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Abstract
Bayesian agents, argues Belot (2013), are orgulous: they believe in inductive success even
when guaranteed to fail on a topologically typical collection of data streams. Here we shed
light on how pervasive this phenomenon is. We identify several classes of inductive problems
for which Bayesian convergence to the truth is topologically typical. However, we also show
that, for all sufficiently complex classes, there are inductive problems for which convergence
is topologically atypical. Lastly, we identify specific topologically typical collections of data
streams, observing which guarantees convergence to the truth across all problems from certain
natural classes of effective inductive problems.

1. Introduction
Convergence-to-the-truth theorems are a staple of Bayesian epistemology: their use in
philosophy, especially in debates concerning the tenability of subjective Bayesianism,
dates back to the work of Savage (1954) and Edwards et al. (1963). In a nutshell, these
results establish that, in a wide array of learning scenarios, Bayesian agents expect their
future credences to almost surely align with the truth as the evidence accumulates.

Rather than seeing convergence-to-the-truth results as an asset of the Bayesian frame-
work, a number of authors take them to be the Achilles heel of Bayesianism.1 Most
recently, Belot (2013) argued that, because of these theorems, Bayesian reasoners are
plagued by a pernicious type of epistemic immodesty. By the very nature of the Bayesian
framework, Bayesian agents are barred from acknowledging that, for certain learning
problems, failure, rather than success, is the typical outcome of inquiry—where, cru-
cially, the notion of typicality that Belot’s argument relies on is topological, rather
than measure-theoretic (or probabilistic). There are learning problems for which a
Bayesian agent’s success set (the collection of data streams along which convergence
to the truth occurs) is topologically atypical or “small”; yet, as a consequence of said
convergence-to-the-truth results, the agent must nonetheless assign probability one to
this set.2

1See (Glymour, 1980), (Earman, 1992), (Kelly, 1996), and (Belot, 2013).
2Kelly (1996) voices an analogous worry. His argument relies on cardinality, rather than topological con-

siderations. In particular, he points out that there are learning situations where, even though the collection of
data streams along which convergence to the truth occurs has probability one, the collection of data streams
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2 Pride and Probability

It is well-known that measure-theoretic and topological typicality often come apart.3

Belot’s goal is to draw attention to the fact that this dichotomy occurs in contexts that
he takes to be especially problematic due to their “obvious epistemological interest”
(Belot, 2013, 499, footnote 43): for one, in situations where (i) the event witnessing
the coming apart of these two types of typicality is a Bayesian agent’s success set, and
(ii) the agent’s prior is one that, in Belot’s view, otherwise displays a desirable type
of open-mindedness. In such settings, the argument goes, this dichotomy is particu-
larly alarming, because topological typicality is an objective notion—one that does not
depend on any particular agent or their subjective degrees of belief—while the measure-
theoretic notion of typicality, in this context, reflects a particular agent’s opinion and is
therefore subjective. These considerations lead Belot to conclude that Bayesian agents
suffer from an irrational over-confidence in their ability to be inductively successful.

This objection has received considerable attention in the literature,4 and many of the
available responses recommend substantial modifications of the Bayesian framework in
order to evade Belot’s conclusion. For instance, Huttegger (2015) proposes to use metric
Boolean algebras, which allow to avoid drawing distinctions between events that can
only be made by infinitely many observations, Weatherson (2015) advocates passing
to imprecise Bayesianism, while Elga (2016) and Nielsen and Stewart (2019) suggest
dropping countable additivity in favour of finite additivity.

The goal of this article is not to further examine the merits or shortcomings of Belot’s
argument; rather, our aim is to shed light on how pervasive the phenomenon identified by
Belot is by clarifying the conditions under which his objection does not apply—the con-
ditions under which inductive success for a Bayesian agent is both probabilistically and
topologically typical—and the conditions under which it does. To address this question,
we will not depart from standard Bayesian lore: instead, comfortably situated within
the Bayesian framework, we will consider a taxonomy of inductive problems, in the
spirit of Kelly (1996), that will help us differentiate between the learning situations in
which convergence to the truth is topologically typical and those in which it is not.
We will focus on a canonical convergence-to-the-truth result—Lévy’s Upward Theorem
(Lévy, 1937)—and show that, by categorizing the random variables featuring in this
result (the functions used to model the inductive problems faced by Bayesian agents) in
terms of their descriptive complexity and computability-theoretic strength, we can gain a
deeper and sharper understanding of when topological and probabilistic typicality agree
or disagree in this setting.5

Continuity will play a crucial role in our investigation. We will show that, for sev-
eral classes of random variables that are “sufficiently close” to being continuous and

along which convergence to the truth instead fails is uncountable. Kelly locates the culprit of Bayesian
immodesty in the axiom of countable additivity.

3See (Oxtoby, 1980).
4See (Huttegger, 2015), (Weatherson, 2015), (Elga, 2016), (Belot, 2017), (Cisewski et al., 2018), (Pomatto

and Sandroni, 2018), (Nielsen and Stewart, 2019), and (Gong et al., 2021).
5The computability-theoretic approach advocated in this paper is in line with (Huttegger et al., 2023) (see

also (Zaffora Blando, 2020)), where Lévy’s Upward Theorem is studied through the lens of computability
theory and the theory of algorithmic randomness—a branch of computability theory on which we rely here,
as well. The present work may also be seen as a Bayesian counterpart to work in formal learning theory. As
mentioned above, see, in particular, (Kelly, 1996).
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admit natural epistemic interpretations, convergence to the truth is indeed a topologi-
cally typical affair. We will also see, however, that, for all sufficiently complex classes
of random variables, there are inductive problems for which convergence to the truth
is instead topologically atypical. Even though topologically typical inductive success is
guaranteed for several natural classes of inductive problems, “Bayesian orgulity”—as
Belot calls it—is, in this sense at least, a pervasive phenomenon. Lastly, by bringing
computability theory into the picture, we will identify several classes of effective induc-
tive problems and specific topologically typical collections of data streams along which
convergence to the truth is guaranteed to occur, no matter which inductive problem from
those classes the agent is trying to solve. This will allow us to throw light on the kind of
properties of data streams that are conducive to topologically typical inductive learning.

2. Lévy’s Upward Theorem, Typicality, and Bayesian Immodesty
In keeping with much of the Bayesian epistemology literature on the topic,6 our discus-
sion of Bayesian convergence to the truth will focus on the setting of infinite binary
sequences—i.e., the setting of Cantor space: the topological space whereby the set
{0, 1}N of infinite binary sequences is endowed with the topology of pointwise con-
vergence. This is the topology generated by the collection of cylinders [σ ], where
σ ∈ {0, 1}<N is a finite binary string and [σ ] = {ω ∈ {0, 1}N : σ ⊏ ω} is the set of all
sequences that begin with σ (“σ ⊏ ω” indicates that σ is a proper initial segment of ω).
Every open set in Cantor space can be expressed as a countable union of cylinders and
every clopen set as a finite union of cylinders. We will think of infinite binary sequences
as data streams, sequences of experimental outcomes, environments, or possible worlds.
From this viewpoint, cylinders intuitively encapsulate the information available to an
agent after having made finitely many observations or having performed an imprecise
measurement with a certain degree of precision.

Measure-theoretic vs. Topological Typicality. One prominent way to think about typ-
icality—the one that Bayesian convergence-to-the-truth theorems capitalize on—is
measure-theoretic. Recall that the Borel σ -algebra B on {0, 1}N is the smallest σ -
algebra containing all open sets in Cantor space. The elements of B are called Borel
sets. A probability measure µ on B assigns to each Borel subset of {0, 1}N a value
in [0, 1] in such a way that, for any countable collection {An}n∈N of pairwise disjoint
Borel sets, µ(

⋃
n∈N An) = ∑n∈N µ(An). Every probability measure on B can be iden-

tified with a function µ that maps cylinders to real numbers in [0, 1] and satisfies the
following two conditions: (i) µ([ε]) = 1 (where ε denotes the empty string) and (ii)
µ([σ ]) = µ([σ1]) + µ([σ0]) for all σ ∈ {0, 1}<N (where σ1 is the string consisting of
σ followed by 1 and σ0 the string consisting of σ followed by 0). By Carathéodory’s
Extension Theorem,7 any such function can in fact be uniquely extended to a full
probability measure on B.

A probability measure that we will often make use of is the uniform measure λ : the
probability measure that results from tossing a fair coin infinitely many times, given by
λ ([σ ]) = 2−|σ | for all σ ∈ {0, 1}<N (where |σ | denotes the length of σ ).

6See (Earman, 1992), (Belot, 2013), and (Huttegger, 2015, 2017).
7See (Williams, 1991, Theorem 1.7, 20).
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4 Pride and Probability

While probability measures admit various interpretations, here we will take them to
represent the subjective priors of Bayesian reasoners. So, a probability measure µ on B
will always stand for a specific agent’s initial degrees of belief, or credences, about the
events in B, and it will be understood as capturing that agent’s background knowledge
and inductive assumptions at the beginning of the learning process.

Given a probability measure µ , a set is measure-theoretically typical relative to µ if it
has µ-measure one and measure-theoretically atypical relative to µ if it has µ-measure
zero. A µ-measure-one set corresponds to an event of which the agent with prior µ is
essentially certain, while a µ-measure-zero set corresponds to an event that the agent
considers negligible. Measure-theoretic typicality is therefore inextricably tied to the
underlying prior: distinct probability measures may disagree wildly as to which sets
count as measure-theoretically typical.8

Topological typicality (the type of typicality that Belot’s criticism is grounded on) is
instead defined as follows. Recall that a set is nowhere dense if its closure has empty
interior—intuitively, if it corresponds to a hypothesis that, no matter what evidence has
been observed so far, can always be refuted by further evidence. Equivalently, a set
S ⊆ {0, 1}N is nowhere dense if, for every open set U ⊆ {0, 1}N, S ∩U is not dense
in the subspace topology on U —where a set is dense if it has a non-empty intersection
with every non-empty open set (intuitively, a dense set corresponds to a hypothesis that
cannot be refuted by any finite amount of evidence). A subset of a topological space
is topologically atypical if it is meagre: i.e., if it is expressible as a countable union of
nowhere dense sets.9 On the other hand, a set is topologically typical if it is co-meagre:
if it is the complement of a meagre set.

Measure-theoretic and topological (a)typicality have several features in common. For
instance, the class of measure-zero sets and the class of meagre sets are both σ -ideals:
measure-zero and meagre sets are both closed under subsets and countable unions.
However, while they both aim at capturing notions of “largeness” and “smallness”, these
concepts often diverge. For a well-trodden example, consider the collection of sequences
that satisfy the Strong Law of Large Numbers relative to the uniform measure λ (the set

8For a simple example, take the uniform measure λ and the collection of sequences that satisfy the Strong
Law of Large Numbers relative to λ : namely, the set of sequences along which the relative frequency of 1
converges to 1

2 in the limit. This is a set with λ -measure one and is therefore measure-theoretically typical
relative to λ . Its complement—the set of sequences that fail to satisfy the Strong Law of Large Numbers
relative to λ—has λ -measure zero and is therefore measure-theoretically atypical relative to λ . Yet, if one
takes a Bernoulli measure other than λ , the situation changes drastically. Consider, for instance, the proba-

bility measure β given by β ([σ ]) = 1
3

#1(σ) 2
3

#0(σ)
for all σ ∈ {0, 1}<N, where #1(σ) denotes the number of

1’s occurring in σ and #0(σ) the number of 0’s occurring in σ . According to β , the set of sequences that
satisfy the Strong Law of Large Numbers relative to λ not only fails to be measure-theoretically typical, it
is measure-theoretically atypical, since β assigns probability one to the set of sequences along which the
relative frequency of 1 converges to 1

3 in the limit.
9For instance, every singleton set {ω} is nowhere dense, so every countable set is meagre. But nowhere

dense sets—and, a fortiori, meagre sets—can also be uncountable. Consider the set S = {ω ∈ {0, 1}N :
(∀n) ω(2n + 1) = ω(2n)}: i.e., the set of all sequences whose odd entries agree with the preceding even
entry (where the enumeration starts at 0). This is an uncountable set and, yet, it is nowhere dense. To see
this, let [σ ] be an arbitrary cylinder. Let τ be a string of even length that extends σ such that τ’s last entry is
1, while its penultimate entry is 0. Then, S ∩ [τ] = /0, which suffices to conclude that S is nowhere dense.
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of sequences with limiting relative frequency 1
2 for 1): this is a set with λ -measure one

and, yet, it is also meagre.10

Lévy’s Upward Theorem. Bayesian convergence to the truth is epitomized by Lévy’s
Upward Theorem (1937), which establishes that, given some quantity that a Bayesian
agent is trying to measure, the probability of observing a data stream that will lead the
agent’s successive estimates to asymptotically align with the truth is one. In other words,
a Bayesian reasoner conducting repeated experiments to gauge some quantity expects
that almost every sequence of observations will bring about inductive success.

Let f : {0, 1}N →R be a random variable relative to some probability measure µ on
B. Think of the values of f as quantities that the agent with prior µ wishes to estimate:
for instance, f could record the value of some unknown physical parameter which may
vary between possible worlds. The unconditional expectation of f with respect to µ (the
average value of f weighted by µ , given by

∫
{0,1}N f dµ) is abbreviated as Eµ [ f ]. If

Eµ [| f |]< ∞, then f is integrable. For each n ∈N, let Fn be the sub-σ -algebra of B gen-
erated by the cylinders [σ ] centred on strings σ ∈ {0, 1}<N of length n. This collection
of algebras has an especially natural epistemic interpretation: each Fn intuitively cap-
tures the possible information that the agent may obtain at the n-th stage of the learning
process—any string of outcomes that could result from n experiments. The conditional
expectation Eµ [ f | Fn] : {0, 1}N →R of f given Fn is itself a random variable that, on
input ω ∈ {0, 1}N, returns the best estimate of f ’s value, from the perspective of µ , con-
ditional on the first n digits ω ↾ n of ω . More suggestively, when ω is the true state of
the world, Eµ [ f | Fn](ω) can be seen as encoding the agent’s beliefs regarding the true
value of f (namely, f (ω)) after having observed the outcomes ω ↾ n of the first n exper-
iments. We use throughout the following version of the conditional expectation (since
it is unique only up to µ-measure zero)—though, as will become clear, this choice is
immaterial for our results. For all ω ∈ {0, 1}N,

Eµ [ f | Fn](ω) =


1

µ([ω ↾ n])

∫
[ω↾n]

f dµ if µ([ω ↾ n])> 0, and

0 otherwise.

Lévy’s Upward Theorem is the following result:11

Theorem 2.1 (Lévy’s Upward Theorem, Lévy (1937)). Let f : {0, 1}N →R an inte-
grable random variable. Then, for µ-almost every ω ∈ {0, 1}N, limn→∞ Eµ [ f | Fn](ω) =
f (ω).12

Call the set of sequences {ω ∈ {0, 1}N : limn→∞ Eµ [ f | Fn](ω) = f (ω)} that satisfy
Lévy’s Upward Theorem the success set of agent µ with respect to f and its com-
plement the failure set. Lévy’s Upward Theorem says that, from the agent’s viewpoint,

10See (Oxtoby, 1980, 85).
11See (Williams, 1991, §14.2).
12Technically, Lévy’s Upward Theorem gives us more than this. A sequence of functions {gn}n∈N

converges to an integrable function g in the L1-norm if limn→∞

∫
{0,1}N |gn − g| dµ = 0. Besides estab-

lishing almost-sure pointwise convergence, Lévy’s Upward Theorem also establishes that {Eµ [ f | Fn]}n∈N
converges to f in the L1-norm.
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6 Pride and Probability

their failure set is negligible: the agent assigns probability one to the hypothesis that
they will eventually converge to the truth about the value of f (i.e., µ({ω ∈ {0, 1}N :
limn→∞ Eµ [ f | Fn](ω) = f (ω)}) = 1).

The philosophical literature on Lévy’s Upward Theorem generally focuses on the
special case where the integrable random variable being estimated is the indicator func-
tion 1A of some Borel set A (as we shall see, this is the setting within which Belot
frames his objection). This restriction corresponds to the case where the inductive prob-
lem faced by the agent is a binary decision problem: does the true world—the observed
data stream—belong to A ? Or, put differently, does the true world possess the property
corresponding to A ? In this setting, the quantity that the agent is trying to estimate is the
truth value of A and learning proceeds by standard Bayesian conditioning. Whenever
µ([ω ↾ n])> 0, we in fact have that

Eµ [1A | Fn](ω) =
1

µ([ω ↾ n])

∫
[ω↾n]

1A dµ =
µ(A ∩ [ω ↾ n])

µ([ω ↾ n])
= µ(A | [ω ↾ n]).

So, since the support supp(µ) = {ω ∈ {0, 1}N : (∀n) µ([ω ↾ n])> 0} of µ has µ-
probability one, Lévy’s Upward Theorem entails that limn→∞ µ(A | [ω ↾ n]) = 1A (ω)
for µ-almost every ω ∈ {0, 1}N. An agent with prior µ expects their beliefs, given by the
above sequence of posterior probabilities, to converge almost surely to the truth about
whether A is the case with increasing information.

As noted above, the almost-sure convergence to the truth achieved via Lévy’s Upward
Theorem is always relative to the agent’s prior. Before performing any experiments or
measurements, the agent is essentially certain that, with increasing information, their
beliefs will eventually converge to the truth. Yet, there is no objective or external guar-
antee that this will indeed be the case. Thus, Lévy’s Upward Theorem does not establish
the universal reliability of Bayesian learning methods from an objective, third-person
standpoint. Its epistemic significance stems from the fact that it establishes that a certain
kind of scepticism about induction is impossible: if an agent is independently commit-
ted to probabilistic coherence, then, by Lévy’s Upward Theorem, that agent cannot be a
sceptic about the possibility of learning from experience. The agent’s independent com-
mitment to the Bayesian framework implies that, by their own light, their recourse to
inductive reasoning is justified. As observed by Skyrms (1984), from the perspective of
a Bayesian agent, it is “inappropriate for you to ask the standard question, “Why should
I believe that the real situation is not in that set of measure zero?” The measure in ques-
tion is your degree of belief. You do believe that the real situation is not in that set, with
degree of belief one” (Skyrms, 1984, 62).

Belot’s Argument. Precisely because of its barring a certain type of scepticism about
induction, Lévy’s Upward Theorem has however been accused of being a drawback
of the Bayesian approach, rather than serving in its favour. In particular, Belot (2013)
argues that, because of Lévy’s Upward Theorem (and other convergence-to-the-truth
results), Bayesian reasoners are forced to be epistemically immodest in an especially
pernicious way. Belot’s worry is that

Bayesian convergence-to-the-truth theorems tell us that Bayesian agents
are forbidden to think that there is any chance that they will be fooled in the
long run, even when they know that their credence function is defined on a
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space that includes many [data streams] that would frustrate their desire to
reach the truth. (Belot, 2013, 500)

Bayesian reasoners are, in a sense, incapable of entertaining the possibility of inductive
failure, and this is so even when “their desire to reach the truth” is thwarted along many
data streams—in fact, on a topologically typical collection of data streams.

To make his point,13 Belot considers a specific class of priors, which he calls open-
minded. The notion of an open-minded prior is, by definition, always relative to a
particular Borel set—more suggestively, to a particular hypothesis under considera-
tion: given some S ∈B, µ is open-minded with respect to S if, no matter what
string σ ∈ {0, 1}<N has been observed so far, there are always two possible distinct
extensions τ, ρ ∈ {0, 1}<N of σ (i.e., σ ⊏ τ and σ ⊏ ρ) such that µ(S | [τ])≥ 1

2 and
µ(S | [ρ])< 1

2 . If µ is open-minded with respect to S , then no finite number of obser-
vations will ever suffice for µ to settle on whether the data stream being observed
belongs to S .

Now, suppose the hypothesis under consideration corresponds to a countable dense
Borel set D (for instance, D could be the set of sequences that are eventually 0). Given a
Bayesian agent with prior µ , what do the success set and the failure set of µ with respect
to the binary estimation problem encoded by 1D respectively look like? The answer to
this question of course depends on the particular prior adopted by the agent. Since D
and its complement are both dense, any finite sequence of observations is compatible
with the true data stream being in D , but also with it not being in D . Hence, according
to Belot, in this case it is reasonable to adopt a prior µ that is open-minded with respect
to D . Yet, Belot shows, if µ is open-minded with respect to D , then its failure set—the
set of sequences ω ∈ {0, 1}N along which the conditional probabilities µ(D | [ω ↾ n])
fail to converge to 1D (ω) in the limit—is co-meagre, despite being a µ-measure-zero
set by Lévy’s Upward Theorem. Equivalently, the success set of µ relative to 1D is
meagre (and, so, topologically negligible), despite having probability one according to
the agent. Probabilistic and topological typicality are thus orthogonal notions in this
setting.

In light of these (and other analogous) observations, Belot concludes that the
Bayesian approach is irremediably flawed: the account of rationality it yields “renders
a certain sort of arrogance rationally mandatory, requiring agents to be certain that they
will be successful at certain tasks, even in cases where the task is so contrived as to
make failure the typical outcome” (Belot, 2013, 484).

3. Meagre and Co-meagre Success
There are several moving parts in Belot’s argument that one may call into question to
avoid his conclusion. For instance, one may doubt the reasonableness of Belot’s notion
of an open-minded prior or challenge the very significance of topological considerations
for Bayesian epistemology.14 Huttegger (2015), for example, notes the following:

13Here we focus on the argument from (Belot, 2013, §4).
14See, for instance, (Huttegger, 2015) and (Cisewski et al., 2018).
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[T]he mathematical structure of measure theory is very different from the
mathematical structure of topology. [...] Taking all of this together suggests
that topological and probabilistic concepts are fairly independent of each
other, and that results about the topology of a space do not prescribe spe-
cific probability distributions for that space. From a Bayesian perspective,
this makes a lot of sense. Topology is a mathematical theory of concepts
like closeness and limit point, whereas probability is a mathematical theory
of rational degrees of belief. The two theories have very different domains,
and so there is no reason to suppose that there are any general principles
connecting the two in the way required by Belot’s argument. (Huttegger,
2015, 92)

The question of whether topological typicality is a relevant concept when evaluating
the rationality of probabilistic reasoners is a divisive one. It is however worth pointing
out that the use of topological typicality in the setting of Bayesian convergence-to-
the-truth results has some notable precedents that bear upon the long-standing debate
between Bayesians and frequentists in the foundations of statistics—see, in particular,
Freedman (1963, 1965), who employs notions of topological typicality in studying the
consistency of Bayes’ estimates. Regardless of whether Belot’s specific argument is
ultimately successful, we take the following questions to be of independent interest: are
there any ordinary learning situations where Bayesian agents (or, at the very least, cer-
tain types of Bayesian agents) are guaranteed to be inductively successful on a typical
set of data streams both in the probabilistic and the topological sense? Is it possible to
provide an informative classification of the learning scenarios where the two notions of
typicality are in agreement (with respect to the success sets of Bayesian agents) and the
learning scenarios where they instead come apart, so as to be able to understand how
pervasive the phenomenon identified by Belot is? These are the questions that will keep
us occupied in the remainder of this article.

Recall that a probability measure on B has full support if it assigns positive proba-
bility to all cylinders. The uniform measure, for example, is a probability measure with
full support, and so are all other Bernoulli measures with bias strictly less than 1, as
well as their mixtures. All of the learning situations identified in this article for which
convergence to the truth occurs on a co-meagre set will feature priors with full support.
Priors with full support have a natural epistemic interpretation: they, too, correspond
to a form of open-mindedness—in particular, they intuitively capture the credences of
Bayesian reasoners who are open-minded with respect to the evidence, in that they do
not a priori exclude any finite sequence of observations.

Of course, the type of open-mindedness encoded by having full support is compatible
with various forms of closed-mindedness. Take, for instance, the set of data streams that
are eventually 0, which, as remarked earlier, is both countable and dense. According
to the uniform measure λ , this is a measure-zero set. Thus, though open-minded with
respect to all finite sequences of observations, λ is closed-minded with respect to the
possibility of observing only finitely many 1’s. So, λ fails to be open-minded in Belot’s
sense with respect to the hypothesis encoded by this set. We take this to be a feature,
rather than a bug, as no prior can be open-minded with respect to every event in B.
In particular, Belot’s notion of open-mindedness is just as susceptible to the charge of
entailing various forms of closed-mindedness as having full support is.
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Lévy’s Upward Theorem holds very generally for any integrable random variable. A
crucial component of our analysis relies on classifying random variables in terms of their
descriptive complexity and computational strength. This will allow us to identify well-
behaved families of integrable random variables for which Lévy’s Upward Theorem
can be shown to hold on a co-meagre set. To this end, we need to introduce a few more
definitions.

The Borel Hierarchy and the Arithmetical Hierarchy. The events in B can be classified
in terms of their rank, or descriptive complexity, within the Borel hierarchy:15

Definition 3.1 (Borel hierarchy). The Borel hierarchy of subsets of Cantor space con-
sists of the following three types of classes: ΣΣΣ

0
α , ΠΠΠ

0
α , and ∆∆∆

0
α , with α a countable ordinal

greater than 0. Given a positive natural number n,16 a set S ∈B is in

• ΣΣΣ
0
1 if and only if it is open;

• ΠΠΠ
0
n if and only if its complement S is in ΣΣΣ

0
n;

• ΣΣΣ
0
n (n > 1) if and only if there is a sequence {Si}i∈N of ΠΠΠ

0
n−1 sets such that S =⋃

i∈N Si;
• ∆∆∆

0
n if and only if S is both in ΣΣΣ

0
n and ΠΠΠ

0
n.

For instance, the ΠΠΠ
0
1 sets are the closed sets, the ∆∆∆

0
1 sets are the clopen sets, the ΣΣΣ

0
2 sets

are countable unions of closed sets, and the ΠΠΠ
0
2 sets are countable intersections of open

sets.

The Borel hierarchy has an effective counterpart called the arithmetical hierarchy,
which allows to classify certain Borel sets in terms of their arithmetical complexity:17

Definition 3.2 (Arithmetical hierarchy). The arithmetical hierarchy of subsets of Cantor
space consists of the following three types of classes: Σ0

n, Π0
n, and ∆0

n, with n a positive
natural number. A set S ∈B is in

• Σ0
1 if and only if it is effectively open (i.e., if there is a computably enumerable set

S ⊆ {0, 1}<N such that S = [S] =
⋃

σ∈S[σ ]);
• Π0

n if and only if its complement S is in Σ0
n;

• Σ0
n (n > 1) if and only if there is a computable sequence {Si}i∈N of Π0

n−1 sets18 such
that S =

⋃
i∈N Si;

• ∆0
n if and only if S is in both Σ0

n and Π0
n.

For instance, the Π0
1 sets are the effectively closed sets, the ∆0

1 sets are the (effectively)
clopen sets, the Σ0

2 sets are effective countable unions of effectively closed sets, and the

15See, for instance, (Kechris, 1995, §11B).
16Here we only focus on finite ordinals—and, so, on Borel sets of finite rank.
17See, e.g., (Soare, 2016, Chapter 4) or (Downey and Hirschfeldt, 2010, §2.19).
18This means that there is a computable function g : N→N such that, for each i ∈N, Si = E n−1

g(i) , where

E n−1
0 , E n−1

1 , E n−1
2 , ... is a fixed effective enumeration of all the Σ0

n−1 subsets of {0, 1}N (see, for instance,
(Downey and Hirschfeldt, 2010, 75-76)).
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10 Pride and Probability

Π0
2 sets are effective countable intersections of effectively open sets. A set with a clas-

sification within the arithmetical hierarchy is said to be arithmetical (or arithmetically
definable).

The levels of the arithmetical hierarchy can also be characterized in terms of the
complexity of the formulas in the language of first-order arithmetic that define the sets
belonging to those levels (hence the name “arithmetical hierarchy”). A set S ∈B is
in Σ0

n if and only if it is definable by a Σ0
n formula: namely, if S = {ω ∈ {0, 1}N :

(∃k1)(∀k2)...(Qkn) R(ω ↾ k1, ω ↾ k2, ..., ω ↾ kn)} for some computable relation R,
with Q = ∃ if n is odd and Q = ∀ if n is even. On the other hand, a set S ∈B is in Π0

n
if and only if it is definable by a Π0

n formula: namely, if there is a computable relation R
such that S = {ω ∈ {0, 1}N : (∀k1)(∃k2)...(Qkn) R(ω ↾ k1, ω ↾ k2, ..., ω ↾ kn)}, with
Q = ∀ if n is odd and Q = ∃ if n is even.

Algorithmic Randomness and Effective Genericity. As notions of “largeness” go, hav-
ing measure one and being co-meagre are rather coarse-grained. There are many sets
that, while measure-theoretically or topologically (a)typical, seem to intuitively differ
in “size”. For instance, the concept of Hausdorff dimension, which is a generalization
of the uniform measure, was introduced to formalize the intuition that certain subsets of
a metric space differ in size, even though, from the viewpoint of the uniform measure,
they all have measure zero. In what follows, we will consider some more refined notions
of typicality whose definitions rely on the machinery of computability theory. These
notions of effective typicality allow to make more fine-grained distinctions between
intuitively “large” sets. Here, we will use them to provide a more detailed analysis of
the collections of data streams along which convergence to the truth holds for several
classes of inductive problems.

Let us start with algorithmic randomness: a branch of computability theory that
offers an account of effective measure-theoretic typicality.19 According to algorithmic
randomness, given a probability measure µ fixed in the background, a sequence is ran-
dom relative to µ if it is a representative outcome of µ . One naı̈ve idea is that an outcome
is representative of µ if it satisfies every property that, according to µ , “most” sequences
possess: i.e., if it belongs to all µ-measure-one sets. Since being representative in this
sense is not possible in general,20 algorithmic randomness instead identifies represen-
tativeness—and, so, randomness—with membership in certain countable collections of
µ-measure-one sets: more precisely, µ-measure-one sets of a certain arithmetical com-
plexity that correspond to natural statistical laws (such as the set of sequences that satisfy
the Strong Law of Large Numbers relative to µ). In a nutshell, given such a countable
collection of arithmetically definable properties that hold with µ-measure one (of arith-
metically definable statistical laws), a sequence is algorithmically µ-random relative to
that collection if and only if it possesses all of the corresponding properties (if and only
if it satisfies all of the corresponding statistical laws).

19See (Nies, 2009) or (Downey and Hirschfeldt, 2010).
20For every probability measure µ that assigns probability zero to every singleton set (i.e., for every atom-

less probability measure), every sequence ω belongs to at least one µ-measure-zero set: its own singleton
set {ω}. Hence, defining randomness in terms of the satisfaction of all µ-measure one properties can lead
to a vacuous notion.
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The field of algorithmic randomness is teeming with notions of differing logical
strength, each determined by the particular family of measure-one arithmetically defin-
able properties a sequence must satisfy to count as random. In what follows, we will
focus on two such notions.

Arguably, the simplest algorithmic randomness notion is Kurtz randomness (Kurtz,
1981):

Definition 3.3 (Kurtz randomness). Let µ a probability measure.21 A sequence
ω ∈ {0, 1}N is µ-Kurtz random if and only if ω belongs to all Σ0

1 sets of µ-measure
one.

In other words, to qualify as µ-Kurtz random, a sequence has to possess all the prop-
erties that correspond to µ-measure-theoretically typical effectively open subsets of
Cantor space (such as the property of having at least one prime-numbered 0 entry when
µ is a non-trivial Bernoulli measure). Since there are only countably many Σ0

1 sets,
there are only countably many of them that have µ-measure-one. Hence, for every µ ,
the collection of µ-Kurtz random sequences is itself a µ-measure-one set.

Another fundamental algorithmic randomness notion is Martin-Löf randomness
(Martin-Löf, 1966), which can be easily seen to entail Kurtz randomness:

Definition 3.4 (Martin-Löf randomness). Let µ a probability measure. A µ-Martin-Löf
test is a computable sequence {Un}n∈N of Σ0

1 sets with µ(Un)≤ 2−n for all n ∈N. A
sequence ω ∈ {0, 1}N is µ-Martin-Löf random if and only if, for all µ-Martin-Löf tests
{Un}n∈N, ω /∈

⋂
n∈N Un.

The requirement that, for a µ-Martin-Löf test {Un}n∈N, µ(Un)≤ 2−n for all n ∈N
ensures that

⋂
n∈N Un is a set of effective µ-measure zero: it is a µ-measure-zero set

whose measure can be approximated at a computable rate (2−n) using the measures of
the components Un of the test. And since the intersection of a computable sequence
of Σ0

1 sets is a Π0
2 set, a sequence is µ-Martin-Löf random if and only if it does not

possess any Π0
2 properties of effective µ-measure zero—equivalently, if and only if it

possesses all Σ0
2 properties of effective µ-measure one. Once again, seeing that there

are only countably many Σ0
2 properties of (effective) µ-measure one, the collection of

µ-Martin-Löf random sequences is itself a µ-measure-one set.
Since µ-Martin-Löf randomness entails µ-Kurtz randomness while the reverse impli-

cation does not hold in general, µ-Martin-Löf randomness yields a more fine-grained
notion of measure-theoretic typicality than µ-Kurtz randomness does; in turn, µ-Kurtz
randomness provides a more fine-grained notion of measure-theoretic typicality than
simply having µ-measure one.

The second family of effective typicality notions that will be relevant for our dis-
cussion falls under the umbrella of effective genericity: a theory of effective topological

21Algorithmic randomness is often defined with respect to computable probability measures (see foot-
note 31). Here we will not impose such a restriction and focus on blind randomness (see, for instance,
(Kjos-Hanssen, 2010)): namely, on notions where the underlying probability measure µ , which may be
uncomputable, is not used as an oracle when specifying the class of µ-measure one arithmetically definable
properties that a sequence has to satisfy to be random.
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typicality.22 Just as algorithmic randomness is defined in terms of membership in every
measure-one set from some pre-specified countable collection of sets, effective generic-
ity essentially amounts to membership in every co-meagre set from some pre-specified
countable collection of sets. While there are many notions of effective genericity in the
literature, here we will only consider the n-genericity hierarchy: a linearly ordered fam-
ily of canonical genericity notions. We will begin by defining 1-genericity (the first level
of the hierarchy) and discuss the rest of the hierarchy in the last section of the paper.

Given ω ∈ {0, 1}N and S ⊆ {0, 1}<N, ω is said to meet S if ω ∈ [S] =
⋃

σ∈S[σ ]. A set
S ⊆ {0, 1}<N is dense along ω ∈ {0, 1}N if ω is in the closure of [S]: in other words, if,
for every n ∈N, there is some σ ∈ {0, 1}<N with ω ↾ n ⊑ σ such that [σ ]⊆ [S].23 Then,
1-genericity is defined as follows:

Definition 3.5 (1-Genericity). A sequence ω ∈ {0, 1}N is 1-generic if and only if ω

meets every computably enumerable set S ⊆ {0, 1}<N that is dense along ω .

Equivalently, a sequence is 1-generic if and only if it is not on the boundary of any
Σ0

1 set. Intuitively, a 1-generic sequence ω is such that, for any Σ0
1 hypothesis S , if no

imprecise measurement of ω can rule S out, then ω is in S (and, so, satisifies the
hypothesis).

It is not difficult to see that every 1-generic sequence belongs to every dense Σ0
1 set

and that every such set is co-meagre. Moreover, the following well-known facts will be
important for our discussion.24

Proposition 3.6. The set of 1-generic sequences is co-meagre.

Proposition 3.7. Let µ a probability measure with full support. If ω ∈ {0, 1}N is
1-generic, then ω is µ-Kurtz random.25

When µ is a probability measure with full support, the set of µ-Kurtz random
sequences is thus itself a co-meagre set. So, both 1-genericity and µ-Kurtz random-
ness provide more fine-grained notions of topological typicality than simply being
co-meagre.

22See (Downey and Hirschfeldt, 2010, §2.24).
23For example, the set A = {0n1 ∈ {0, 1}<N : n ∈N with n ≥ 1} (where 0n1 is the string consisting of n

consecutive 0’s followed by a 1) is dense along the constant 0 sequence 000000..., even though this sequence
does not meet A.

24See (Kurtz, 1981), (Nies, 2009), or (Downey and Hirschfeldt, 2010).
25When µ does not have full support, Proposition 3.7 may fail to hold. Consider the probability measure δ

concentrated on the constant 1 sequence 111111... (that is, δ is the measure given by δ ([ε]) = 1 and, for all
σ ̸= ε , δ ([σ ]) = 1 if σ consists of |σ | consecutive 1’s and δ ([σ ]) = 0 otherwise). Clearly, δ does not have
full support (for one, δ ([0]) = 0). Now, the constant 1 sequence is not 1-generic—for instance, it fails to
belong to the set {ω ∈ {0, 1}N : (∃n) ω(n) = 0} of sequences with at least one 0 entry, which is both dense
and Σ0

1. However, the constant 1 sequence is the only δ -Kurtz random sequence. Hence, the set of 1-generic
sequences and the set of δ -Kurtz random sequences are disjoint.
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Continuous Functions. With these taxonomic tools at our disposal, we are ready to con-
sider some specific families of inductive problems for which Bayesian convergence to
the truth is not susceptible to Belot’s charge of epistemic immodesty.

One way to achieve co-meagre success is of course to be inductively successful no
matter what data stream is observed: that is, for convergence to the truth to occur every-
where, and not just almost everywhere according to the agent’s prior. So, an immediate
question is whether there are any ordinary learning situations where convergence to
the truth can be achieved everywhere. Below, we highlight one such class of learning
situations that will guide the rest of our discussion.

One simple type of inductive problem consists in estimating a continuous quantity.
Quantities of this kind are naturally modelled in terms of continuous random variables.
First, recall that the standard topology on R is the topology generated by the open inter-
vals: namely, by sets of the form (a, b) = {r ∈R : a, b ∈R and a < r < b}. Earlier, we
introduced the Borel hierarchy of subsets of {0, 1}N (Definition 3.1). The very same tax-
onomy in terms of ΣΣΣ

0
n, ΠΠΠ

0
n, and ∆∆∆

0
n sets also applies to the Borel subsets of R—where the

Borel subsets of R are the elements of the Borel σ -algebra on R: the smallest σ -algebra
containing all open intervals. Continuous functions from {0, 1}N to R are defined as
follows:

Definition 3.8 (Continuous function). A function f : {0, 1}N →R is continuous if and
only if, for every open (ΣΣΣ0

1) subset U of R, f−1(U ) = {ω ∈ {0, 1}N : f (ω)∈U } is an
open (ΣΣΣ0

1) subset of {0, 1}N.

Suppose an experiment is being conducted which involves measuring some real-
valued physical parameter, such as the temperature at a given location or the concen-
tration of some substance in a fluid. Such a learning situation may be modelled via the
function f : {0, 1}N →R that maps each sequence in {0, 1}N to the real number in [0, 1]
of which that sequence is the binary expansion. Let the true parameter be given by f (ω).
Then, at each finite stage n of the learning process, the observed data ω ↾ n provides an
approximation of f (ω). The map f is a continuous function. For another simple exam-
ple of a continuous function, let U be a clopen subset of {0, 1}N and take its indicator
function 1U . Intuitively, 1U represents a binary decision problem that can be settled
with a finite amount of data (such as the question of whether the first n patients from a
given sample all recovered after being treated for a certain disease).

The observation below is entirely straightforward, but it is a useful starting point.
First, note that, since Cantor space is compact,26 every continuous function on it is
bounded both below and above;27 hence, every continuous random variable on Cantor
space is integrable. When the quantity to be estimated is a continuous random variable,
it is easy to see that Lévy’s Upward Theorem holds for every sequence in the support of
the agent’s prior. So, when the agent’s prior has full support, Lévy’s Upward Theorem
holds everywhere.

26This means that each of its open covers has a finite subcover.
27For each positive n ∈N, let Un = {ω ∈ {0, 1}N : n > f (ω)>−n}. Then, each Un is open, Un ⊆Un+1

for all n ≥ 1, and
⋃

n≥1 Un = {0, 1}N. By the compactness of Cantor space, there is some n0 ≥ 1 such that
Un0 = {0, 1}N. This establishes that f is bounded (below and above).
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Proposition 3.9. Let µ a probability measure and f : {0, 1}N →R a continuous random
variable. Then, for all ω ∈ supp(µ), limn→∞ Eµ [ f | Fn](ω) = f (ω). When µ has full
support, supp(µ) = {0, 1}N and, so, limn→∞ Eµ [ f | Fn](ω) = f (ω) for all ω ∈ {0, 1}N.

Proof. Let ω ∈ supp(µ). Then, for all n ∈N, Eµ [ f | Fn](ω) =
∫
[ω↾n] f dµ/µ([ω↾n]). Let

ε > 0. By continuity, there is m ∈N such that, for all α ∈ [ω ↾ m], | f (ω)− f (α)|< ε .
Hence, for all n ≥ m,∣∣∣∣∣

∫
[ω↾n] f dµ

µ([ω ↾ n])
− f (ω)

∣∣∣∣∣≤
∫
[ω↾n] | f − f (ω)| dµ

µ([ω ↾ n])
<

∫
[ω↾n] ε dµ

µ([ω ↾ n])
= ε,

where the first inequality holds because f (ω) is a constant. This establishes the claim.

When the agent’s prior µ does not have full support, convergence to the truth is not
guaranteed to happen on a co-meagre set. To see this, let µ be the probability measure
that results from first flipping a coin that lands heads with probability one and then
flipping a fair coin forever after.28 Take the indicator function 1[0] of the cylinder [0],
which, as noted above, is continuous. Lévy’s Upward Theorem fails everywhere on [0],
so the success set of µ with respect to 1[0] is not co-meagre, as the cylinder [1] is not
co-meagre.

Baire Class n Functions. Continuity, while natural, is a strong condition. What we will
consider next is a family of functions that, relying on the classifications afforded by the
Borel hierarchy, provides a broad generalization of the class of continuous functions:

Definition 3.10 (Baire class n function.). Let n ∈N. A function f : {0, 1}N →R is of
Baire class n if and only if, for every ΣΣΣ

0
1 subset U of R, f−1(U ) is a ΣΣΣ

0
n+1 subset of

{0, 1}N.

Clearly, the collection of Baire class 0 functions coincides with the collection of
continuous functions. Moreover, for each n ∈N, every Baire class n function is also a
Baire class (n + 1) function (while the converse does not hold).

For each n ≥ 1, the indicator functions of the ∆∆∆
0
n, ΣΣΣ

0
n, ΠΠΠ

0
n, and ∆∆∆

0
n+1 subsets of Cantor

space are straightforward examples of Baire class n functions. These functions have
natural epistemic interpretations. For instance, the indicator functions of ΣΣΣ

0
1 sets intu-

itively capture binary decision problems membership in which can be verified with a
finite amount of data, while the indicator functions of ΠΠΠ

0
1 sets intuitively capture binary

decision problems membership in which can be refuted with a finite amount of data.
Similarly, the indicator functions of ΣΣΣ

0
2 sets correspond to binary decision problems

membership in which can be verified in the limit, the indicator functions of ΠΠΠ
0
2 sets

correspond to binary decision problems membership in which can be refuted in the

28More precisely, µ is the probability measure given by µ([ε]) = 1 and, for all strings σ ̸= ε , µ([σ ]) = 0
if the first entry of σ is a 0 and µ([σ ]) = 2−|σ |+1 otherwise.
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limit, and the indicator functions of ∆∆∆
0
2 sets correspond to binary decision problems

membership in which can be decided in the limit.29

Another family of functions that are of Baire class 1 (in addition to the indicator
functions of ∆∆∆

0
1, ΣΣΣ

0
1, ΠΠΠ

0
1, and ∆∆∆

0
2 sets) is the class of semicontinuous functions, which

includes the lower semicontinuous and the upper semicontinuous functions:

Definition 3.11 (Lower and upper semicontinuous function). A function
f : {0, 1}N →R is lower semicontinuous if and only if all sets of the form
f−1((a,+∞)) = {ω ∈ {0, 1}N : f (ω)> a} are ΣΣΣ

0
1. A function f : {0, 1}N →R is

upper semicontinuous if and only if all sets of the form f−1((−∞, b)) = {ω ∈ {0, 1}N :
f (ω)< b} are ΣΣΣ

0
1.

Semicontinuity is a weaker form of continutiy, and it is not difficult to see that a function
is continuous if and only if it is both lower semicontinuous and upper semicontinuous.
The collection of lower semicontinuous functions includes the indicator functions of ΣΣΣ

0
1

sets, while the collection of upper semicontinuous functions includes the indicator func-
tions of ΠΠΠ

0
1 sets. For another simple example of a lower semicontinuous function (and,

so, of a Baire class 1 function), let f be given by f (ω) = 1 if ω’s prime-numbered entries
feature a 1 infinitely often and f (ω) = 1 − 2−n if ω has exactly n ∈N prime-numbered
entries featuring a 1 (basically, for any ω , f is a normalized function that counts the
number of 1’s in ω that occur at prime-numbered positions). For one last example, take
a bounded function c : {0, 1}<N →R recording the daily values of some stock mar-
ket share. Then, the function f given by f (ω) = supn,m∈N |c(ω ↾ n)− c(ω ↾ m)|, which
tracks the greatest spread between this share’s values over its history, is lower semi-
continuous. Similarly, the function g given by g(ω) = infn,m∈N |c(ω ↾ n)− c(ω ↾ m)|,
which tracks the lowest spread between the share’s values over its history, is upper
semicontinuous.

The following is a classical result due to Baire30 that will help us shed light on Lévy’s
Upward Theorem in the context of Baire class 1 functions:

Theorem 3.12 (Baire). Let f : {0, 1}N →R a function of Baire class 1. The points of
discontinuity of f form a meagre ΣΣΣ

0
2 set—equivalently, the points of continuity of f

form a co-meagre ΠΠΠ
0
2 set.

With Theorem 3.12 at hand, the following can be easily seen to hold:

Corollary 3.13. Let µ a probability measure with full support and f : {0, 1}N →R a
Baire class 1 integrable random variable. Then, the collection of all ω ∈ {0, 1}N with
limn→∞ Eµ [ f | Fn](ω) = f (ω) is co-meagre.

Proof. Let ω be a point of continuity of f . Since µ has full support, Eµ [ f | Fn](ω) =∫
[ω↾n] f dµ/µ([ω↾n]) for all n ∈N. By the very same argument used in the proof of

Proposition 3.9, limn→∞ Eµ [ f | Fn](ω) = f (ω). So, the set of points of continuity of

29For a detailed discussion of how to provide a learning-theoretic interpretation of the levels of the Borel
hierarchy (and of the arithmetical hierarchy), see (Kelly, 1996).

30See (Kechris, 1995, Theorem 24.14) or (Oxtoby, 1980, Theorem 7.3).
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f is a subset of the set of sequences along which Lévy’s Upward Theorem holds. By
Theorem 3.12, the former set is co-meagre. Hence, so is the set of sequences along
which Lévy’s Upward Theorem holds.

When the underlying prior µ has full support, the success set of µ relative to a
Baire class 1 integrable random variable is a co-meagre set. We thus have another
class of inductive problems relative to which convergence to the truth is not only
probabilistically typical, but also topologically typical.

There are priors that do not have full support for which Corollary 3.13 does not hold.
By virtue of being continuous, the indicator function 1[0] of [0] is also of Baire class 1,
and we have already mentioned an example of a probability measure that does not have
full support whose success set with respect to 1[0] fails to be co-meagre.

For n ≥ 2, it is not in general true that the points of discontinuity of a Baire class
n function form a meagre set. Consider once again the set of all sequences that are
eventually 0: i.e., the set Z = {ω ∈ {0, 1}N : (∃n)(∀m > n) ω(m) = 0}. The indicator
function 1Z of this set is of Baire class 2, yet 1Z is discontinuous everywhere. Hence,
the points of continuity of 1Z not only fail to form a co-meagre set: they form a meagre
set (since this set is empty).

Of course, this remark does not preclude the possibility that an analogue of Corollary
3.13 may hold for Baire class n integrable random variables in general. The following
proposition establishes that Corollary 3.13 does not generalize:

Proposition 3.14. Let µ a computable probability measure31 with full support. For each
n ≥ 2, there is a Baire class n integrable random variable f : {0, 1}N →R such that the
collection of all ω ∈ {0, 1}N with limn→∞ Eµ [ f | Fn](ω) = f (ω) is meagre.

Proof. Let µ-MLR denote the set of µ-Martin-Löf random sequences (Definition 3.4).
The computability of µ ensures the existence of a universal µ-Martin-Löf test: a
µ-Martin-Löf test {Vn}n∈N such that, to determine whether a sequence is µ-Martin-
Löf random or not, it suffices to check whether that sequence belongs to

⋂
n∈N Vn

(if it does, the sequence is not µ-Martin-Löf random, if it does not, it is).32 Then,
µ-MLR=

⋂
n∈N Vn. Since

⋂
n∈N Vn is a Π0

2 set, µ-MLR is a Σ0
2 set. A fortiori, µ-MLR is

in ΣΣΣ
0
2. The set

⋂
n∈N Vn is also dense. For, suppose not. Then, there is some σ ∈ {0, 1}<N

with
(⋂

n∈N Vn
)
∩ [σ ] = /0. Hence, [σ ]⊆ µ-MLR. Take a computable sequence in [σ ]

that is not a µ-atom. We can find such a sequence as follows. Since µ is computable, we
can computably find τ1 ∈ {0, 1}<N with µ([στ1])<

1
2 by dovetailing through the cylin-

ders contained in [σ ], approximating their respective measures from above. And, given
τ1, ..., τn ∈ {0, 1}<N with µ([στ1...τn])< 2−n, we can computably find τn+1 ∈ {0, 1}<N

with µ([στ1...τn+1])< 2−(n+1) by following the same procedure inside [στ1...τn]. Then,
ω = στ1τ2... is a computable sequence with µ({ω}) = 0. Since the only way for a

31A real number r is computable if it is computably approximable: if there is a computable sequence
q0, q1, q2, ... of rational numbers such that |qn − r| ≤ 2−n for all n ∈N. A probability measure µ on B is
computable if, for any σ ∈ {0, 1}<N, µ([σ ]) is a computable real number, uniformly in σ . This means that
there is a computable function that, on input σ ∈ {0, 1}N and n ∈N, returns the n-th rational in a computable
approximation of µ([σ ]). For a simple example of a computable probability measure, take any Bernoulli
measure with a computable bias.

32See (Downey and Hirschfeldt, 2010, Theorem 6.2.5).
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computable sequence to be µ-Martin-Löf random is to be a µ-atom, ω is not µ-Martin-
Löf random. But this contradicts the fact that [σ ]⊆ µ-MLR. Hence,

⋂
n∈N Vn is indeed

dense. Clearly, µ-MLR=
⋃

n∈N Vn, where each set Vn is Π0
1 and, so, closed. By the den-

sity of
⋂

n∈N Vn, no Vn contains any non-empty open sets. Therefore, each Vn is such that
its closure has empty interior: i.e., each Vn is nowhere dense. Hence, µ-MLR is meagre.
The indicator function 1µ-MLR of µ-MLR is a Baire class 2 integrable random variable.
And since µ(µ-MLR) = 1 and µ has full support, the set of sequences α ∈ {0, 1}N
with limn→∞ Eµ [1µ-MLR | Fn](α) = 1µ-MLR(α) coincides with µ-MLR. Therefore, the
set of sequences along which Lévy’s Upward Theorem holds for 1µ-MLR is meagre. For
n > 2, we can then reason as follows.33 The notion of µ-Kurtz randomness (Definition
3.3) can be generalized to arbitrary levels of the arithmetical hierarchy: for any n ≥ 1, a
sequence is µ-weakly n-random if and only if it belongs to every Σ0

n set of µ-measure
one (so, µ-Kurtz randomness coincides with µ-weak 1-randomness). The set of µ-
weakly n-random sequences is in ΠΠΠ

0
n+1 and has µ-measure one. Moreover, µ-weak

(n + 1)-randomness entails µ-weak n-randomness and µ-weak 2-randomness entails
µ-Martin-Löf randomness.34 Hence, for each n > 2, by the same argument used for
1µ-MLR, the indicator function of the set of µ-weakly (n − 1)-random sequences is an
example of a Baire class n integrable random variable for which convergence to the truth
occurs on a meagre set.

Proposition 3.9 and Corollary 3.13 circumscribe the reach of Belot’s objection: they
establish that, at least for relatively simple inductive problems, convergence to the truth
is topologically typical, in addition to being probabilistically typical. Proposition 3.14
pulls in the opposite direction. Not only does it show that, for more complex classes
of inductive problems, co-meagre success is not always achievable, it also reveals that
the dichotomy problematized by Belot is perhaps more pervasive than one might have
initially thought. Past the level of Baire class 1 integrable random variables, co-meagre
failure can be easily found at every level of the Borel hierarchy.

Computable and Almost Everywhere Computable Functions. Though well-behaved, all of
the functions considered so far were allowed to be arbitrarily computationally complex.
We will now concentrate on effective functions—functions whose values are in some
sense calculable or approximable—and provide several examples of effective random
variables for which convergence to the truth is topologically typical.

The very same taxonomy we discussed in the context of the arithmetical hierarchy
of subsets of Cantor space also applies to the arithmetical subsets of R. Here, the Σ0

1
sets are those that can be expressed as a computably enumerable union of open intervals
with rational endpoints, while the other levels of the hierarchy are defined in the same
way as in the Cantor space setting. Computable functions from {0, 1}N to R are defined
as follows:

33Of course, 1µ-MLR is a Baire class n integrable random variable for every n ≥ 2, so the above argument
already suffices to establish the claim. In the remainder of the proof, we will however show that it is possible
to identify a different Baire class n integrable random variable with a meagre success set for each n ≥ 2.
The random variables we shall consider are different from each other for every non-degenerate probability
measure for which the algorithmic randomness hierarchy does not collapse.

34See (Downey and Hirschfeldt, 2010, §7.2).
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Definition 3.15 (Computable function). A function f : {0, 1}N →R is computable if
and only if, for every Σ0

1 subset U of R, f−1(U ) is a Σ0
1 subset of {0, 1}N, uniformly

in a code for U .35

It is not difficult to see that the computable functions are precisely those functions whose
values can be computably approximated to any degree of precision (via a computable
sequence of rational-valued step functions).36

Every open set in the standard topology on the reals can be expressed as a (countable)
union of Σ0

1 sets. Moreover, every Σ0
1 subset of Cantor space is open. Therefore, every

computable function is continuous. Consequently, Proposition 3.9 holds for computable
random variables, as well. And when µ has full support, the set of sequences along
which Lévy’s Upward Theorem holds is co-meagre. So, a Bayesian agent with a prior
with full support trying to estimate a computable quantity is guaranteed to be inductively
successful on a topologically typical collection of data streams (in fact, along every data
stream).

Much like its classical counterpart—the concept of a continuous function—the
notion of a computable function is rather demanding. The following example, taken
from (Ackerman et al., 2019), nicely illustrates this point. Let θ ∈ [0, 1]. A {0, 1}-valued
random variable f : {0, 1}N →R relative to a probability measure µ is a θ -Bernoulli
random variable if µ({ω ∈ {0, 1}N : f (ω) = 1}) = θ (i.e., if the probability that f takes
value 1 is θ ). Ackerman et al. (2019) show that, for any θ ∈ [0, 1] that is not a dyadic
rational, every θ -Bernoulli random variable fails to be continuous and, as a result, is
not computable in the sense of Definition 3.15. At the same time, for any computable
θ ∈ [0, 1], there are many θ -Bernoulli random variables that, though not computable,
are “very close” to being computable. The following, more permissive notion is thus
generally regarded as the more natural one to focus on in the context of (computable)
probability theory:37

Definition 3.16 (Almost everywhere computable function). Let µ a probability measure.
A partial function f : {0, 1}N →R is µ-almost everywhere computable if and only if it
is computable on a Π0

2 subset of {0, 1}N of µ-measure one: namely, if there is a Π0
2 set

D ⊆ {0, 1}N with µ(D) = 1 such that f is defined on every ω ∈D and, for every Σ0
1

subset U of R, f−1(U )∩D =U ′ ∩D , where U ′ is a Σ0
1 subset of {0, 1}N, uniformly

in a code for U .38

35Let S0,S1,S2, ... be a fixed effective enumeration of all the Σ0
1 subsets of R and E0, E1, E2, ... a fixed

effective enumeration of all the Σ0
1 subsets of {0, 1}N. The uniformity condition in Definition 3.15 means

that there is a computable function g : N→N such that, for all n ∈N, f−1(Sn) = Eg(n).
36See, e.g., (Li and Vitányi, 2019, 35-36).
37See (Hoyrup, 2008), (Hoyrup and Rojas, 2009), and (Ackerman et al., 2019). Importantly, all standard

operations on random variables (such as addition, multiplication, composition, and Cartesian products)
preserve almost everywhere computability.

38The restriction to Π0
2 sets might seem surprising at first. We could have defined a µ-almost everywhere

computable function as one that is computable on a µ-measure one subset of {0, 1}N, without requiring
that this set also be Π0

2. However, by effectivizing a classical result due to Kuratowski (see (Kechris, 1995,
Theorem 3.8), (Hoyrup, 2008, Theorem 1.6.2.1) or (Ackerman et al., 2019, Remark 2.11)), one can show
that, for any such function f : {0, 1}N →R, there is a function f ′ : {0, 1}N →R that is µ-almost every-
where computable in the sense of Definition 3.16 and agrees with f on all the sequences over which f is
computable. Moreover, a code for the Π0

2 set over which f ′ is computable can be computed uniformly from
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The argument from the proof of Proposition 3.9 can once again be employed to
establish the following fact (since almost everywhere computable random variables are
integrable):

Proposition 3.17. Let µ a probability measure and f : {0, 1}N →R a µ-almost every-
where computable random variable, with D the Π0

2 set of µ-measure one on which f is
computable. Then, for all ω ∈ supp(µ)∩D , limn→∞ Eµ [ f | Fn](ω) = f (ω).

Proof. Let ω ∈ supp(µ)∩D . Then, for all n ∈N, E[ f | Fn](ω) =
∫
[ω↾n] f dµ/µ([ω↾n]). Let

ε > 0. Since f is computable on D , f is continuous on D . Hence, there is m ∈N such
that, for all α ∈D , if α ∈ [ω ↾ m], then | f (ω)− f (α)|< ε . Therefore, for all n ≥ m,∣∣∣∣∣

∫
[ω↾n] f dµ

µ([ω ↾ n])
− f (ω)

∣∣∣∣∣ ≤
∫
[ω↾n] | f − f (ω)| dµ

µ([ω ↾ n])
=

∫
[ω↾n]∩D | f − f (ω)| dµ

µ([ω ↾ n])

<

∫
[ω↾n]∩D ε dµ

µ([ω ↾ n])
= ε,

where both identities follow from the fact that µ(D) = 1. This establishes the claim.

For any probability measure µ with full support, the Π0
2 collection of sequences over

which a µ-almost everywhere computable function is computable is co-meagre:

Proposition 3.18. Let µ a probability measure with full support and D ⊆ {0, 1}N a Π0
2

set of µ-measure one. Then, D is co-meagre.

Proof. Let {Dn}n∈N a computable sequence of Σ0
1 sets with D =

⋂
n∈N Dn. Then,

µ(Dn) = 1 for all n ∈N and, so, each Dn is dense. For, suppose not. Then, there
is some n ∈N and σ ∈ {0, 1}<N such that Dn ∩ [σ ] = /0. Since µ([σ ])> 0, µ(Dn)≤
1 − µ([σ ])< 1, which yields a contradiction. Let U ⊆ {0, 1}N be an arbitrary open
set. Since each Dn is dense, Dn ∩U ̸= /0 for all n. Moreover, given that each Dn
is open, each set Dn ∩U is open in the subspace topology on U . For all n, since
(Dn ∩U )∩ (Dn ∩U ) = /0, Dn ∩U is not dense in U . Hence, each Dn is nowhere
dense. Therefore, D =

⋃
n∈N Dn is meagre and D is co-meagre.

Proposition 3.17 and Proposition 3.18 entail the following:

Corollary 3.19. Let µ a probability measure with full support and f : {0, 1}N →R a µ-
almost everywhere computable random variable. Then, the collection of all ω ∈ {0, 1}N
with limn→∞ Eµ [ f | Fn](ω) = f (ω) is co-meagre.

Hence, a Bayesian reasoner whose prior has full support has a co-meagre success set for
any random variable whose values are computably approximable.

Randomness and Genericity at Work. While in and of themselves significant, conver-
gence to the truth with probability one and convergence to the truth on a co-meagre

a code for the family of Σ0
1 sets witnessing the µ-almost everywhere computability (in the weaker sense

defined above) of f . Hence, without loss of generality, we can always assume that the µ-measure-one set
of sequences over which a µ-almost everywhere computable function is computable is Π0

2.

https://doi.org/10.1017/psa.2023.177 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.177


20 Pride and Probability

set remain somewhat elusive notions. For one, in its classical form, Lévy’s Upward
Theorem is silent as to which data streams belong to the probability-one set of sequences
along which convergence to the truth provably occurs. More generally, proving that con-
vergence to the truth happens with probability one or on a co-meagre set provides little
information about the composition of the success set. It also does not tell us how the
composition of this set varies depending on the particular quantity the agent is trying to
estimate, nor does it indicate whether the data streams that ensure eventual convergence
to the truth share any property that might explain their conduciveness to learning—that
is, any significant property that sets them apart from the data streams along which learn-
ing fails. In what follows, we will address these worries from the vantage point of
computability theory. In particular, we will see that the theories of algorithmic random-
ness and effective genericity can be put to use to identify specific topologically typical
collections of data streams along which convergence to the truth in the sense of Lévy’s
Upward Theorem is achieved for several classes of effective random variables.

We will begin by having a second look at the class of almost everywhere computable
random variables.

Recall the definition of µ-Kurtz randomness (Definition 3.3). Given µ , let µ-KR
denote the set of µ-Kurtz random sequences.

Proposition 3.20. Let µ a probability measure and f : {0, 1}N →R a µ-almost every-
where computable function, with D the µ-measure one Π0

2 set on which f is
computable. Then, µ-KR⊆ supp(µ)∩D .

Proof. Let ω ∈ {0, 1}N. First, suppose that µ([ω ↾ n]) = 0 for some n ∈N. Then, there
is a Π0

1 set of µ-measure zero, [ω ↾ n], that ω belongs to, which entails that ω /∈ µ-KR.
Now, suppose that ω ∈D . Since D is a Σ0

2 set of µ-measure zero, D =
⋃

n∈N An, where
each An is in Π0

1 and has µ-measure zero. Therefore, there is once again a Π0
1 set of

µ-measure zero that ω belongs to. Hence, ω /∈ µ-KR.

By combining Proposition 3.20 with Proposition 3.17, we can immediately conclude
that, for any µ-almost everywhere computable random variable (and, a fortiori, any
computable random variable), observing a µ-Kurtz random data stream is a sufficient
condition for converging to the truth in the limit:

Corollary 3.21. Let µ a probability measure and f : {0, 1}N →R a µ-almost every-
where computable random variable. Then, for all ω ∈ µ-KR, limn→∞ E[ f | Fn](ω) =
f (ω).

When µ has full support, the set µ-KR is co-meagre. Hence, when the agent’s prior
has full support, there is a precisely identifiable collection of data streams—one that
is typical both probabilistically and topologically—membership in which guarantees
convergence to the truth for any inductive problem that can be modelled as a µ-almost
everywhere computable random variable.

Just as the computable functions are the effective analogue of the continuous
functions, Baire class n functions can be naturally effectivized as follows:
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Definition 3.22 (Effective Baire class n function.). Let n ∈N. A function
f : {0, 1}N →R is of effective Baire class n if and only if, for every Σ0

1 subset U of
R, f−1(U ) is a Σ0

n+1 subset of {0, 1}N, uniformly in a code for U .

For each n ≥ 1, the indicator functions of ∆0
n, Σ0

n, Π0
n, and ∆0

n+1 sets are simple exam-
ples of effective Baire class n functions (this, of course, is the effective counterpart of
the fact that the indicator functions of ∆∆∆

0
n, ΣΣΣ

0
n, ΠΠΠ

0
n, and ∆∆∆

0
n+1 sets are Baire class n func-

tions in the classical setting). For instance, the indicator functions of Σ0
1 sets, which

intuitively correspond to binary decision problems that can be effectively verified with a
finite amount of data, and the indicator functions of Π0

1 sets, which correspond to binary
decision problems that can be effectively refuted with a finite amount of data, are all
effective Baire class 1 functions. For level one of the hierarchy, another natural example
is the collection of semicomputable functions:

Definition 3.23 (Lower and upper semicomputable function). A function
f : {0, 1}N →R is lower semicomputable if and only if all sets of the form
f−1((a,+∞)), with a ∈Q, are Σ0

1, uniformly in a. A function f : {0, 1}N →R is
upper semicomputable if and only if all sets of the form f−1((−∞, b)), with b ∈Q, are
Σ0

1, uniformly in b.

Semicomputability is the effective analogue of semicontinuity: a function is computable
if and only if it is both lower semicomputable and upper semicomputable. The lower
semicomputable functions are those whose values can be computably approximated
from below, while the upper semicomputable functions are those whose values can
be computable approximated from above.39 The collection of lower semicomputable
functions includes the indicator functions of Σ0

1 sets, while the collection of upper
semicomputable functions includes the indicator functions of Π0

1 sets.
Given that every effective Baire class 1 function is a Baire class 1 function in the

classical sense, Theorem 3.12 and Corollary 3.13 also apply to effective Baire class 1
integrable random variables: when the agent’s prior has full support and the quantity to
be estimated is an effective Baire class 1 integrable random variable, Lévy’s Upward
Theorem holds on a co-meagre set of data streams.

But, as with the almost everywhere computable functions, adding effectivity into the
mix allows to go beyond the mere observation that we can attain co-meagre success. For
effective Baire class 1 functions, 1-genericity (Definition 3.28) can be used to provide
a more in-depth analysis of convergence to the truth via the following effectivization of
Theorem 3.12:

Theorem 3.24 (Kuyper and Terwijn (2014)). Let f : {0, 1}N →R a function of effective
Baire class 1. Then, f is continuous at every 1-generic sequence.

It then immediately follows that, for any agent whose prior has full support, observ-
ing a 1-generic data stream is conducive to learning no matter which effective Baire
class 1 integrable random variable that agent is trying to estimate:

39See (Li and Vitányi, 2019, 35-36).
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Corollary 3.25. Let µ a probability measure with full support and f : {0, 1}N →R
an effective Baire class 1 integrable random variable. Then, for every 1-generic
ω ∈ {0, 1}N, limn→∞ Eµ [ f | Fn](ω) = f (ω).

Since the collection of 1-generic sequences is co-meagre, Corollary 3.25 allows to pin-
point a single co-meagre collection of data streams that guarantee convergence to the
truth for all inductive problems that can be modelled as effective Baire class 1 integrable
random variables.

/0(k)-Computable Functions and /0(k)-Effective Baire Class n Functions. We conclude our
discussion of co-meagre convergence to the truth with a more technical note: by consid-
ering two collections of functions that rely on oracle computation—the /0(k)-computable
functions and the /0(k)-effective Baire class n functions.

The arithmetical hierarchy can be relativized to sequences ω ∈ {0, 1}N (taken to rep-
resent the indicator function of a set of natural numbers) by letting the relation R be
ω-computable (that is, computable with oracle ω). In this way, one obtains the notions
of a Σ

0,ω
n , Π

0,ω
n and ∆

0,ω
n set. From the perspective of computability theory, an espe-

cially useful collection of oracles is the class of Turing jumps of the empty set /0. The
zero-th jump /0(0) of /0 is simply /0 itself, which of course does not provide any addi-
tional computational power. The first jump /0(1) of /0 is the halting set: namely, the set
{n ∈N : ϕn(n) ↓} of all natural numbers n such that the n-the partial computable func-
tion ϕn (equivalently, ϕ /0(0)

n ) is defined on n (the Turing machine computing ϕn halts on
input n). For k > 1, the k-th jump /0(k) of /0 is the halting set relativized to /0(k−1): i.e.,
the set {n ∈N :ϕ /0(k−1)

n (n)↓} of all natural numbers n such that the n-th /0(k−1)-partial
computable function ϕ /0(k−1)

n is defined on n. Using sets of the form /0(k) (or, rather, the

infinite sequences corresponding to these sets) as oracles, one obtains the classes Σ
0, /0(k)
n ,

Π
0, /0(k)
n and ∆

0, /0(k)
n . For instance, a set S is Σ

0, /0(k)
1 if and only if there is a Σ0

k+1 set
S ⊆ {0, 1}<N—namely, a set of strings S that is computably enumerable relative to the
k-th jump /0(k) of /0—such that S = [S].40

The notion of a /0(k)-computable function is defined as follows:

Definition 3.26 ( /0(k)-Computable function). Let k ∈N. A function f : {0, 1}N →R is

/0(k)-computable if and only if, for every Σ0
1 subset U of R, f−1(U ) is a Σ

0, /0(k)
1 subset

of {0, 1}N, uniformly in a code for U .

For each k ≥ 1, the indicator functions of ∆
0, /0(k)
1 sets are simple instances of /0(k)-

computable functions. Functions of this type can be thought of as binary decision
problems that are not in themselves decidable, but which become decidable having
access to the background information encapsulated by /0(k) (or any other problem of the
same complexity). More generally, a /0(k)-computable function is one whose values can
be computably approximated to any degree of precision with background information
/0(k).

40See (Soare, 2016, Chapter 3 and Chapter 4).
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Crucially, for all k ∈N, the Σ
0, /0(k)
1 subsets of {0, 1}N are open. Hence, just like the

computable functions, the /0(k)-computable functions are continuous. By Proposition
3.9, the set of data streams that satisfy Lévy’s Upward Theorem relative to a /0(k)-
computable random variable is thus co-meagre, as long as the agent’s prior has full
support. And since, for any probability measure µ , every µ-Kurtz random sequence is
in the support of µ , observing a µ-Kurtz random data stream suffices to converge to the
truth for any /0(k)-computable random variable. So, the collection of µ-Kurtz random
sequences once again provides a crisp example of a set of data streams along which
convergence to the truth is guaranteed to occur.

A /0(k)-effective Baire class n function is instead defined as follows:

Definition 3.27 ( /0(k)-Effective Baire class n function). Let k, n ∈N. A function
f : {0, 1}N →R is of /0(k)-effective Baire class n if and only if, for every Σ0

1 subset U of

R, f−1(U ) is a Σ
0, /0(k)
n+1 subset of {0, 1}N, uniformly in a code for U .

For each k ≥ 1, the indicator functions of ∆
0, /0(k)
n , Σ

0, /0(k)
n , Π

0, /0(k)
n , and ∆

0, /0(k)
n+1 sets are all

of /0(k)-effective Baire class n. For instance, the indicator functions of Σ
0, /0(k)
1 sets, which

correspond to binary decision problems that can be effectively verified having access to

/0(k), are all of /0(k)-effective Baire class 1, while the indicator functions of Σ
0, /0(k)
2 sets,

which correspond to binary decision problems that can be effectively verified in the limit
having access to /0(k), are all of /0(k)-effective Baire class 2.

Once again, since every /0(k)-effective Baire class 1 function f is a Baire class 1
function, Theorem 3.12 and Corollary 3.13 both apply: the points of continuity of f
form a co-meagre ΠΠΠ

0
2 set and, for any prior with full support, the collection of data

streams along which Lévy’s Upward Theorem holds with respect to f (when f is an
integrable random variable) is co-meagre. As with effective Baire class 1 functions, we
can however say more.

First, note that the notion of 1-genericity introduced earlier can be generalized as
follows to any positive natural number:

Definition 3.28 (n-Genericity). Let n ≥ 1. A sequence ω ∈ {0, 1}N is n-generic if and
only if ω meets every Σ0

n set S ⊆ {0, 1}<N that is dense along ω .

For every n ≥ 1, (n + 1)-genericity entails n-genericity, but the reverse implication
does not hold. Moreover, the fact that the set of 1-generic sequences is topologically
typical generalizes to the entire hierarchy:41

Proposition 3.29. Let n ≥ 1. The set of n-generic sequences is co-meagre.

The following is proven analogously to Theorem 3.24:

Theorem 3.30. Let k ≥ 1 and f : {0, 1}N →R a function of /0(k−1)-effective Baire class
1. Then, f is continuous at every k-generic sequence.

41See (Kurtz, 1981), (Nies, 2009), or (Downey and Hirschfeldt, 2010).
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Proof. Let S0,S1,S2, ... be a fixed effective enumeration of the Σ0
1 subsets of R.

Recall that f being discontinuous at ω ∈ {0, 1}N means that there is an open subset O of
R with f (ω)∈O but, for all open U ⊆ f−1(O), ω /∈U . In other words, ω ∈ f−1(O),
but ω /∈ Int( f−1(O)). Every open set is a union of Σ0

1 sets, so {ω ∈ {0, 1}N :
f is discontinuous at ω}=

⋃
n∈N

(
f−1(Sn) \ Int( f−1(Sn))

)
. Let ω ∈ {0, 1}N such that

f is discontinuous at ω . Then, there is m ∈N with ω ∈ f−1(Sm) \ Int( f−1(Sm)).

Given that f is of /0(k−1)-effective Baire class 1, by definition, f−1(Sm) is a Σ
0, /0(k−1)

2

subset of {0, 1}N. Hence, f−1(Sm) =
⋃

i∈N Ci, where each Ci is a Π
0, /0(k−1)

1 set. So,
f−1(Sm) \ Int( f−1(Sm)) =

⋃
i∈N Ci \ Int(

⋃
i∈N Ci)⊆

⋃
i∈N(Ci \ Int(Ci)). Thus, there

is j ∈N with ω ∈C j \ Int(C j), which means that ω ∈C j ∩ Cl(C j). Since C j is a

Σ
0, /0(k−1)

1 set, C j = [C] for some Σ0
k set C ⊆ {0, 1}<N. And since ω ∈ Cl([C]), C is

dense along ω . However, ω does not meet C, as ω /∈ [C] =C j. Therefore, ω is not
k-generic.

Theorem 3.30 entails that, for any Bayesian reasoner whose prior has full support,
observing a k-generic data stream leads to inductive success for any inductive problem
corresponding to a /0(k−1)-effective Baire class 1 integrable random variable:

Corollary 3.31. Let k ≥ 1, µ a probability measure with full support, and
f : {0, 1}N →R a /0(k−1)-effective Baire class 1 integrable random variable. Then, for
every k-generic ω ∈ {0, 1}N, limn→∞ Eµ [ f | Fn](ω) = f (ω).

As noted earlier, the set of k-generic sequences is co-meagre. Hence, Corollary 3.31
reveals that, for priors with full support, we can once again single out a specific co-
meagre collection of data streams along which convergence to the truth happens for all
/0(k−1)-effective Baire class 1 integrable random variables.

4. Conclusion
According to Belot (2013), Bayesian learners are unavoidably epistemically orgulous:
the Bayesian framework, with its convergence-to-the truth results, compels them to be
confident in their ability to be inductively successful even when there are co-meagre
many data streams along which learning, as a matter of fact, fails.

In this article, we set out to elucidate how pervasive the issue identified by Belot
is. We suggested to use descriptive set theory and computability theory to classify
the inductive problems (random variables) faced by Bayesian agents in terms of their
complexity. Then, relying on this taxonomy, we provided an analysis of the conditions
under which inductive success is both probabilistically and topologically typical and the
conditions under which these two notions of typicality instead come apart.

We showed that there are several classes of random variables admitting natural epis-
temic interpretations for which the dichotomy Belot highlights does not arise: for the
inductive problems in these classes, Lévy’s Upward Theorem holds both with probabil-
ity one (relative to the agent’s prior) and on a co-meagre set of data streams. Specifically,
the collections of inductive problems for which we established that success is topolog-
ically typical, in addition to being probabilistically typical, are the classes of random
variables listed in Table 1 below.
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Classical setting Effective setting
Continuous random variables Computable random variables

Almost everywhere computable random variables
/0(k)-Computable random variables

Baire class 1 integrable random variables Effective Baire class 1 integrable random variables
/0(k)-Effective Baire class 1 integrable random variables

Table 1. Classes of random variables for which convergence to the truth occurs on a
co-meagre set.

The random variables for which we proved that convergence to the truth happens
on a co-meagre set correspond to natural but relatively simple inductive problems (they
include, for instance, all binary decision problems that can be verified or refuted with
a finite amount of data and all binary decision problems that can be decided in the
limit). For more complex families of inductive problems (in fact, for the entire hierar-
chy of Baire class n integrable random variables starting at level 2), we showed that
there are problems for which convergence to the truth only happens on a meagre set.
Hence, the proposed taxonomy can also be leveraged to add to Belot’s negative results
and reveal that “Bayesian orgulity” is, relative to this classification at least, a pervasive
phenomenon.

Classical notions of measure-theoretic and topological typicality can be used to prove
that convergence to the truth happens along the “vast majority” of data streams, but they
convey little information as to what kind of data streams are conducive to inductive
learning, depending on the particular inductive problem at hand. We saw that, in the
effective setting, it is possible to get a much crisper understanding of the success sets
of Bayesian agents. In particular, we showed that the theories of algorithmic random-
ness and effective genericity (which are theories of effective measure-theoretic typicality
and effective topological typicality, respectively) can be employed to single out specific
co-meagre collections of data-streams along which Lévy’s Upward Theorem holds, no
matter which inductive problem from the classes of effective random variables listed in
Table 1 the agent is trying to solve.

Our findings, while preliminary, evince that the taxonomy of inductive problems
afforded by descriptive set theory and computability theory is a promising lens through
which to probe Bayesian convergence-to-the-to-truth theorems. In particular, they sug-
gest that, by further analyzing the inductive problems faced by Bayesian learners in
terms of their complexity, we may be able to come to understand the full reach of
Belot’s objection. Moreover, quite aside from Belot’s concerns, the approach adopted
in this article also offers a natural framework within which to investigate the following
general question: how does the complexity of a Bayesian learner’s success set, under-
stood in either topological or computability-theoretic terms, vary as a function of the
complexity of the inductive problem faced by the learner?
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