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Considerable effort has been directed towards the characterization of chiral mesoscale
structures, as shown in chiral protein assemblies and carbon nanotubes. Here, we establish
a thermally driven hydrodynamic description for the actuation and separation of mesoscale
chiral structures in a fluid medium. Cross-flow of a Newtonian liquid with a thermal
gradient gives rise to an effective torque that propels each particle of a chiral suspension
according to its handedness. In turn, the chiral suspension alters the liquid flow, which
thus acquires a transverse (chiral) velocity component. Since observation of the predicted
effects requires a low degree of sophistication, our work provides an efficient and
inexpensive approach to test and calibrate chiral particle propulsion and separation
strategies.
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1. Introduction

Chirality, denoting the lack of superposition ability of structures on mirror images, is
a characteristic of various assemblies, including carbon nanotubes, viruses and actin
filaments, and is essential for their function. Since left- and right-handed amino acids
lead to different protein structures, their homochirality is required for biological function
such as gene encoding (Inaki, Liu & Matsuno 2016). Chiral proteins can sometimes lead
to chiral mesoscale structures; some organisms with chiral body structures have chiral
cells (Fan et al. 2019). Therefore, the chirality of proteins may be responsible for the
chiral mesoscale structures found in cell media. Chiral mesoscale assemblies are formed in
peptide amphiphiles with chiral amino acids (Gao et al. 2019) and in many carbon-based
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Figure 1. A chiral velocity vchẑ – defined as the difference of the velocities of the left- and right-handed
particles, averaged over their number density (number of particles per unit volume) – of n chiral particles
suspended in a classical liquid is induced by a vertical temperature gradient ∇T = ∂yT ŷ and shear flow
v = u( y) x̂ in a channel of width d. In a non-racemic suspension of chiral particles, the liquid is also perturbed
by chirality and acquires a transverse velocity component δv( y) ẑ (not shown), perpendicular to the direction
of the base flow u( y) x̂.

systems, which have required great efforts to understand and characterize (Arnold et al.
2006). However, the mechanism by which chirality manifests at the mesoscale is not well
understood. Here, we propose ways of actuating and separating mesoscale chiral structures
such as helices (Shimizu, Masuda & Minamikawa 2005; McCourt et al. 2022), helicoidal
scrolls (Nagarsekar et al. 2016) and twisted ribbons (Oda et al. 1999).

The question that arises is: under what conditions can these mesoscale chiral structures
propel and separate? For instance, in Andreev, Son & Spivak (2010), it was shown that in
the absence of temperature gradients, chiral separation is possible only in non-stationary
or nonlinear flows. However, in chemical and biological systems, various mesoscale
structures move and function in an aqueous environment in the presence of thermal
gradients induced by chemical reactions (Zhang et al. 2014). Temperature gradients may
alter the liquid material parameters, and in particular viscosity, as this was demonstrated
in laser-induced thermophoresis experiments (Schermer et al. 2011) and in associated
theoretical work (Oppenheimer, Navardi & Stone 2016). In this paper, we show that the
dependence of material parameters such as viscosity or density on temperature gives rise
to propulsion and separation of a chiral suspension even in stationary linear flows (low
Reynolds number flows). In particular, for a stationary Poiseuille flow, the segregation
induced by chirality (characterized by the velocity vch) occurs in a direction normal to
both the base flow and the temperature gradient; see figure 1.

Our main result is an expression for the chiral velocity vch acquired by the suspended
chiral particles. The chiral velocity is defined as the difference of the velocities of the left-
and right-handed particles, averaged over their number density (number of particles per
unit volume). To leading order in an expansion with respect to the temperature gradient,
the chiral velocity is of the form

ẑ : 〈vch〉 = 24χ

(
R
d

)3

U0γ �T, (1.1)

where �T is the temperature difference between the upper and lower channel walls, R
is the (micron scale) chiral particle radius, d is the (millimetre scale) channel width, U0
is a characteristic velocity scale of the base flow, γ = η′/η is the logarithmic derivative
of the viscosity, with a prime denoting differentiation with respect to temperature T , χ

is a geometric scalar coefficient characteristic of the particle shape, and the brackets
〈 · 〉 denote averaging over the channel width. Equation (1.1) is a consequence of the
variation of liquid viscosity η with respect to temperature. Considerable effort has been
expended in recent years in characterizing the response of active and biological liquids to
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viscosity gradients (Shoele & Eastham 2018; Datt & Elfring 2019) (albeit based on the
single-particle level; see the ensuing discussion).

The physical mechanism underlying the transverse chiral velocity (1.1) is the
torque imparted on the base flow by the temperature gradient having the form
∇T × ∇2v + (∇T · ∇) curl v, as will be discussed in detail in § 3, where v is the velocity
of the base flow, and T is its temperature. With reference to figure 1, this torque is
perpendicular to both pressure and temperature gradients, thus propelling the particles
along its direction.

Another aspect of the effect is that the motion of the chiral suspension in turn perturbs
the base flow and endows it with a transverse velocity component δv. It is noteworthy that
the chiral suspension also exerts a screw torque on the confining walls, in the direction of
the base flow.

It is important to realize that the hydrodynamic description developed in this paper
implies averaging over the tumbling motion of the chiral particles and applies at time scales
longer than the tumbling time (Andreev et al. 2010). It can be understood as a ‘continuum’
formulation for the motion of a chiral suspension, and thus differs from the majority
of propulsion descriptions that are based on a resistance matrix at the level of a single
suspended particle (Happel & Brenner 1965). The equivalence of the two approaches was
discussed in the recent review article by Witten & Diamant (2020).

The structure of this paper is as follows. In § 2, we describe the hydrodynamic equations
of the base flow undisturbed by the chiral suspension. We have chosen an Arrhenius-type,
temperature-dependent viscosity law that is valid over a large range of temperatures and is
well-documented in the literature; see Fogel’son & Likhachev (2001). In § 3, we introduce
the chiral current, chiral velocity vch and chiral stress following the symmetry arguments
of Andreev et al. (2010) (derived therein when the flow is isothermal). The chiral current
is the difference of the left- and right-handed particle velocities weighted by the number
of particles of each handedness. The chiral velocity vch is equal to the chiral current
divided by the number of particles per unit volume. Here, where non-isothermal flows
are considered, one has to express the vorticity equation with respect to variations of
material parameters with temperature. Our main result of the present paper appears in
§ 4, where we consider a suspension of chiral particles in a channel, whose base liquid is
driven by crossed pressure and temperature gradients (see figure 1). Both the undisturbed
by chirality flow and the chiral velocity vch can be expressed in closed form. Employing
published material parameters, we estimate the magnitude of the chiral velocity and that
of the liquid disturbed by chirality, henceforth denoted as δv. The main result obtained in
this section is the linear dependence in �T of the chiral velocity vch – defined as the
difference of the velocities of the left- and right-handed particles, averaged over their
number density (number of particles per unit volume) – obtained for small temperature
gradients. Likewise, the velocity of the liquid disturbed by chirality also depends linearly
on temperature gradients �T . It is noteworthy that the chiral suspension exerts a screw
torque on the confining walls, in the direction of the base flow. This was also observed
earlier in the context of non-isothermal flows (Andreev et al. 2010), and here we calculate
corrections due to the temperature variations. In § 5, we repeat the foregoing analysis for
the practically important case of Couette flow. However, here the observables are quadratic
with respect to �T . As in the previously considered Poiseuille flow, all observables
referred to in this section are perpendicular to the base flow plane, as depicted in figure 1.

In § 6, we analyse two additional thermal effects that may give rise to non-isothermal
chiral particle propulsion. The first is to consider a non-isothermal liquid, driven for
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instance by a moving channel wall and endowed with viscous heating (see § 6.1), which
increases the liquid temperature near the centre of the channel and thus diminishes its
viscosity. The chiral velocity vch (see figure 1) depends then not on imposed temperature
gradients but on the velocity scale introduced by the moving wall, and can be expressed
in terms of the dimensionless Brinkman number. The second thermally related effect
discussed in § 6.2 considers an alternative temperature-dependent mechanism whereby the
chiral current is driven by gradients of temperature crossed with the gravitational force, in
a Rayleigh–Bénard cell.

In the main body of this paper, we set the chirality parameter χ to be equal to 1. In
Appendix A, we justify this choice by comparing our framework with the predictions of
the single-particle theory of Makino & Doi (2004, 2017). In addition, we show that the
predictions of our theory (e.g. magnitude of chiral stress) are compatible to those found
in systems of similar size in biology and technology (Kataoka & Troian 1999; Ando &
Yamamoto 2009).

2. Hydrodynamic equations in the absence of chirality

Conservation of entropy in an incompressible flowing liquid (Landau & Lifshitz 1987)
leads to heat advection and heat conduction as well as energy dissipation due to internal
friction, termed viscous heating:

ρcp(∂tT + v · grad T) = kth ∇2T + σ ′
ik

∂ui

∂xk
, i, k = 1, 2, 3, (2.1)

where summation is implied on repeated indices, T is the liquid temperature, cp is
the specific heat at constant pressure, ρ is the density of the liquid, kth is the thermal
conductivity of the liquid, and the liquid velocity v is determined from conservation
of mass and linear momentum. Also, σ ′

ik = η(∂ui/∂xk + ∂uk/∂xi), i, k = 1, 2, 3, is the
viscous stress tensor, and η is the liquid viscosity. Rearranging the right-hand side of
(2.1), one obtains

ρcp(∂tT + v · grad T) = kth ∇2T + η

2

(
∂ui

∂xk
+ ∂uk

∂xi

)2

, (2.2)

accompanied by fixed temperature boundary conditions on the vessel walls. Viscous
heating can introduce hysteresis effects in Arrhenius-type viscosity laws (Davis et al.
1983) and affect the motion of thin liquid films (Kirkinis & Andreev 2019). In general,
the viscous heating term is expected to be small and can be neglected. We will consider
its effects on chiral particle propulsion in § 6.1.

Various temperature-dependent viscosity laws have been employed in the literature (see
e.g. Potter & Graber 1972; Davis et al. 1983; Wall & Wilson 1996). Here, we will employ
the well-documented Arrhenius-type temperature dependent viscosity law (Fogel’son &
Likhachev 2001)

η(T) = η0 exp
{

TE

T + TA

}
, where TE = E

Rg
, (2.3)

valid in the 243–373 K temperature range, since it encompasses the linear and other
exponential laws, appearing in the above references, as special cases. Here, E is the
activation energy, Rg is the gas constant, and TA is a temperature correction, unique to
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Quantity Value Definition

η (g cm−1 s−1) 2.03 Viscosity of BM-4 oil at 25 ◦C (Fogel’son & Likhachev 2001)
R (cm) 5 × 10−3 Chiral particle radius
d (cm) 0.1 Channel width
U0 (cm s−1) 0.1 Poiseuille velocity
T0 (K) 298.15 Lower channel wall temperature
γ (K−1) 0.07 BM-4 oil (Fogel’son & Likhachev 2001)
E (kJ mol−1) 7.5 Activation energy of BM-4 oil (Fogel’son & Likhachev 2001)
Rg (J mol−1 K−1) 8.31441 Gas constant
TA (K) −186 BM-4 oil temp. correction (Fogel’son & Likhachev 2001)
V (cm s−1) 1 Couette velocity
nch (cm−3) R−3 Chiral density n+ − n−
n (cm−3) R−3 Particle number density n+ + n−
u (cm s−1) — Basic shear flow velocity
vch (cm s−1) — Chiral velocity
δv (cm s−1) — Chiral correction to flow velocity

Table 1. Definitions and material parameter values (Fogel’son & Likhachev 2001).

each viscous liquid; cf. Fogel’son & Likhachev (2001) and table 1. If in a channel the
lower wall y = 0 is kept at a temperature T0, then linearization of (2.3) leads to

η(T) = η(T0)
[
1 − γ (T − T0)

]
, (2.4)

where γ = E/[Rg(T0 + TA)2] is the logarithmic derivative of the viscosity (2.3), and
η(T0) = η0 exp{E/Rg(T0 + TA)}. We will employ parameter γ in our investigations
throughout this paper.

The flowing liquid satisfies the Navier–Stokes equations and is considered
incompressible:

ρ (∂tui + v · grad ui) = ∂kσik and ∂iui = 0, (2.5a,b)

where the Cauchy stress tensor σik is given by

σik = −pδik + η(T)

(
∂ui

∂xk
+ ∂uk

∂xi

)
, i, k = 1, 3, (2.6)

and p is the pressure.
With a view towards understanding the structure of the vorticity equation leading to

(3.8), we take the curl of both sides of (2.5a). Thus the left-hand side of (2.5a) just gives the
vorticity equation for an inviscid liquid. The curl of the right-hand side of (2.5a) becomes

εijk ∂i∂lσjl = 2εijk {∂i(∂lη) + (∂lη)∂i + (∂iη)∂l + η ∂l∂i} Vjl

=
{
εijk

[
η′′ ∂iT ∂lT + η′ ∂i∂lT

]
2Vjl + η′

[
∂lT ∂lωk + εijk ∂iT ∂2

l uj

]
+ η ∂2

l ωk

}
,

(2.7)

where a prime denotes differentiation of the viscosity η with respect to temperature T . It
is clear that in the absence of nonlinear or non-stationary terms in the vorticity equation,
the diffusion of vorticity is maintained in (2.7) by gradients of temperature. Also note that
the linear terms in gradients of temperature in (2.7) match the terms of the chiral current
introduced in (3.4).
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To clarify the implications inherent in (2.7), we consider shear flow in a channel (see
figure 1) whose walls are located at y = 0, d, for which the liquid velocity, temperature
and liquid vorticity become

v = u( y) x̂, T = T( y), curl v = −∂yu( y) ẑ ≡ ωẑ. (2.8a–c)

The boundary conditions for this flow are

u( y = 0) = u( y = d) = 0 and T( y = 0) = T0, T( y = d) = T1, (2.9a–c)

where the upper channel wall is kept at a temperature T1 > T0.
For this flow, the vorticity equation becomes

η(T) ∂2
y ω = −2η′ (∂yT

)
∂yω −

[
η′′ (∂yT

)2 + η′ ∂2
y T

]
ω, (2.10)

by setting (2.7) equal to zero. The last term in (2.10) drops out for liquids satisfying ∂2
y T =

0 (that is, liquids whose viscous heating displayed in (2.1) is unimportant). Retaining only
leading-order terms in temperature gradients, we obtain the theoretical prediction (1.1) for
the chiral current.

3. Chiral current and chiral stress in non-isothermal flow

The effect that we discuss in this paper is critically dependent on the form of the chiral
current, which is proportional to the chiral velocity as this was defined in the Introduction
(see also (3.11) below). Thus in the ensuing paragraphs we justify the form of the chiral
current on grounds of symmetry.

3.1. Conservation of particle number
Motion of chiral particles suspended in a classical liquid is associated with a chiral current
j± = n±v±, where n± are the number densities (numbers of particles per unit volume)
of right- and left-handed particles, respectively, and v± are their respective velocities. For
simplicity, we consider an incompressible liquid where the right- and left-handed particles
are mirror images of each other. We can thus define a chiral current jch (cf. figure 1) of the
form

jch = j+ − j−. (3.1)

The chiral density nch = n+ − n− satisfies the conservation law

∂tnch + div(vnch) + div
[
j(nch) + jch

]
= 0, (3.2)

where j(n) = −D ∇n − nλT ∇T − nλp ∇p is the particle current in the absence of
chirality (Landau & Lifshitz 1987; Andreev et al. 2010), and j(nch) is j(n) with n replaced
by nch. The density n = n+ + n− of chiral particles satisfies a similar conservation
equation, which is affected by chirality in a non-racemic mixture

∂tn + div(vn) + div
[
j(n) + jch(nch)

]
= 0, (3.3)

so that (3.2) and (3.3) satisfy the Onsager principle of the symmetry of the kinetic
coefficients (Landau & Lifshitz 1987).
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3.2. Chiral current
In the presence of temperature gradients, a phenomenological expression for the chiral
current jch (cf. (3.1)) based on symmetry considerations and which has a low power of
derivatives of vorticity is

jch = n
T

[
β1(∇T · ∇) curl v + β2 ∇T × ∇2v

]
, (3.4)

where n = n+ + n−, and T, v are the liquid’s, undisturbed by chirality, temperature and
velocity, respectively. The coefficients β1, β2 will be discussed below. As mentioned
above, the magnitude of the chiral current is determined by the complicated tumbling
motion of the particles caused by thermal fluctuations and the inhomogeneous flow. The
phenomenological expression (3.4) is written to lowest order in the driving flow. At strong
drives, thermal fluctuations are subdominant, and the magnitude of the chiral current is
determined by averaging over corresponding Jeffery orbits in the non-uniform flow. This
problem, but in a different context, was discussed in Kirkinis, Andreev & Spivak (2012).

In Andreev et al. (2010), the chiral current in an isothermal system was shown to be
described by the expression

jch = nβ ∇2curl v. (3.5)

Insight into the physical origin of (3.4) may be obtained by applying (3.5) to a shear flow
in the presence of temperature gradients. In particular, allowing temperature dependence
of the liquid viscosity η and implementing the resulting vorticity equation, (3.5) leads to

jch ∼ nβ
η′

η

[
∇T × ∇2v + (∇T · ∇) curl v

]
, (3.6)

where a prime denotes differentiation with respect to temperature T , and we retained
only leading-order terms in temperature gradients. Thus the coefficients β1 and β2 in
(3.4) can be expressed in terms of the logarithmic derivative of viscosity with respect
to temperature. We note that in the absence of temperature gradients, chiral separation is
possible only in non-stationary or nonlinear flows (Andreev et al. 2010), as can be seen by
inspection of the vorticity equation

η ∇2curl v = ρ(∂tcurl v + curl(v · ∇v)), (3.7)

and (3.5). For example, such propulsion would be present in the nonlinear pressure-driven
flow induced in a convergent or divergent channel (Landau & Lifshitz 1987, § 23). In
the presence of temperature gradients, however, chiral separation is possible even in the
creeping flow regime. This is important for biological systems, which operate at low
Reynolds numbers. This can be seen by considering a liquid whose viscosity is a function
of temperature. To leading order in �T , the vorticity equation (3.7) is replaced by

η ∇2curl v ∼ η′
[
∇T × ∇2v + (∇T · ∇) curl v

]
+ ρ(∂tcurl v + curl(v · ∇v)) + O((�T)2), (3.8)

where a prime denotes differentiation with respect to temperature T . Comparison of the
linear in ∇T terms in (3.8) with (3.4) shows that the latter and (3.5) are equivalent when
material parameters (here, the viscosity) vary with temperature. We note that an expression
of magnetic origin for the diffusion of vorticity was also obtained in Kirkinis & Olvera de
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la Cruz (2023), leading to the actuation of a suspension of chiral particles in a magnetic
liquid.

When the spatial derivatives of v do not vanish, the linear in �T terms in (3.8) provide
a scaling prediction for the magnitude of the chiral current (3.5), and equivalently for the
chiral velocity vch in the form (1.1). This is a main consequence of the symmetries leading
to (3.4), and will be derived explicitly in § 4.

3.3. Chiral stress
A chiral suspension imparts stresses on the suspending liquid. To leading order in velocity
gradients, these stresses, allowed by symmetry, read

σ ch
ij = η(T) nch

{
α

[
∂i(curl v)j + ∂j(curl v)i

] + α1

T

[
εkliVkj + εkljVki

]
∂lT

}
, (3.9)

where Vij is the rate-of-strain tensor. The first square bracket term of (3.9) introduced
in Andreev et al. (2010) was discussed in the recent review Witten & Diamant (2020).
The second square bracket term exists only when temperature gradients are present in the
liquid.

The coefficients β, α and α1 in (3.5) and (3.9) are determined in the low Reynolds
number regime by studying the particle motion in the surrounding liquid (Happel &
Brenner 1965). They may be estimated as

α ∼ α1 ∼ χR4 and β ∼ χR3, (3.10a,b)

where R is the chiral particle radius, and χ is the degree of chirality in the shape
of the particles. Equations (3.10a,b) provide the order of magnitude estimates of these
coefficients. Their precise determination for a specific particle shape, however, requires
solving hydrodynamic equations for a tumbling particle in the presence of temperature
and velocity gradients, and is beyond the scope of our work. For simplicity, we consider
an incompressible liquid where the right- and left-handed particles are mirror images of
each other.

3.4. Chiral velocity
The programme to be followed in this paper is as follows. First, we will determine the
form of the base flow, undisturbed by chirality, and denoted by v = u( y) x̂ with reference
to figure 1. From this, we calculate the chiral velocity vch as

vch ≡ jch/n, (3.11)

which, through (3.5), gives rise to the main observable, that is, the chiral current jch. We
calculate explicitly the stresses imparted on the liquid and on the two channel walls by
the chiral stress (3.9). The Cauchy stress tensor in (2.6) thus needs to be updated by the
chiral contribution (3.9) to take into account the effects of the chiral suspension on the
base liquid. Thus we calculate explicitly the chiral suspension-induced perturbation δv of
the liquid base flow.

4. Chiral particle separation in crossed pressure and temperature gradients

4.1. Non-isothermal base Poiseuille flow (without chiral particles)
Consider pressure-driven flow in a channel with uneven heated walls (cf. figure 1). With
v = u( y) x̂, ∇T = ∂yT ŷ, the Navier–Stokes equations (2.5a,b) and energy balance (2.2) in
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the creeping flow approximation reduce to

d
dy

[
η(T)

du
dy

]
= dp

dx
,

d2T

dy2 = 0, (4.1a,b)

respectively, with boundary conditions

u(0) = u(d) = 0, T(0) = T0, T(d) = T0 + �T. (4.2a–c)

The energy equation temperature profile thus obtained is T( y) = T0 + (y/d)�T . Let

Xi = TE

TA + Ti
, i = 0, 1, 2, and TE = E

Rg
, (4.3a,b)

where T0 and T1 = T0 + �T are the lower and upper wall fixed temperatures, respectively,
T2 ≡ T = T0 + (y/d)�T , and E, Rg and TA are the activation energy, gas constant and
correction temperature as defined in table 1, respectively. The solution of the first equation
of (4.1a,b) with boundary conditions (4.2a–c) becomes

u = T2
Ed2 ∂xp

2η(T) (�T)2

∑
{i,j,k}

eXi

{
Ei1(Xi)

[
eXj

X2
k

− eXk

X2
j

]
+ 1

XjXk

(
1

Xk
− 1

Xj

)}

[Ei1(X0) − Ei1(X1)] eX0+X1 + eX0

X1
− eX1

X0

, (4.4)

where the y dependence arises through X2(T( y)) (see (4.3a,b)), the symbol {i, j, k} means
cyclic permutation of i, j and k, and

Ei1(X) =
∫ ∞

1

e−kX

k
dk (4.5)

is the exponential integral.

4.2. Chiral velocity
Now consider the presence of chiral particles and define the chiral velocity (3.11),
vch ≡ jch/n, relative to the liquid by employing (3.5). With respect to the geometry
displayed in figure 1, it has the form vch = vch( y) ẑ, and its magnitude is

vch = χ
R3

d
X4

2 �T ∂xp
2η(T) TE

×
[Ei1(X1) − Ei1(X0)] eX0+X1 + ∑

i /= j=0,1

(−1)ieXj

X2
i

[
1
2

+ 1
Xi

(
1

X2
− 1

2

)]

[Ei1(X0) − Ei1(X1)] eX0+X1 + eX0

X1
− eX1

X0

, (4.6)

where the y-dependence again arises through X2(T( y)) (see (4.3a,b)). In figure 2, we
plot the closed-form expression (4.6) for the chiral velocity δv in cm s−1 versus channel
elevation y in cm for two temperature variations �T between the lower (at y = 0) and upper
(at y = 0.1 cm) channel walls. As can be seen in figure 2, velocity proliferation is favoured
near the upper heated wall where viscosity is diminished. In addition, particle velocities
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Figure 2. Chiral particle velocity vch in cm s−1 from (4.6), perpendicular to the x–y plane formed by a base
Poiseuille flow and the vertical temperature gradient directions (cf. figure 1). Here, y is the vertical channel
coordinate in cm, and we employed the Arrhenius-type temperature dependent viscosity law (2.3) for a BM-4
oil (Fogel’son & Likhachev 2001). We have set χ = 1 (see the discussion in Appendix A).

are non-zero close to the solid walls located at y = 0, d, even though no-slip boundary
conditions are satisfied by the base liquid. This is the case because, according to (3.5),
chiral particle velocities become prominent in the vicinity of large vorticity gradients, and
these are present close to solid walls.

Relation (4.6) is tidy but uninformative. To obtain an understanding of the effect,
we average (4.6) over the channel width d, and expand with respect to �T to obtain
〈vch〉 ∼ 2χR3γ (�T/d)(∂xp/η), to leading order in �T , where we defined the average
of a function f ( y) with respect to the channel width to be 〈 f 〉 = (1/d)

∫ d
0 f ( y) dy, R is

chiral particle size, d is channel width, and γ is the logarithmic derivative of viscosity;
see the discussion below (2.4). It is more illuminating, however, to replace the pressure
gradient with a characteristic velocity U0 of Poiseuille flow by averaging the (undisturbed
by chirality) base Poiseuille profile u ∼ ∂xp/2η(T0) ( y2 − yd) over the channel width d.
This gives U0 = −(∂xp/12η(T0))d2, and substituting into the expression for 〈vch〉, we
obtain the single-particle velocity

〈vch〉 = 24χ

(
R
d

)3

U0γ �T. (4.7)

Considering BM-4 oil (Fogel’son & Likhachev 2001), �T = 10 K and the values
displayed in table 1, (4.7) leads to the estimate

vch ∼ 2χ µm s−1. (4.8)

The Reynolds number is Re ∼ 3.4 × 10−3. Analogous results can be derived for silicon
oils employed in the experiments of Ehrhard (1993) and other liquids reported in the
literature (Fogel’son & Likhachev 2001). Water can also be used, although it leads to
Reynolds numbers higher than those reported here.
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Hydrodynamics of thermally driven chiral suspensions

4.3. Perturbation of liquid velocity by the chiral suspension
A chiral suspension imparts stresses on the suspending liquid. To leading order in gradients
of vorticity, these stresses, allowed by symmetry, are given by (3.9)). Here, nch = n+ − n−
is the chiral density, and n+ and n− are the number densities of right- and left-handed
particles, respectively. Thus the liquid velocity v acquires a chirality-induced component
δv perpendicular to the plane of the flow:

v = u( y) x̂ + δv( y) ẑ. (4.9)

With the chiral correction (3.9), the Cauchy stress tensor reads

σij = −pδij + η(∂iuj + ∂jui) + σ ch
ij . (4.10)

Conservation of linear momentum ∂jσij = 0 along the flow direction x̂ : −∂xp + ∂y(η ∂yu)

= 0 is now accompanied by its chirality-induced counterpart that is perpendicular to the
base flow direction,

ẑ : ∂y(η ∂yδv) − nchχR4 ∂y(η ∂2
y u) = 0, (4.11)

and satisfies no-slip boundary conditions

δv(0) = δv(d) = 0. (4.12)

The solution δv of (4.11) with boundary conditions (4.12) is displayed in figure 3 in
cm s−1 versus channel elevation y in cm for two temperature variations ΔT between the
lower (at y = 0) and upper (at y = 0.1 cm) channel walls, employing the Arrhenius-type
temperature-dependent viscosity law (2.3). Its profile is skewed due to the reduction of
viscosity close to the upper heated channel wall, which is also the location of high chiral
velocity vch.

To leading order in �T , and averaging over the channel width d, we obtain
δv ∼ χR(d ∂xp/12η)γ �T . Replacing the pressure gradient with its Poiseuille flow
counterpart leads to

δv ∼ χ
R
d

U0γ �T. (4.13)

Employing the material parameters for BM-4 oil displayed in table 1, and setting �T =
10 K, we obtain the estimate

δv ∼ 35χ µm s−1, (4.14)

which agrees well, in order of magnitude, with the exact solution displayed in figure 3.
The momentum equation displayed in (4.11) was formulated by considering only the first
term of the constitutive law (3.9), since the second term – for the material parameters
employed in this paper – gives velocities that are one order of magnitude smaller than the
ones derived here.

4.4. Screw torque in a non-racemic suspension
A non-racemic mixture will apply shear stresses on the channel walls that are
perpendicular to the plane of the paper. These forces arise from the chiral momentum
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Figure 3. Transverse chiral component of liquid velocity δv in cm s−1, perpendicular to the x–y plane formed
by a Poiseuille flow and the temperature gradient directions (cf. figure 1) and obtained by solution of (4.11)
with boundary conditions (4.12). Here, y is the vertical channel coordinate in cm, and we employed the
Arrhenius-type temperature dependent viscosity law (2.3) for a BM-4 oil (Fogel’son & Likhachev 2001), giving
rise to the skewness of chiral velocity profiles. We have set χ = 1 (see the discussion in Appendix A).

flux density (3.9) (Andreev et al. 2010). Employing the geometry of the channel Poiseuille
flow displayed in figure 1, this stress is of the form

σ ch
zy = χRη ∂2

y u. (4.15)

In figure 4, we display the chiral stress σ ch
zy as a function of channel width employing the

exact form for the liquid velocity profile (4.4). Since the normal vectors to the two channel
walls have opposite sign, the chiral suspension exerts on the walls two forces of opposite
sign directed into and out of the page. Hence there is a screw torque exerted by the chiral
flow on the confining walls, directed along the flow.

Calculating the average of the chiral stress 〈σ ch
zy 〉 over the channel width, and expanding

with respect to �T , we obtain

〈σ ch
zy 〉 = χR ∂xp(1 + 1

2γ �T) + O((�T)2). (4.16)

Expression (4.16) implies that a chiral stress exists even in the absence of temperature
gradients. This was also noted in Andreev et al. (2010). Replacing the pressure gradient
by the base Poiseuille profile, as carried out in the foregoing sections and employing the
material values appearing in table 1 for �T = 10 K, (4.16) gives

〈σ ch
zy 〉 = 1.21χ(1 + 0.43) + O((�T)2) dynes cm−2. (4.17)

Doubling �T , one needs to double only the number 0.43 in this last expression.

5. Non-isothermal chiral separation and propulsion in Couette flow

The practically important case of Couette flow under a vertical temperature gradient in a
channel whose upper wall slides with velocity V also gives a commensurate chiral particle
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Figure 4. Distribution of the chiral stress σ ch
zy in (4.15) in dynes cm−2 imparted by the chiral suspension on the

liquid in a direction perpendicular to the x–y plane formed by the Poiseuille flow and the vertical temperature
gradient (cf. figure 1), versus the vertical coordinate y of the channel in cm. We employed the Arrhenius-type
temperature-dependent viscosity law (2.3) for a BM-4 oil (Fogel’son & Likhachev 2001). Since the normal
vectors to the two channel walls have opposite sign, the chiral suspension exerts on the walls two forces of
opposite sign directed into and out of the page. Hence there is a screw torque exerted by the chiral flow on the
confining walls, directed along the base flow direction. We have set χ = 1 (see the discussion in Appendix A).

propulsion: v = u( y) x̂, ∇T = ∂yT ŷ. In this case, the Navier–Stokes and energy balance
equations in the creeping flow approximation reduce to

d
dy

[
η(T)

du
dy

]
= 0,

d2T

dy2 = 0, (5.1a,b)

with boundary conditions

u(0) = 0, u(d) = V, T(0) = T0, T(d) = T1 ≡ T0 + �T. (5.2a–d)

The energy equation temperature profile thus obtained is T( y) = T0 + (y/d)�T .
The vorticity equation in the form (2.10) still holds, but because of the form of the

Couette flow profile, contributions on the right-hand side of (2.10) will all be of second
order in �T . Employing the notation introduced in (4.3a,b), the chiral separation velocity
takes the form

vch = χR3 V
d3

X4
2

(
1

X0
− 1

X1

)3 (
2

X2
− 1

)
eX0+X1−X2

[Ei1(X0) − Ei1(X1)] eX0+X1 + eX0

X1
− eX1

X0

. (5.3)

In figure 5, we plot the closed-form expression (5.3) for the individual particle velocity vch

in cm s−1 versus channel elevation y in cm for two temperature variations �T between the
lower (at y = 0) and upper (at y = 0.1 cm) channel walls.

Averaging (5.3) over the channel width d, and expanding with respect to �T , we
obtain the chiral separation velocities 〈vch〉, which are now quadratic with respect to the
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Figure 5. Chiral particle velocity vch in cm s−1 from (5.3), perpendicular to the x–y plane formed by the
Couette flow and temperature gradient directions (cf. figure 1). Here, y is the vertical channel coordinate in cm,
and we employed the Arrhenius-type temperature-dependent viscosity law (2.3) for a BM-4 oil (Fogel’son &
Likhachev 2001). The base flow is generated by the motion of the upper channel wall with velocity 1 cm s−1.
We have set χ = 1 (see the discussion in Appendix A).

temperature gradient strength �T:

〈vch〉 ∼ 2χV
(

R
d

)3 TA + T0 − TE

2
(TA + T0)4 TE(�T)2 (5.4)

(see table 1 for the meaning of the various temperature scales). Considering the parameter
values displayed in table 1, upper channel wall velocity V = 1 cm s−1 and �T = 10 K,
we obtain

〈vch〉 ∼ 0.483 µm s−1, (5.5)

which agrees well with the corresponding curve of figure 5. The Reynolds number is Re ∼
3.4 × 10−2. In a manner analogous to the pressure-driven flow of § 4, the suspension will
give rise to a transverse chiral component of liquid velocity vch perpendicular to the plane
of the flow, also calculated for an upper wall velocity 1 cm s−1 employing the nonlinear
Arrhenius viscosity law (2.3) by solving for δv in (4.11) with boundary conditions (4.12)
when the base flow is given by the Couette profile obtained from (5.1a,b) and (5.2a–d).
The liquid transverse chiral velocity δv obtained in this manner is displayed in figure 6.

6. Related thermal effects

6.1. Viscous heating-induced chiral particle propulsion
We note the existence of two rather special related thermal effects for the propulsion
of chiral particles. The first concerns the effects of viscous heating in the interior of a
channel when the viscosity is temperature-dependent and thermal gradients are generated
at the interior by viscous heating (Kirkinis & Andreev 2019). Referring to the geometry
displayed in figure 1, where v = u( y) x̂, ∇T = ∂yT ŷ (here, however, the two walls are kept
at equal temperatures), one can follow the formulation of this problem developed by Davis
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Figure 6. Transverse chiral component of liquid velocity δv in cm s−1, perpendicular to the x–y plane formed
by the Couette flow and temperature gradient directions (cf. figure 1) by solving for δv in (4.11) with boundary
conditions (4.12), when the base flow is given by the Couette profile obtained from (5.1a,b) and (5.2a–d).
Here, y is the vertical channel coordinate in cm, and we employed the Arrhenius-type temperature-dependent
viscosity law (2.3) for a BM-4 oil (Fogel’son & Likhachev 2001), giving rise to the skewness of the chiral
velocity profiles. The base flow is generated by the motion of the upper channel wall with velocity 1 cm s−1.
We have set χ = 1 (see the discussion in Appendix A).

et al. (1983):

d
dy

[
η(T)

du
dy

]
= 0, kth

d2T

dy2 + η

(
du
dy

)2

= 0, (6.1a,b)

with boundary conditions

u(0) = 0, u(d) = V, T(0) = T(d) = T0. (6.2a–c)

Employing the Arrhenius law, the problem can be solved only numerically. The interest
here would be the effect of hysteresis present between the shear rate and shear stress, as this
was studied in detail by Davis et al. (1983). When |T − T0|/T0 < 1, a valid approximation
to the Arrhenius law given as η(T) = η0 exp(−γ (T − T0)) and the solution of (6.1a,b)
with boundary conditions (6.2a–c) can be obtained in closed form. The effect is quantified
by the Brinkman number

Br = γ η0V2

kth
, (6.3)

where γ is the logarithmic derivative of the viscosity defined in (2.4). Exact expressions
for the particle velocity and temperature are then (Gavis & Laurence 1968; Sukanek,
Goldstein & Laurence 1973)

u = V
2

(
1 + c tanh b

(
2

y
d

− 1
))

and γ (T − T0) = ln
(

a sech2b
(

2
y
d

− 1
))

,

(6.4a,b)
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Figure 7. Chiral particle velocity vch in cm s−1 from (6.6), perpendicular to the x–y plane formed by the
motion of the upper wall with velocity V = 0.1 cm s−1. Most of the propulsion is generated at the interior,
which is the location of increased temperature gradients due to viscous heating and thus of diminishing liquid
viscosity. We have set χ = 1 (see the discussion in Appendix A).

where

a = 1 + 1
8 Br, b = sinh−1

(
1
8 Br

)1/2
and c =

⎛
⎜⎝1 + 1

8
Br

1
8

Br

⎞
⎟⎠

1/2

. (6.5a–c)

It is thus easy to calculate the chiral velocity vch in the form

vch = −χV
(

R
d

)3 32b3c
(

−2 + cosh
(

(−4y + 2d) b
d

))
(

cosh
(

(−4y + 2d) b
d

)
+ 1

)2 . (6.6)

Figure 7 displays three representative chiral velocity curves within the channel of width
0.1 cm employing the exact expression (6.6). Viscous heating and diminishing of the
liquid viscosity near the channel centre lead to increased particle velocities. For very high
Brinkman numbers, the profiles display additional maxima at the interior.

Averaging (6.6) over the width of the channel, and expanding for small Br, we obtain

〈vch〉 = χ

(
R
d

)3

V Br
(

1 − 1
6

Br + O(Br2)

)
. (6.7)

For Br = 0.8, d = 0.1 cm and V = 0.1 cm s−1, we find

〈vch〉 = 0.1 µm s−1. (6.8)
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6.2. Rayleigh–Bénard convection-induced chiral particle propulsion
Another related thermally induced chiral particle propulsion effect can take place in a
Rayleigh–Bénard cell (Chandrasekhar 1961), driven by variations of the liquid density
with temperature (thus the viscosity is considered to be a constant in this subsection).
Here, the coefficient of thermal expansion αT is the logarithmic derivative of density with
respect to temperature, in the same sense that γ in (2.4) is the logarithmic derivative of
viscosity. Diffusion of vorticity, perpendicular to the plane of the cell, is now expressed in
the form

η ∇2curl v = ρ0αTg × ∇T + ρ0(∂tcurl v + curl(v · ∇v)), (6.9)

where g is the gravitational acceleration, ρ = ρ0[1 − αT(T − T0)], ρ = ρ0 at T = T0, and
αT ≡ −(1/ρ)(∂ρ/∂T) > 0 is the coefficient of thermal expansion (Landau & Lifshitz
1987, § 56).

When both the temperature gradient and gravitational acceleration g lie on the plane of
the cell, the chiral velocity arising from the underbraced term in (6.9) is

vch ∼ χ
R3ρgαT �T

ηd
. (6.10)

This effect is present when the Rayleigh number exceeds its critical value. It is separate
from the one discussed in the present paper, and will be analysed in detail elsewhere.

7. Discussion

Following the constitutive relations introduced in Andreev et al. (2010), but now with
temperature-dependent material parameters, in this paper we developed a theory to
calculate the thermally-induced chiral current jch in a suspension of n+ right-handed
and n− left-handed chiral particles. The main result is the linear in �T expression for
the chiral velocity vch established in (4.7), and its commensurate chiral current (3.1) in
crossed temperature and pressure gradients, as displayed in figure 1. The chiral suspension
applies stresses on the base liquid; cf. (3.9). These stresses, allowed by symmetry, endow
the base flow with a component that is transverse to the direction of both the flow and
the temperature gradient. As remarked by Witten & Diamant (2020, § 7.3) in reviewing
Andreev et al. (2010), this behaviour resembles the Hall effect.

The main concepts developed in this paper can be traced back to the theory of
non-centrosymmetric media (Sturman & Fridkin 2021). More recently, these ideas were
employed in the photo-induced separation of chiral isomers (Spivak & Andreev 2009), the
photo-galvanic effect (Deyo et al. 2009), the propulsion of chiral particles (Kirkinis et al.
2012) by taking advantage of their electric polarization and magnetic moment, and finally,
passive propulsion and separation, taking advantage of the rotational degrees of freedom
of the medium (Kirkinis & Olvera de la Cruz 2023).
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Figure 8. (a) Paddle-like chiral particle employed in the single-particle theory based on the resistance matrix
formulation (Makino & Doi 2004, 2017). Centre-to-centre distance is 2h, and the radius of each disk is a. We
take the characteristic size of the paddle-like chiral particle to be h ∼ R, according to the notation introduced
in the present paper. (b) Definition of the angle θ employed in the mobility tensor to characterize the degree of
chirality of a single particle (Makino & Doi 2017); see (A1).
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Appendix A. Particle shape dependence of the chirality parameter χ

In the Introduction (below (1.1)), we mentioned that χ is a geometric scalar coefficient
characteristic of the particle shape and thus it should be described by an expression that
vanishes for a non-chiral particle. For chiral particles of gradually varying chiral shape,
it should change continuously. Below, we employ single-particle theory (Makino & Doi
2004, 2017) to obtain such a qualitative expression.

The drift particle velocity in a linear shear flow has the form V sp = g̃E (cf. Makino &
Doi 2004, 2017), where the superscript ‘sp’ stands for ‘single particle’ (theory), g̃ is the
third rank mobility tensor, and E is the rate-of-strain tensor of the flow. For a paddle-like
particle as displayed in figure 8, the form of the third rank tensor g̃ was derived in closed
form in the aforementioned references. Its coefficients g(a, h; θ) in the particle frame of
reference, which are homogeneous functions of degree 1 (in the variables a and h), can be
written succinctly in the form (Makino & Doi 2017, (27))

g(a, h; θ) = − a2h (sin (2θ) ± 2 sin (θ))

8a2 cos (θ) ± 40a2 ± 48h2 , (A1)

where θ is the angle formed between the two blades as depicted in figure 8(b). Thus the
angle θ = 0 corresponds to a non-chiral particle, and there are angles where g reaches a
maximum, which we employ here to characterize what is meant by the phrase ‘strong
chirality’. Note that the drift velocity V sp generates a back-flow in the liquid and a
commensurate shear stress (Witten & Diamant 2020, § 7.3) proportional to

Vsp

d
∼ g(a, h; θ)

U0

d2 . (A2)

We show below that χ is proportional to g in (A1). Consider a non-racemic chiral
suspension characterized by the chiral stress (3.9). It is proportional to nchα ∂2

y u.
Considering the scaling forms nch ∼ R−3 and α ∼ χR4, introduced in the main body of the
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Hydrodynamics of thermally driven chiral suspensions

paper, we obtain the chiral shear stress to be proportional to χR(U0/d2). Comparison with
(A2) leads to the conclusion that χ ∝ ĝ(θ), where ĝ(θ) is the dimensionless counterpart
of coefficient (A1), whose length scale dimension has been factorized (this is possible
because g is a homogeneous function of a and h of degree 1). Thus χ vanishes for a
non-chiral paddle-like particle of the type displayed in figure 8 (for θ = 0), and it can
acquire finite values for strongly chiral shapes.

Single-particle theory, as described above, provides an estimate for the tensor ĝ(θ) to
be of the order of 0.03 for strongly chiral particles. On the other hand, in this paper,
which is based on the continuum theory, we have set χ = O(1) in evaluating the various
observables. This is a rough estimate for strongly chiral particles that were shown in
Kirkinis & Olvera de la Cruz (2023) to generate chiral forces of the same order of
magnitude as those occurring in comparable-size systems employed in technology and
biology; cf. Kataoka & Troian (1999) and Ando & Yamamoto (2009).
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