:

h̄(r̄ = r̄0, t̄) = h̄0(t̄), s(r̄ = r̄0, t̄) = W(t̄). (3.22c,d)

Initial conditions are needed and are provided once a specific problem is examined.
Equations (3.22a) and (3.22b) are solved using a backward implicit finite-difference
discretisation in time of first-order accuracy, and integrating the resulting discretised
equations using the Runge–Kutta fourth–fifth-order method (ode45 solver in MATLAB
software). The absolute and relative tolerances were set to 10−12. We note that discretising
these equations in time instead of space is easier to implement numerically in this case
since the spatial domain in this region changes with time as the transition point evolves.
However, a spatial discretisation and time integration of the equations is still achievable
upon introducing a spatial coordinate mapping. We tried both approaches and obtained
full agreement.

3.3. The transient formulation across the jump
In this section, we consider the unsteady axisymmetric flow across the jump. As in the
case of steady axisymmetric flow, we expect the flow through the hydraulic jump to
incur a considerable loss of energy, which is usually difficult to determine. As such, the
energy equation is not suitable for the analysis of the transient hydraulic jump (Crowe
2009). Alternatively, we apply the usual momentum balance approach across the jump,
accounting for the surface tension effect due to the hoop stress (Bush & Aristoff 2003).
We consider a sharp jump assumption which is often adopted in the literature and yields
satisfactory predictions for the jump radius (Watson 1964; Bush & Aristoff 2003; Dressaire
et al. 2010; Prince et al. 2012; Wang & Khayat 2018). This assumption is also justified on
the basis that the length of the separation region around the upstream end of the jump is
short for large Fr (see for example the discussion by Bowles & Smith 1992; Higuera 1994,
1997; Scheichl et al. 2018).

By integrating equation (2.1c), for r ≥ rJ , with respect to z, subject to p(r ≥ rJ, z =
h, t) = 0, we obtain the expression of the hydrostatic pressure in the jump and subcritical
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Transient spread of a circular liquid jet and hydraulic jump

regions as

p(r ≥ rJ, z, t) = h(r ≥ rJ, t) − z
Fr2 . (3.23)

Consequently, similar to the case in the fully developed viscous region, the integral form
of the momentum equation in the jump region is also given by (3.20). However, the term
−(Re/Fr2)hhr is now not negligible since the film depth and its variation are greater
downstream of the jump and across it than upstream. Across the jump, (3.20) is applied
for a control volume of width 	r = r+

J −r−
J in the radial direction, yielding the following

discretised form:

Re 	r
∫ h

0
ut dz + Re 	

∫ h

0
u2 dz = − Re

2Fr2 	h2 − 	ruz(r, z = 0, t). (3.24)

Under the assumption of a sharp jump (	r → 0), and following Bush & Aristoff (2003),
we include the radial force due to surface tension associated with the circular curvature of
the jump. In this case, (3.24) becomes∫ hJ(t)

0
u2(r = r−

J , z, t) dz −
∫ HJ(t)

0
U2(r = r+

J , z, t) dz

= H2
J (t) − h2

J(t)
2Fr2 + 1

We
HJ(t) − hJ(t)

rJ(t)
, (3.25)

where U is the subcritical velocity profile. We note that hJ(t) ≡ h(r = r−
J , t) and HJ(t) ≡

h(r = r+
J , t). The first two terms in (3.25) represent the force due to flow inertia, the third

term represents the hydrostatic pressure force and the last term accounts for the radial force
due to surface tension. In terms of the dimensionless groups, (3.25), as written, depends
explicitly on Fr and We, but implicitly on Re. Incidentally, the rescaling (3.10a–c) that was
used to eliminate the Reynolds number in the supercritical region does not apply to the
subcritical region. For this reason, the Re value, as well as the values of Fr and We, will
be specified when the jump location is reported.

We also observe that, in order to evaluate the second integral term in (3.25), an
expression of the velocity profile in the subcritical region must be sought. Depending
on the examined problems, different assumptions can be made downstream of the jump,
which, in turn, yield different evaluations of the subcritical velocity and film thickness
profiles. For instance, an obstacle placed at the edge of the disk might control the
downstream liquid depth to a certain level without any significant radial variation (Watson
1964; Bush & Aristoff 2003), whereas the absence of this obstacle causes a significant
variation of the downstream film height as the fluid flows freely over the edge of the disk
(Duchesne, Lebon & Limat 2014). In the present study, the fluid is assumed to flow freely
off the edge of the disk.

3.4. The transient subcritical lubrication flow
Following Duchesne et al. (2014) for steady flow, we adopt a lubrication flow assumption
downstream of the jump where the flow is slow and deep (see also Wang & Khayat
2018, 2019). Accordingly, the convective acceleration term is neglected in the momentum
equation. Moreover, since we do not treat highly transient diffusive problems, the process
time tp is assumed to be much larger than both the local convective and diffusive times
(Lang, Santhanam & Wu 2017). In this case, tp � a/V0 � a2/ν or Sr � 1 � Re, where
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Sr = tpV0/a is the Strouhal number. Therefore, both local and convective accelerations
become negligible for the lubrication flow considered. Consequently, from the momentum
equation, the hydrostatic pressure and the viscous effects balance to give

− Re
Fr2 Hr + Uzz = 0. (3.26)

Integrating (3.26) subject to (2.2a) and (2.3b), we obtain the subcritical velocity profile as

U(r > rJ, z, t) = Re
Fr2 Hr

(
z2

2
− Hz

)
. (3.27)

In order to determine the downstream film thickness, the mass conservation (2.5) is applied
for r > rJ(t)

2
∫ r0(v)

0 rht dr + 2
∫ r−

J (t)
r0(t)

rht dr + 2
∫ r+

J (t)
r−
J (t)

rHt dr + 2
∫ r>r+

J (t)
r+
J (t)

rHt dr

+2r
∫ H(r,t)

0 U(r, z, t) dz = W(t).
(3.28)

Evaluating (3.9a) at r = r0(t), we obtain
∫ r0(t)

0 rht dr = −5
8 Wr0h0 + W. Next, by rewriting

(3.19) as rht = −5
8 (rsh)r, we have

∫ r−
J (t)

r0(t)
rht dr = −5

8 (r−
J sJhJ − r0Wh0), where sJ(t) ≡

s(r = r−
J , t). As to the third integral term in (3.28), it becomes negligible in the limit

r−
J → r+

J as long as the evolution of the film thickness remains finite across the jump
width. Thus, in the limit of a sharp jump, (3.28) reduces to∫ r>rJ(t)

rJ(t)
rHt dr + r

∫ H(r,t)

0
U(r, z, t) dz = 5

8 rJsJhJ . (3.29)

By rescaling (3.29) using the appropriate scaling parameters, we find that the first term is
of order O(1/Sr). Thereby, the condition Sr � 1 established earlier causes the first integral
term in (3.29) to vanish. In this case, (3.29) reduces to r

∫ H(r,t)
0 U(r, z, t) dz = 5

8 rJsJhJ .
Recalling (3.27), the conservation of mass equation reduces to

Hr = −15
8

Fr2

Re
rJsJhJ

rH3 . (3.30)

A boundary condition on the film thickness is needed to solve (3.30), which is specified by
imposing the thickness at the edge of the disk, H∞ = H(r = r∞, t). Direct measurements
by Duchesne et al. (2014) of this edge thickness, performed at nearly 5 mm of the disk
perimeter in their experiment, gave a nearly constant value of 1.5 mm with a weak
power-law dependence on the flow rate not exceeding a few per cent. This constant
thickness value was very close to the capillary length

√
γ /ρg of the fluid. This suggests

that the edge thickness is established from the balance of forces between the hydrostatic
pressure and the surface tension at the disk perimeter (Lubarda & Talke 2011; Wang &
Khayat 2018). This value is also consistent with the measurements of Dressaire et al.
(2010) for water. Therefore, we can assume here that the film thickness at the edge of the
disk is essentially equal to the film thickness the liquid exhibits under static conditions.
In a recent study, Wang & Khayat (2018) showed that this assumption is accurate as
it yielded a good agreement between theory and experiment for steady axisymmetric
hydraulic jump. They also included a dynamic contribution based on energy minimisation
at the disk edge. However, this contribution turned out to be negligible compared with the
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Transient spread of a circular liquid jet and hydraulic jump

static contribution. In the present work, we follow Wang & Khayat (2018) and assume that
H∞ = (2/

√
Bo) sin(θy/2), where θy is the contact angle, and Bo = We/Fr2 = ρg0a2/γ

is the Bond number. We note that the edge thickness is assumed to remain independent
of time (or flow rate) under transient conditions. This assumption will also turn out to be
reasonable when we examine the thickness profiles from the numerical simulation to be
discussed shortly.

Upon integrating (3.30) subject to H(r = r∞, t) = H∞, we obtain an analytical
expression for the subcritical film thickness

H(r, t) =
(

H4
∞ + 15

2
Fr2

Re
rJsJhJ ln

(r∞
r

))1/4

. (3.31)

By substituting the supercritical velocity profile (3.16) and the subcritical velocity profile
(3.27) into (3.25), the momentum balance equation across the jump reduces to

17
35

hJs2
J − 15

32
s2

Jh2
J

HJ
− H2

J − h2
J

2Fr2 − 1
We

HJ − hJ

rJ
= 0. (3.32)

We note that, although the time does not appear explicitly in (3.32), it is implicit through
the time dependence of rJ , hJ , sJ and HJ . We also note from (3.31) that HJ(t) = H(rJ, t) =
(H4∞ + 15

2 (Fr2/Re)rJsJhJ ln(r∞/rJ))
1/4, which is substituted in (3.32).

By solving numerically problem (3.22) subject to initial conditions, the film thickness
h(r, t) and surface velocity s(r, t) are obtained, and, subsequently, the jump location is
determined at any time when (3.32) is satisfied. However, it should be noted that (3.32)
is a cubic equation in HJ , and thereby, three different roots can be obtained numerically.
Two roots are discarded as one corresponds to a negative HJ and the other yields an HJ
very close to hJ (not physically realistic). Approximately, this is confirmed by noting that
the coefficients of the first two terms are very close, yielding HJ ≈ hJ as one of the three
roots of (3.32). Consequently, the only viable root is approximately given by

HJ ≈ −
(

hJ

2Fr2 + 1
rJWe

)
+
√

h2
J

4Fr4 + 1
r2

J We2
+ hJ

rJWe Fr2 + 34
35

s2
JhJ

Fr2 . (3.33)

Finally, by substituting (3.30) into (3.27) and evaluating (3.27) at z = H, we obtain the
subcritical surface velocity as

S(r > rJ(t), t) = 15
16

rJsJhJ

rH
. (3.34)

4. Results and validation

The results in this section comprise a comparison with experiment for steady flow. We
then consider the situation of a jet that undergoes a linear acceleration from one steady
state to another at a constant rate. In this case, the jet velocity profile is given as

W(t̄) =
⎧⎨
⎩

1, t̄ ≤ 0
1 + At̄, 0 ≤ t̄ ≤ t̄c
1 + At̄c, t̄ ≥ t̄c

(4.1)

where A is the dimensionless acceleration of the jet and t̄c is the acceleration period at
the end of which the jet velocity becomes constant. Accordingly, our purpose is to study
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Figure 3. Comparison in terms of the free-surface profile between theoretical predictions and measurements
of Duchesne et al. (2014) for silicon oil (20 cSt). Results are plotted in dimensionless form for Re = 169,
Fr = 16.88, We = 339 and r̄∞ = 16.95.

the transient response of the flow subject to this imposed jet velocity profile. Next, we
examine the transient flow behaviour in the different regions of the domain for A = 0.022
and t̄c = 50. In this case, near impingement, the condition Ẇ/W2 
 182/121r̄, established
earlier in § 3.1, is satisfied, and the flow is quasi-steady in the developing boundary-layer
region.

4.1. Validation against experiment for steady flow
In order to validate the formulation, particularly justifying the assumptions of the cubic
velocity profile in the supercritical region and the lubrication flow in the subcritical
region, we first compare our predictions against experiment for the steady circular jump.
In this case, we set W = 1. Comparison between our predictions and the measurements
of Duchesne et al. (2014) is reported in figure 3 for the film thickness distribution in the
super- and subcritical regions for silicon oil (20 cSt). The data are reproduced here in
dimensionless form from their figure 2, corresponding to Re = 169, Fr = 16.88, We = 339
and a normalised disk radius r̄∞ = 16.95. The theoretical value of the thickness at the
edge of the disk was fixed to H̄∞ = 4.6, corresponding to a contact angle θY = 53◦.
Figure 3 shows that the theoretical predictions are generally in close agreement with the
measurements of Duchesne et al. (2014), slightly underestimating the measured thickness
in the supercritical region. The location of the jump is predicted accurately whereas the
jump height is slightly higher than experiment.

4.2. The transient response of the flow in the developing boundary-layer region
The time interval t̄ ≤ 0 corresponds to the initial steady state where W = 1. In this case,
the initial steady-state profiles of the boundary-layer thickness and the film height are
(Wang & Khayat 2018)

δ̄(r̄ < r̄0, t̄ ≤ 0) = 2

√
70
39

r̄, h̄(r̄ < r̄0, t̄ ≤ 0) = 1
4

(
2
r̄

+
√

210
13

r̄

)
. (4.2a,b)
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Transient spread of a circular liquid jet and hydraulic jump

We note that (4.2a) and (4.2b) constitute the leading-order terms in (3.14) and (3.15),
respectively, for W = 1. Consequently, the initial conditions (3.12c) and (3.13c) are now
given as

Z0(r̄) = 280
39

r̄3, Y0(r̄) = 1
4

(
2 +

√
210
13

r̄3/2

)
. (4.3a,b)

Figure 4 illustrates the transient development of the boundary-layer thickness and the
film height in the developing boundary-layer region at equal time intervals, subject to
the jet velocity profile (4.1). Shown is the numerical solution for δ̄(r̄, t̄) and h̄(r̄, t̄),
which closely agrees with their approximate counterparts established earlier in (3.14) and
(3.15), to leading order. In this case, (3.9a) reduces essentially to the familiar steady-state
form: h̄(r̄, t̄) = 3

8 δ̄(r̄, t̄) + 1/2r̄ (Wang & Khayat 2018). At t̄ = 0, W = 1, and the classical
boundary-layer result is recovered (Watson 1964; Schlichtling & Gersten 2000). The
profiles in figure 4 do not show a deviation from the classical parabolic character of the
boundary-layer height, as the jet accelerates. We observe that since the boundary-layer
height is small near the origin, the film height decays like h̄ ∼ 1/2r̄, regardless of the
jet velocity value. This behaviour is also reflected by the h̄ curves in figure 4, showing a
narrow spread as time varies compared with δ̄. In particular, the h̄ curves tend to saturate
near impingement. Accelerating the jet tends to lower both the boundary-layer height and
the film thickness with time. Therefore, the jet acceleration has a similar effect of thinning
the boundary layer as with slip (Prince et al. 2012; Khayat 2016), disk rotation (Wang
& Khayat 2018) and gravity for high-viscosity liquids (Wang & Khayat 2019). Figure 4
also suggests that δ̄(r̄, t̄) and h̄(r̄, t̄) do not exhibit a long-term transient behaviour after
the acceleration period ends (t̄ ≥ t̄c); that is, the flow reaches the steady state the moment
the acceleration is halted. We shall see that this is not the case for the flow in the fully
developed viscous region.

It is worth mentioning that the overall monotonic thinning behaviour of the film in
this region due to the jet acceleration resembles the monotonic thinning behaviour of a
fluid film lying on an accelerated stretching surface in the plane (Wang 1990) and for
axisymmetric flow (Usha & Sridharan 1995). In those studies, a similarity solution was
developed for the inversely linear unsteady (accelerating and decelerating) stretching. The
actual film thickness evolution was found to be inversely proportional to the square root
of the imposed stretching velocity. This behaviour is similar to the dependence of the film
thickness evolution on the jet velocity at large radial positions depicted in figure 4.

We note that the behaviour of δ̄ in figure 4 can also be deduced qualitatively from a
balance argument from (3.4). By taking u to correspond to the free-surface value W (u ∼
W), the transient term Re ut cancels out with the radial pressure gradient term reflected
by Re Ẇ. Thus, the radial convective term and the viscous term must balance in (3.4):
Re uur ∼ Re W2/r, leading to δ ∼ √

r/W Re or δ̄ ∼ √
r̄/W which is in accordance with

the leading-order term in (3.14).
The evolution of δ̄(r̄, t̄) and h̄(r̄, t̄) is illustrated in figure 5 at different radial positions

in the developing boundary-layer region. In particular, the evolution of δ̄ at small time
is compared against the developed approximate solution (A10) given in Appendix A,
showing a good agreement for t̄ < 1 (see inset). In general, h̄ decreases more slowly than
δ̄; however, both h̄ and δ̄ decrease at a lower rate with time as the jet accelerates. This
behaviour can be inferred from h̄t̄ ∼ 3

8 δ̄t̄ ∼ −3
8 (1 + At)−3/2 to leading order.

Figure 6 depicts the evolution of the transition location r̄0(t̄) and corresponding film
thickness h̄0(t̄) ≡ h̄(r̄ = r̄0). As the jet accelerates (inertia is enhanced), the transition
point moves further downstream from impingement, and the corresponding film thickness
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Figure 4. The transient behaviour of the developing boundary-layer region for a linearly accelerated jet. The
rescaled boundary-layer height, δ̄(r̄, t̄), and film thickness, h̄(r̄, t̄), are plotted against the rescaled radial distance
r̄. The flow is examined subject to the jet velocity profile (4.1) for A = 0.022 and t̄c = 50. The curves t̄ ≥ 50
represent the final steady-state profile for δ̄ and h̄. The transition location coincides with the intersection of the
two heights (at the cusps in the figure), indicated here by vertical lines. The blue curve represents the locus of
the transition points demarking the end of the developing boundary-layer region at different times.

r‾ = 0.2
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Acceleration period
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δ‾
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Figure 5. Evolution of the boundary-layer and film heights at different radial positions in the developing
boundary-layer region for A = 0.022 and t̄c = 50. The green dashed vertical line indicates the time t̄c = 50
at which the jet velocity as well as the boundary-layer and film heights all reach their final steady state. The
inset shows a comparison for the evolution of the boundary-layer thickness at small time between the numerical
solution (black curves) and approximate solution (A10) (blue curves).

decreases, but they both reach their final steady state at t̄ = t̄c. In fact, this behaviour
can be deduced analytically by equating the leading-order terms in (3.14) and (3.15),
yielding r̄0(t̄) ≈ ( 78

875 W)1/3 or r̄0(t̄) ∝ W1/3. Moreover, the relation h̄(r̄, t̄) = 3
8 δ̄(r̄, t̄) +

1/2r̄, established earlier, reduces to h̄0 = 4/5r̄0 at the transition point, suggesting
that h̄0(t̄) ∝ W−1/3. For the initial steady state (t̄ ≤ 0), since W = 1, we obtain r̄0 =
(78/875)1/3 = 0.447 and h̄0 = 1.791, which are the values reflected in figure 6 at t̄ = 0.
In comparison, Watson’s steady transition point found using an exact solution of the
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Transient spread of a circular liquid jet and hydraulic jump
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Figure 6. Evolution of the location and film thickness at the transition point between the developing
boundary-layer and fully developed viscous regions for A = 0.022 and t̄c = 50. The green dashed vertical
line indicates the time t̄c = 50 at which W, as well as r̄0 and h̄0 all reach their final steady state.

boundary-layer equations is given as r̄0 = (9
√

3c(π − c
√

3)/16π2)1/3 = 0.463, where
c = 1.402 (Watson 1964), which reflects a discrepancy of less than 3 %.

The pressure distribution p(r̄, t̄) in the developing boundary-layer region is shown in
figure 7. Here, we neglect the effect of gravity in the supercritical region. Therefore,
expressions (3.3) and (3.17) reduce to p(0 < r < r0, t) = (r0 − r)Ẇ and p(r0 ≤ r ≤
rJ, t) = 0, respectively. Figure 7 indicates that the pressure in this region decreases linearly
with the radial distance at different times for t̄ ≤ t̄c and vanishes at the transition point.
This linear decrease in the pressure follows a constant radial pressure gradient at all
times because of the linear acceleration of the jet. The behaviour shown in figure 7 can
be interpreted analytically by expressing the pressure, using (3.3), to obtain, to leading
order: p(r̄ < r̄0, 0 < t̄ < t̄c) = A(r̄0 − r̄) ≈ A[( 78

875(1 + At̄))1/3 − r̄]. As depicted in the
inset of figure 7, for a given radial position, the beginning and the end of the acceleration
period are accompanied by a sudden jump and a sudden drop in the pressure, respectively.
However, during the acceleration period, the pressure increases nonlinearly with time. This
behaviour resembles the one reported by Chang & Maxey (1995) for the case of a linearly
accelerated flow over a sphere, from one steady state to another (see their figure 6). They
attributed the sudden changes in pressure to the added-mass effects, i.e. inertial effects
added to the system because of the acceleration, which is the same driving mechanism of
the transient response in the present problem.

4.3. The transient response of the flow in the fully developed viscous region
We now examine the flow response in the fully developed viscous region subject to the jet
velocity profile (4.1). The initial steady-state profiles of the film thickness and the surface
velocity are recalled as (Wang & Khayat 2018)

h̄(r̄0 < r̄ < r̄J, t̄ ≤ 0) = 175
136

r̄2 + 233
340r̄

= 175
136r̄

(r̄3 − r̄3
0) + 2

r̄0

r̄

√
70
39

r̄0, (4.4a)
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Figure 7. The transient response of the pressure in the developing boundary-layer region for a linearly
accelerated jet (A = 0.022 and t̄c = 50). The curve t̄ > 50 indicates that p = 0 is the final steady state. The blue
curve represents the locus of the transition points. The inset depicts the evolution of the pressure at different
radial positions showing sudden changes at the beginning and at the end of the acceleration period.

s(r̄0 < r̄ < r̄J, t̄ ≤ 0) = 4
5h̄r̄

. (4.4b)

We note that (4.4a) and (4.4b) are in close agreement with Watson’s expressions,
reproduced here in dimensionless forms as: h̄ ≈ 1.28r̄2 + 0.69/r̄ and s ≈ 0.81/h̄r̄ (Watson
1964), respectively.

The time-dependent boundary-layer height and supercritical film thickness are plotted
against the radial distance at equal time intervals as shown in figure 8. We recall that
the transition point moves downstream with time, as the jet accelerates. At any time, the
film thickness exhibits a strong minimum followed by an increase with the radial distance.
In the limit t̄ = 0, (4.4a) indicates that the height increases like h̄ ∝ r̄2 at large distance.
For a faster jet, the film acquires additional radial momentum, with a reduced viscous
effect. Therefore, it is apparent from figure 8 that, as the jet accelerates, the minimum film
thickness weakens, accompanied by an overall thinning of the boundary layer and film. We
observe that, close to the transition point, the film thickness in the fully developed viscous
region decays at a slower rate at a later time than initially, a behaviour similar to that
predicted in the boundary-layer region (see figure 5). Figure 8 indicates that the location
of the minimum height moves downstream as the effect of viscosity gradually diminishes
with time relative to inertia. The last point along the h̄ curves marks the end of the fully
developed viscous region at different times, coinciding with the jump occurrence.

We find that, far from the transition point, the actual instantaneous film thickness in
the fully developed viscous region deviates from the quasi-steady state, and so does the
jump location. We illustrate this deviation by adding the quasi-steady profile (in cyan)
for t̄ = 10 in figure 8. We also observe from the figure that the film thickness continues
to decrease after the acceleration has ceased at t̄ = t̄c = 50. Thus, unlike the developing
boundary-layer region, the film thickness in the fully developed viscous region exhibits a
long-term transient behaviour, which is particularly evident at large r̄; the thickness profile
reaches its final steady state at a time t̄ > t̄c. This suggests that, despite the end of the
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Figure 8. Transient response of the developing boundary-layer height and film thickness in the supercritical
region for a linearly accelerated jet (A = 0.022 and t̄c = 50). The red curve represents the locus of the jump
points (also indicated by the vertical lines) demarking the end of the fully developed viscous region at different
times. The cyan curve represents the quasi-steady profile of the film thickness in the fully developed viscous
region at t̄ = 10. Also indicated in vertical lines on the left are the transition point locations at different times.
The curve t̄ > 50 represents the final steady-state profile of δ̄ and h̄. The jump is determined for Re = 100,
Fr = 10, We = 120, H̄∞ = Re1/3H∞ = 5.1 and r̄∞ = Re−1/3r∞ = 5.38.

acceleration period, inertial effects still induce a transient change in the flow, which is
attributed to the intrinsic nonlinearities present in (3.22a) and (3.22b).

Figure 9 shows the evolution of the film thickness h̄(r̄, t̄) in the fully developed
viscous region at different radial positions. The quasi-steady states are also plotted (cyan
curves) for comparison. It is shown that, initially, the actual instantaneous film thickness
accumulates and deviates from the quasi-steady state given the significance of viscous
effects (Telionis 1981), exhibiting a weak maximum when inertia becomes as important
as viscous effects. The thickness then decays with time as inertia becomes dominant,
and behaves closer to the quasi-steady state as reflected by the narrowing of the gap
between the black and cyan curves in figure 9. The purple curve, representing the locus
of the maximum film thickness at different radial positions, shows an earlier occurrence
of this maximum at smaller r̄. This transient behaviour of the film thickness (early-stage
maximum before decaying with time) is similar to the one observed in the case of a laminar
film suddenly accelerated by gravity and falling inside a vertical circular tube as studied
experimentally by Zhong et al. (2020) (see their figure 9). Furthermore, we observe that
the film thickness reaches its final steady state at t̄ ≈ t̄c for small r̄, and at t̄ > t̄c for large
r̄, as reflected by the green solid curves in figure 9 and the inset, respectively, suggesting
that the long-term transient response in the film thickness is particularly evident at large r̄.

As discussed earlier (figure 8), the parabolic profile of the film thickness in the fully
developed viscous region exhibits a minimum at any time. The time variation of this
minimum film thickness, denoted by h̄min(t̄), and its corresponding radial position, denoted
by r̄min(t̄), are plotted in figure 10. At the early stage of the flow, as viscous effects
are important, h̄min exhibits a weak maximum, while r̄min exhibits a weak minimum. As
viscous effects gradually diminish with time relative to inertia, the minimum film height
weakens and occurs further downstream.

The transient behaviour of the supercritical free-surface velocity is depicted in figure 11.
As seen in figure 11(a), at any time, the surface velocity remains equal to the jet velocity
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Figure 9. Evolution of the film thickness in the fully developed viscous region at different radial positions
for A = 0.022 and t̄c = 50. The purple curve represents the locus of the maximum film thickness, the cyan
curves represent the quasi-steady film thickness profiles and the green solid curve represents the locus of the
final steady state. The inset depicts the evolution of h̄ at large radial positions for t̄ > 40, showing that the final
steady state is reached at t̄ > t̄c.
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Figure 10. Evolution of the minimum film thickness and its corresponding radial position in the fully
developed viscous region for A = 0.022 and t̄c = 50.

in the developing boundary-layer region, as reflected by the horizontal lines, before it
decreases monotonically with distance downstream of the transition location in the fully
developed viscous region. At t̄ = 0, the monotonic decrease of s with respect to r̄ is
recalled from the initial steady-state solution by substituting (4.4a) into (4.4b)

s(r̄0 < r̄ < r̄J, t̄ ≤ 0) = 4
5

(
175
136

(r̄3 − r̄3
0) + 2r̄0

√
70
39

r̄0

)−1

. (4.5)
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Figure 11. Transient behaviour of the supercritical surface velocity for A = 0.022 and t̄c = 50. The radial
dependence of s is plotted at equal time intervals (a), and the evolution of s is plotted at different radial positions
in the supercritical region (b). The blue curve represents the locus of the transition points whereas the red
curve represents the locus of the jump points. The green solid curve represents the locus of the final steady
state reached by s at different r̄. The jump is determined for Re = 100, Fr = 10, We = 120, H̄∞ = 5.1 and
r̄∞ = 5.38.

In this case (at t̄ = 0), s decreases like r̄−3 at large distance, and we can clearly observe
from figure 11(a) a similar behaviour at subsequent times. We can also see that the jet
acceleration increases the surface velocity of the flow with time (see figure 11b), but
diminishes the rate at which it decreases with radial distance (see figure 11a), which is
similar to the effect of slip (Prince et al. 2012; Khayat 2016) and disk rotation (Wang &
Khayat 2018). We observe that s = W at r̄ = 0.3 in figure 11(b), since this radial position
belongs to the developing boundary-layer region at all times. Figure 11(b) and the inset
in figure 9 show that, similar to the film thickness, the long-term transient behaviour of
the surface velocity in the fully developed viscous region is particularly evident at large
radial positions. This is depicted by the green solid curve representing the locus of the
final steady state (see for example the time at which h̄ and s reach their final steady state
for r̄ = 1.7 compared with r̄ = 0.9).

In figure 12, we present a three-dimensional surface plot to illustrate in detail the
transient behaviour of the thin film in the fully developed viscous region. We show the
evolution of both the film thickness as depicted by the height of the surface (z-axis), and
surface velocity as described by the colour map. It is shown from the colour map that,
upon accelerating the jet, the surface velocity at the transition location increases with
time, which is also reflected by the blue curve in figure 11. However, the surface velocity
does not change much at the hydraulic jump location, which is also reflected by the red
curve in figure 11. Moreover, the projected curves in figure 12 indicate that the relative
change between the final and initial steady states is larger for r̄J(t̄) and h̄J(t̄) than for r̄0(t̄)
and h̄0(t̄).

The wall shear stress at the disk is expressed as

τ̄w(r̄ < r̄0, t̄) = 3
2

W
δ̄

, (4.6a)

τ̄w(r̄0 < r̄ < r̄J, t̄) = 3
2

s
h̄
. (4.6b)

Always for the same jet velocity profile (4.1), figure 13 illustrates the transient behaviour
of the wall shear stress. As seen in figure 13(a), at any time, the stress decays very rapidly
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Figure 12. Surface plot showing the evolution of the film thickness and surface velocity contours in the fully
developed viscous region for A = 0.022 and t̄c = 50. The height of the surface reflects the film thickness while
the colour map reflects the values of the surface velocity. The jump is determined for Re = 100, Fr = 10,
We = 120, H̄∞ = 5.1 and r̄∞ = 5.38.

with the radial distance in the developing boundary-layer region, which can be explained
by referring to the leading-order solution in (3.14). In this case, (4.6a) reduces to

τ̄w(r̄ < r̄0, t̄) ≈
√

39
280

W3

r̄
. (4.7)

Equation (4.7) also suggests that, for a given radial position in the developing
boundary-layer region, τ̄w ∼ W3 /2, which resembles the dependence of the wall shear
stress on the stretching velocity for a fluid film lying on an unsteady stretching
surface (Wang 1990; Usha & Sridharan 1995). After its rapid drop in the developing
boundary-layer region, τ̄w exhibits a maximum in the fully developed viscous region
before decaying monotonically with the radial distance as in figure 13(a). For t̄ = 0, the
monotonic decrease of τ̄w with respect to r̄ is recalled from the initial steady-state solution
by substituting (4.4a) and (4.4b) into (4.6b) to obtain

τ̄w(r̄0 < r̄ < r̄J, t̄ ≤ 0) = 6
5

r̄

(
175
136

(r̄3 − r̄3
0) + 2r̄0

√
70
39

r̄0

)−2

. (4.8)

In this case (at t̄ = 0), at large radial distance, the wall shear stress decays like r̄−5, and
a similar behaviour is observed in figure 13(a) at subsequent times. Moreover, the rate at
which the wall shear stress decays with radial distance increases as the jet accelerates. We
observe that, since accelerating the jet causes a higher velocity gradient near the wall, we
obtain a monotonic increase with time in the wall shear stress at any radial position in the
supercritical region as depicted in figure 13(b). This can easily be explained by referring
to (4.5a) and (4.5b), knowing that W and s increase with time, whereas δ̄ and h̄ decrease
overall. Figure 13(b) also shows a long-term transient response in τ̄w at large r̄.
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Figure 13. Transient behaviour of the supercritical wall shear stress for A = 0.022 and t̄c = 50. The radial
dependence of τ̄w is plotted at equal time intervals (a), and the evolution of τ̄w is plotted at different radial
positions in the supercritical region (b). The blue curve represents the locus of the transition points whereas
the red curve represents the locus of the jump points. The green solid curve represents the locus of the final
steady state reached by τ̄w at different r̄. The jump is determined for Re = 100, Fr = 10, We = 120, H̄∞ = 5.1
and r̄∞ = 5.38.

Finally, a monotonic increase with time in the wall shear stress was also reported
by Seddighi et al. (2014) for a linearly accelerating channel flow starting from an
initially statistically steady turbulent flow (see their figure 3b). However, the friction
coefficient, which was introduced as the actual wall shear stress normalised relative to
the instantaneous bulk velocity instead of the average velocity, showed a non-monotonic
evolution (see their figure 3c). Following Seddighi et al. (2014), we introduce the friction
coefficient at the disk in the supercritical region as Cf = 2Re−2/3τ̄w/W2 where Cf is the
actual wall shear stress normalised by 1

2ρV2(t), and V(t) is the dimensional instantaneous
jet velocity, with V(t = 0) = V0. In this case, the friction coefficient in the developing
boundary-layer and fully developed viscous regions can be expressed as

Cf (r̄ < r̄0, t̄) = 3Re−2/3

W δ̄
, (4.9a)

Cf (r̄0 < r̄ < r̄J, t̄) = 3Re−2/3s
W2h̄

, (4.9b)

respectively. Figure 14 shows the transient behaviour of the supercritical friction
coefficient. We observe from figure 14(a) that, at any time, the radial dependence of
the friction coefficient follows the radial dependence of the wall shear stress shown
earlier in figure 13(a). Interestingly, in the fully developed viscous region, in contrast
to the monotonic response of the shear stress (see figure 13b for r̄ > 0.5), Cf exhibits
a non-monotonic transient behaviour as depicted in figure 14(b). This occurs further
downstream in the fully developed viscous region at the radial positions that show a
weak maximum in the film thickness, namely at r̄ = 0.9, 1 and 1.1 (see also figure 9).
We observe that, at these radial positions, Cf decreases initially with the increase in the
film thickness, exhibiting an early weak minimum coinciding with the weak maximum in
the film thickness. As the flow continues to accelerate, the friction coefficient increases as
a result of the low flow momentum that is pushed inside of the boundary layer against the
wall, simultaneously reducing the overall film thickness. This non-monotonic behaviour
of the friction coefficient shown in figure 14(b) is parallel to the one observed by Seddighi
et al. (2014) as reported in their figure 3(c). In their case, the friction coefficient behaves

947 A34-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.670


A. Baayoun, R.E. Khayat and Y. Wang

(b)(a)

r‾ = 0.7

r‾ = 0.8

r‾ = 0.9

r‾ = 1.1

r‾ = 1.0

r‾ = 1.3

r‾ = 1.2

t‾r‾
10 20 30 40 50 60 7000.5 1.0 1.5 2.0

0.2

0.6

Re
2
/3

C
f 1.0

1.4
t‾ = 0
t‾ = 10
t‾ = 20
t‾ = 30
t‾ = 40
t‾ = 50
t‾ > 50

0

0.7

1.4

2.1

2.8

3.5

4.2

Figure 14. Transient behaviour of the friction coefficient in the supercritical region for A = 0.022 and t̄c = 50.
The radial dependence of Cf is plotted at equal time intervals (a), and the evolution of Cf is plotted at different
radial positions in the fully developed viscous region (b). The blue curve represents the locus of the transition
points whereas the red curve represents the locus of the jump points. The green solid curve represents the locus
of the final steady state reached by Cf at different r̄. The jump is determined for Re = 100, Fr = 10, We = 120,
H̄∞ = 5.1 and r̄∞ = 5.38.

oppositely to the boundary-layer thickness, whereas in our case, the friction coefficient
behaves oppositely to the film thickness.

4.4. Evolution of the hydraulic jump radius and comparison with the numerical
simulation

A numerical simulation of a transient jet impinging over a stationary horizontal disk was
carried out using the Ansys Fluent software. Silicone oil was considered with the following
physical properties: ρ = 950 kg m−3, μ = 19 mPa s and γ = 20 dyn cm−1. The nozzle
radius was taken as a = 1.6 mm and the initial jet flow rate was Q = 10 ml s−1. These
parameters correspond to the steady-state experiment carried out by Duchesne et al. (2014)
for a plate radius of 150 mm and a disk-to-nozzle distance of 16 mm, except that their
operating flow rate was Q = 17 ml s−1. In addition, we have shortened the radius of the
disk to 40 mm and the disk-to-nozzle distance to 8 mm to lower the computational cost. In
terms of the dimensionless parameters, this corresponds to Re = 100, Fr = 10, We = 120
and r̄∞ = 5.38.

The numerical model was previously validated against the measurements of Duchesne
et al. (2014) for steady state (Wang & Khayat 2021). In order to study the linearly
accelerated jet, the jet velocity profile (4.1) was imposed in the present numerical
simulation, where A = 0.022 and t̄c = 50. The flow was allowed to fall freely over the
edge of the disk in the absence of any obstacle.

As the flow is assumed to be axisymmetric, polygonal jumps (Rojas & Tirapegui
2015) are not considered. In this case, we solve the axisymmetric version of the full
Navier–Stokes equations in cylindrical coordinates (see Wang & Khayat 2021 for details),
with the gas–liquid interface (i.e. the free surface) tracked by an extra scalar field using the
volume of fluid (VOF) approach (Hirt & Nichols 1981). The physical and computational
domains are shown in figure 15 with the dimensions shown along the corresponding sides
of the domain. The simulation is carried out using a finite volume solver (Ansys Fluent),
with the primary variables located at the centroid of the mesh cells. The fluxes at the cell
surface are calculated based on the interpolated values of the cell centroid. With the VOF
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Physical domain

Incoming jet

Air
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No slip

11.2 mm
8 mm
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Jet inlet

(a = 1.6 mm)

40 mm

No slip
No slip

Computational domain Gauge pressure

Gauge pressure

Figure 15. The three-dimensional physical domain and the two-dimensional axisymmetric computational
domain of the numerically simulated flow.

method, the free surface is tracked by a transport equation that governs the volume fraction
of the liquid phase, namely

∂

∂t
αl + vl · ∇αl = 0, (4.10)

with αl being the volume fraction of the liquid, and therefore αg = 1 − αl being the gas
fraction. Here, vl is the velocity vector of the liquid. With this approach, only a single set of
transport equations is solved. The values of variables and fluid properties at the centroid of
each cell represent the volume-weighted averages based on the fraction of the two phases.

The standard Semi-Implicit Method for Pressure Linked Equations-Consistent
(SIMPLEC) scheme (Van Doormaal & Raithby 1984) is selected for pressure correction.
For spatial discretisation, we adopt the second-order Quadratic Upstream Interpolation
for Convective Kinematics (QUICK) scheme (Leonard & Mokhtari 1990), which uses
two upstream and one downstream value of the neighbouring cell centroid to interpolate
the face values of the control volume for flux calculation. A second-order implicit time
marching scheme is selected for the best stability. Finally, the volume fraction (4.10) is
discretised by a second-order compressive scheme such that the face value of the volume
fraction is given by φf = φd + 2∇φd · S, where φf is the volume fraction at the cell face
between the donor (upstream) and acceptor (downstream) cell, φd is the volume fraction of
the donor cell and S is the displacement vector from the donor cell centroid to the centroid
of the cell face. Surface tension is considered using the continuum surface force model
(Brackbill, Kothe & Zemach 1992). The detailed reasons of these numerical choices can
be found in the work of Wang & Khayat (2021).

The pressure is set to atmospheric everywhere in the domain and the velocity is set
to be zero initially. The domain is at first fully occupied by air, the silicon oil at a
uniform velocity of flow rate Q = 10 ml s−1 is injected into the domain through the inlet
of radius a = 1.6 mm until the first steady state is reached when a stable hydraulic jump
has been formed. Then the flow rate starts to vary according to Q = 10 + 37.3t ml s−1. The
impingement surface of radius R = 40 mm is at a distance D = 8 mm away from the inlet.
The boundary conditions are also displayed in the computational domain. The pressure
is set to be atmospheric at the right side of the computational domain (cf. figure 15).

947 A34-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.670


A. Baayoun, R.E. Khayat and Y. Wang

t‾ = 0

t‾ = 8.33

t‾ = 16.67

t‾ = 25

t‾ = 33.33

t‾ = 41.67

t‾ = 50

Figure 16. Evolution of the simulated flow for A = 0.022, t̄c = 50, Re = 100, Fr = 10, We = 120 and r̄∞ =
5.38. The volume fraction is presented for liquid (in red) and surrounding air (in blue), corresponding to αl = 1
and αg = 0, respectively. The liquid and gas phases are separated by the free surface (0 < α < 1).

A sidewall near the trailing edge of the disk is constructed so that the flow can turn
and flow off the domain under the action of gravity. We note that the upper boundary
of the domain is set to a no-slip condition instead of atmospheric pressure as it turns out
that overregulating the pressure sometimes drives the flow to an unrealistic state before
reaching a steady state. The solution converges better when using a no-slip condition which
allows the pressure to freely adjust itself according to the momentum evolution. Practically,
this should not affect the solution much since the viscosity of the gas phase is usually
negligible compared with that of the liquid, and the configuration is laminar. In addition,
we refer to the satisfactory numerically simulated results obtained by Askarizadeh et al.
(2020) and Wang & Khayat (2021), who also used a similar numerical configuration.

The convergence test is carried out at the steady state. Three sets of uniform grid sizes
(the side length of the control volume) are tested, namely 0.32, 0.16 and 0.08 mm, treated
as coarse, medium and fine meshes, respectively. It is found that the relative error in the
jump location is well below 1 % between the medium and the fine mesh. In this case, the
medium mesh size is sufficient and thus adopted in the transient numerical computation.
For more details on the numerical convergence test, the reader is referred to the work of
Wang & Khayat (2021).

The evolution of the simulated flow in the (r, z) plane is depicted in figure 16 in terms of
the volume fraction of the fluid at equal time intervals. As the jet accelerates, the location
of the jump moves forward and the maximum film height increases.

The comparison of the free-surface height at equal time intervals between the theory and
numerical simulation is shown in figure 17. Best comparison was achieved upon taking

947 A34-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.670


Transient spread of a circular liquid jet and hydraulic jump

H̄∞ = 5.1. This corresponds to an edge film thickness equal to 1.76 mm, which is close to
the capillary length of the considered fluid (1.46 mm). It is shown that the theory predicts
well the free-surface evolution of the fluid, except the gradual transition in the hydraulic
jump region, due to the sharp jump assumption, as well as the turn-around region at the
edge. These issues will be touched on later in § 5.

We next quantify the comparison between the theory and numerical simulation in terms
of the jump radius, the upstream and downstream jump heights, as depicted in figure 18,
which show good agreement. As is apparent, even though the jet velocity increases linearly
with time, the responses in r̄J , h̄J and H̄J are predominantly linear only at later times.
We note that the jump position deduced from the numerical simulation corresponds to
the maximum radial gradient in the film thickness, and the downstream jump height
corresponds to the numerical maximum film thickness. Due to our sharp jump assumption,
the downstream jump height predicted theoretically cannot be directly compared against
the one from the numerical simulation. However, the good agreement shown in figure 18
in terms of H̄J was obtained upon reducing all the predicted values at all times by 11 % as
a correction made to compensate for the sharp jump assumption.

Combining the simulated free-surface height at equal time intervals in one plot, as
shown in figure 19, reveals an interesting transient dynamics, which is not necessarily
captured by the thin-film theory. The figure indicates that the film height tends to exhibit
an overshoot in the form of a localised maximum that diffuses with time. We also notice
that, although the downstream film thickness increases with time, it always converges to
the initial steady-state profile at a certain radial position that increases with time. In other
words, the influence of inertia, as a result of the jet acceleration, on the downstream film
height is not felt until later times. Moreover, we observe that the film thickness at the
edge does not vary with time, as the film seems to be pinned there, making our earlier
assumption of a time-independent H∞ in our theory plausible. The overall increase in the
downstream height is obviously accompanied by a rise in the pressure force, which acts
on the jump to slow it down. However, the jump continues to move outward, reflecting the
dominance of inertia over the pressure force as the jet accelerates.

The transient behaviour of the subcritical film thickness and surface velocity, predicted
from (3.31) and (3.34), is shown in figure 20. Figure 20(a,c) shows the radial dependence
of H̄ and S at equal time intervals, whereas figure 20(b,d) shows the evolution of H̄ and S at
different radial positions. We observe from figures 20(a) and 20(c) that, at any time, H̄ and
S decrease with the radial distance since the flow becomes slower near the edge. While H̄
decreases monotonically with r̄ similar to the case for steady flow, S exhibits a minimum
close to the edge, which is not usually predicted or observed for steady flow. While H̄
reaches the same constant level, S continues to grow with time, which is reflected in the
curve corresponding to r∞ in figure 20(d). We observe from figures 20(b) and 20(d) that,
for a given radial position, H̄ and S increase with time during the acceleration period and
overshoot their final steady states. The overshoot occurs at t̄ ≈ t̄c when the acceleration is
halted. We recall from (3.23) that the pressure, downstream of the jump, is related to the
film height, and therefore, the evolution of H̄ in figure 20(b) reflects the evolution of the
pressure. Consequently, figure 20(b) suggests that, similar to the transient behaviour of the
pressure in the developing boundary-layer region (see figure 7), the pressure downstream
of the jump also increases with time. However, no sudden changes occur before or after the
acceleration period since the film height evolves smoothly with time. We also note that the
pressure decreases with the radial distance in both the supercritical and subcritical regions.
Finally, figure 20(b,c) shows that H̄ and S reach their final steady state at t̄ > t̄c, suggesting
that the long-term transient behaviour is not restricted to the supercritical region.
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Figure 17. Comparison between theory (black solid curves) and numerical simulation (red circles). The
free-surface height is shown at equal time intervals for A = 0.022, t̄c = 50, Re = 100, Fr = 10, We = 120,
H̄∞ = 5.1 and r̄∞ = 5.38.

We now explore the effect of gravity, which is found to have a significant influence on the
transient response of the jump. Therefore, we consider varying Fr while keeping Re and We
fixed. The base case corresponds to the values taken in the comparison with the numerical
simulation earlier, namely Re = 100, Fr = 10 and We = 120. We also take H̄∞ = 5.1 and
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Figure 18. Comparison between theory (lines) and numerical simulation (points). The evolution of the jump
radius r̄J , the upstream jump height h̄J and the downstream jump height H̄J are shown for a linearly accelerated
jet for A = 0.022, t̄c = 50, Re = 100, Fr = 10, We = 120, H̄∞ = 5.1 and r̄∞ = 5.38.
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Figure 19. The film profiles based on the numerical simulation at equal time intervals for A = 0.022,
t̄c = 50, Re = 100, Fr = 10, We = 120 and r̄∞ = 5.38.

r̄∞ = 5.38. The influence of Fr on the transient response of the jump radius r̄J(t̄), the
upstream jump height h̄J(t̄) and surface velocity sJ(t̄), as well the downstream jump height
H̄J(t̄), is illustrated in figure 21. We also include the final steady state as the green solid
curve. As expected, the jump radius increases with time as the jet is accelerated. For any
Fr, r̄J increases monotonically before reaching its final steady state (figure 21a). Similarly,
the upstream and downstream jump heights also increase with time, but they overshoot
their final steady-state level (see figure 21b,d) at a time close to t̄ = t̄c (dashed vertical line)
when the acceleration is halted. This behaviour is similar to that depicted in figure 21(b).
The overshoot occurs later and intensifies further for a lower gravity level. We also observe
that the overshoot in h̄J and H̄J is accompanied by a weak undershoot in sJ (see figure 21c).
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Figure 20. Transient behaviour of the subcritical film thickness and surface velocity for A = 0.022 and t̄c =
50. The profiles of H̄ and S are plotted against the radial distance at equal time intervals (a,c), and against time
at different radial positions (b,d). The curves t̄ > 50 in (a,c) correspond to the final steady-state profiles. The
red curve represents the locus of the jump points whereas the green solid curve represents the locus of the
final steady state reached by H̄ and S at different r̄. The jump is determined for Re = 100, Fr = 10, We = 120,
H̄∞ = 5.1 and r̄∞ = 5.38.

In the limit of small Fr, the flow responds almost instantly to the ending of the
acceleration period, and r̄J , h̄J , sJ and H̄J reach their final steady state at t̄ = t̄c. However, as
Fr increases, the final steady state is reached at t̄ = t̄c, and r̄J , h̄J and H̄J increase overall.
Obviously, this is due to the effect of inertia carrying itself for longer times, especially
when gravitational effects are weakened across the jump. Moreover, figure 21(a–d) shows
that in the limit of high Fr, r̄J , h̄J , sJ and H̄J remain initially unchanged for a very short
period before evolving with time, suggesting that, at low gravity, the jump response to the
jet acceleration is initially delayed. Finally, it is interesting to observe that, while r̄J and h̄J
deviate significantly from the initial steady state to reach a much higher steady-state level,
sJ and H̄J tend to reach essentially the same level as the initial steady state.

As discussed earlier, when the gravitational effect is weak, the jump continues to
slowly expand for some time as a result of its inertia. A similar behaviour was observed
experimentally by Lamiel et al. (2021) in the evolution of a circular film induced by the
impingement of a spray generated by a high-pressure injector on a horizontal plate. A spray
was injected at a constant flow rate (constant injection pressure) for some period before
the injection was stopped. It was shown that the circular film spreading on the plate wall
continued to expand in the radial direction for some time after the injection had stopped
(see their figure 5). Moreover, it was observed that increasing the injection pressure yielded
a larger radius of the film at any time during the injection period and after the injection
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Figure 21. Influence of the Froude number (gravity) on the transient response of r̄J (a), h̄J (b), sJ (c) and H̄J
(d) for A = 0.022, t̄c = 50, Re = 100, We = 120, H̄∞ = 5.1 and r̄∞ = 5.38. The green solid curve represents
the locus of the final steady state reached by the different variables.

period (see their figure 10). This behaviour is similar to what is depicted in figure 21(a)
in terms of the influence of Fr on the evolution of the jump radius during and after the
acceleration period.

5. Summary and discussion

In this study, we examine theoretically and numerically the transient axisymmetric flow
of a circular liquid jet impinging on a horizontal disk and the formation of the hydraulic
jump. The work focuses on the transition of a jet accelerating from one steady state to
another. The formulation is based on the KP integral approach for the behaviour of the
supercritical flow in the developing boundary-layer region near impingement and the
fully developed viscous region further downstream. The integral or weak form of the
continuity and momentum equations is treated numerically, separately in each region,
and the flow is matched at the transition point. A cubic profile is assumed for the radial
velocity component, which is commonly used for steady flow with a well-proven accuracy.
A transient momentum balance is taken across the hydraulic jump, including the surface
tension force. The flow downstream of the jump is treated using lubrication theory.
The formulation is validated against experiment for steady flow, and against numerical
simulation for an accelerating jet.

The transient behaviour of the flow in the supercritical region is extensively explored
for the linearly accelerated jet, where we also draw the resemblance in various transient
aspects with other accelerated flows from the literature. In addition to the numerical
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solution, an approximate solution is established for the boundary-layer thickness and the
film height in the developing boundary-layer region. We find that increasing the jet velocity
with time tends to lower the boundary-layer and film thicknesses quasi-steadily (figure 4).
The overall transient thinning of the film is reminiscent of the transient response of a fluid
lying on an accelerated stretching surface. Interestingly, no long-term transient behaviour
is observed in the developing boundary-layer region after the jet velocity stops ramping up
and reaches its final steady state. Consequently, the location and height of the transition
point reach the final steady state at the same time when the jet velocity becomes constant.
Moreover, the transient evolution of the radius and film height at the transition point is
nonlinear (figure 6).

In contrast to the flow in the developing boundary-layer region, which is predominantly
quasi-steady, the flow in the fully developed viscous region exhibits a long-term transient
behaviour, especially the film thickness profile at large radial distance (figures 8 and 9).
The film thickness profile in the fully developed viscous region remains parabolic in
character, exhibiting a minimum at some distance r̄ = r̄min(t̄), which in turn exhibits an
early minimum before increasing with time towards the final steady state (figure 10). The
evolution of the film thickness reveals a maximum in the early stage (figure 9), which
results from the balance between the local inertia (acceleration) and the viscous effect. The
maximum in the film thickness is accompanied by a minimum in the friction coefficient
(figure 14). This behaviour in the supercritical region is consistent with other accelerated
flow problems found in the literature (Wang 1990; Usha & Sridharan 1995; Seddighi et al.
2014). In particular, the time dependences of the film thickness and the wall shear stress
in the developing boundary-layer region are similar to those reported for a fluid lying on a
stretching surface (Wang 1990; Usha & Sridharan 1995).

Comparison between the theoretical predictions and the numerical simulation in
figure 16 for an accelerated jet yields a close agreement for the evolution of the film
profiles (figure 17) and jump radius and height (figure 18). We particularly find that
this comparison is best matched for an edge film thickness close to the capillary length
previously established by Wang & Khayat (2018). Although the jet accelerates linearly, the
predicted jump radius and upstream jump height show a predominantly linear evolution
only at later times, and they both exhibit a long-term transient behaviour that depends on
gravity (Froude number), as indicated in figure 21. At low Froude number, the flow reacts
instantly to the levelling off in the jet velocity, but as Fr increases, the time at which the
final steady state is reached increases, exhibiting an overshoot in the pre-jump height and
an undershoot in the surface velocity. Perhaps a more appropriate physical insight would
have been gained by introducing an additional time scale or dimensionless parameter,
namely the Strouhal number, that reflects the level of imposed acceleration. In that case,
the predicted dynamics (transients in figure 21) would have been better interpreted by
varying the Strouhal number rather than the Froude number.

Finally, and as mentioned in § 4.4, the current approach does not capture well the
turn-around usually observed at the edge of the disk. As the work of Higuera (1994)
suggests, both inertia and gravity become important at the edge. Obviously, inertia is
neglected in the lubrication assumption. However, the acceleration of the flow tends to
infinity as a result of the strong gravity effect around the edge. Consequently, at the
edge, the wall shear stress should exhibit a singularity, and viscous effects are confined
to a thin boundary layer that develops near the wall. Above the boundary layer, lies
a nearly inviscid region. For two-dimensional steady flow, Higuera (1994) estimated
the order of magnitude of the region near the edge where inertial effects cease to be
negligible in the subcritical region to be 1 − x = O((Fr2Re3/L3)1/3). This range is recast
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here in terms of the jet Froude and Reynolds numbers, where L is the half-length of
the plate scaled by the half-width of the jet, and x = 1 coincides with the plate edge.
We establish a similar estimate in our (steady axisymmetric) case by balancing the
inertial term with the hydrostatic pressure gradient term in the momentum equation, or
by setting Re S(dS/dr) ∼ (Re/Fr2)(dH/dr), where S and H are the subcritical surface
velocity and film thickness for steady flow. In this case, evaluating (3.27) at z = H yields
S = −1

2 (Re/Fr2)(dH/dr)H2. Following Higuera (1994) and setting H∞ ≈ 0, expression
(3.31) reduces to H = [(6Fr2/Re) ln(r∞/r)]1/4. Finally, the range where inertial effects
become important near the edge is 1 − r/r∞ = O((Fr2Re3/r8∞)1/3).

By comparing against his numerical solution, Higuera (1994) also estimated the range of
validity of the lubrication flow assumption to be (Fr2Re3/L3)1/2 < 0.4 (see his figure 3).
Analogously, in our study, all the reported results correspond to the range 0.0256 ≤
(Fr2Re3/r8∞)1/2 ≤ 0.58, which suggests that our use of the lubrication assumption is
reasonably justified. This range also corresponds to typical measurements in the literature;
for example, between 0.08 and 0.46 for water (Hansen et al. 1997), in which case, the
lubrication assumption yields good agreement with experiment (see figure 15 in Wang &
Khayat 2018). More importantly, comparison between theory and experiment suggests that
the range of validity of the lubrication assumption can be much wider than that suggested
by Higuera (1994) or the range in the present study. See, for instance, the comparison by
Wang & Khayat (2018), in their figure 13, against the measurements of Dressaire et al.
(2010) for water at high flow rate, where 0.05 ≤ (Fr2Re3/r8∞)1/2 ≤ 2.8.
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Appendix A. Solution of the boundary-layer equation (3.12)

In this appendix, we carry out the analytical solution of (3.12) using the method of
characteristics. We introduce the coordinate transformation: ξ = ξ(t̄, r̄), ζ = ζ(t̄, r̄). In
this case, (3.12a) becomes

(α1ξt̄ + α2Wξr̄)Zξ + (α1ζt̄ + α2Wζr̄)Zζ = α3W2r̄2, (A1)

where α1 = 3/8, α2 = 39/280 and α3 = 3.
We seek an ordinary differential equation in ξ , thus requiring the coefficient of Zζ to

vanish. The characteristic curves are then given by

dr̄
dt̄

= α2

α1
W. (A2)

The general solution of (A2) is r̄ − (α2/α1)S = C, where S = ∫
W dt̄. Thus, the change of

coordinates will be

ξ = t̄, ζ(t̄, r̄) = r̄ − α2

α1
S. (A3a,b)
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Equation (A1) becomes

α1Zξ = α3W2r̄2 = α3W2
(

ζ + α2

α1
S
)2

. (A4)

Integrating (A4) yields the solution

Z(ξ, ζ ) = α3

α1

[
ζ 2
∫

W2 dξ + 2
α2

α1
ζ

∫
W2S dξ + α2

2

α2
1

∫
W2S2 dξ

]
+ f (ζ ), (A5)

where f (ζ ) is fixed subject to the initial condition (3.12c).
Substituting (ξ, ζ ) back in terms of (r̄, t̄), (A5) becomes

Z(t̄, r̄) = α3

α1

[(
r̄ − α2

α1
S
)2 ∫

W2 dt̄ + 2
α2

α1

(
r̄ − α2

α1
S
)∫

W2S dt̄

+α2
2

α2
1

∫
W2S2 dt̄

]
+ f

(
r̄ − α2

α1
S
)

.

(A6)

For the case of the linearly accelerating jet examined in § 4, W = 1 + At̄ during the
acceleration period, and condition (3.12c) becomes

Z(r̄, t̄ = 0) = α3

3α2
r̄3 = f (r̄). (A7)

Consequently, the solution (A6) becomes

Z(t̄, r̄) = α3

α1

[(
r̄ − α2

α1
S
)2 ∫

W2 dt̄ + 2
α2

α1

(
r̄ − α2

α1
S
)∫

W2S dt̄

+α2
2

α2
1

∫
W2S2 dt̄

]
+ α3

3α2

(
r̄ − α2

α1
S
)3

.

(A8)

An approximate expression can be obtained for small time. Upon substituting W = 1 + At̄,
and keeping quadratic terms in t̄, we obtain

Z(t̄, r̄) = α3

3α2
r̄3 + α3

α1

A
2

r̄2 t̄2. (A9)

Recalling (3.11a), the boundary-layer thickness evolution at small time is found to be

δ̄ ≈ 1
1 + At̄

√
α3

3α2
r̄ + α3

α1

A
2

t̄2. (A10)
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