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1. Introduction

Let E™= o flu (sa = a0 + • • • + an, n ^ 0) be a series of real or complex numbers.
Denote by {t^} and {t{

n
2)}

(1.1) #>= £ a<"s*n = 0 0=1.2)
* = o

two linear transforms 7\ and T2 of {sn}. Estimates of the form

(1.2) lim sup 11<& - t%l | ^ C • lim sup | dn \
A-»oo n-*oo

for sequences {sn} satisfying

(1.3) lim sup | dn \ < oo
n-*oo

where {dn} is a certain fixed linear transform of the sequence {an} (n ^ 0) and
n(A)->oo, m(A)->oo (A|oo) depend on the transforms Tu T2 and {dn}, were
considered for the first time by Hadwiger [2]. The smallest value of C satisfying
(1.2) for all sequences {sn} satisfying (1.3) is known as the Tauberian constant asso-
ciated with the pair of transforms Tu T2 and {dn}.

In §2 we get the explicit expression of the Tauberian constant associated with
two transforms {tj,1'}, {^2)}, one a Hausdorff sequence-to-sequence transform
and the other a [J,/(x)] series-to-function transform; {dn} being the Cesaro
transform of order a (0 g a ^ 1) of the sequence {nan}. This generalizes the work
of [7].

As an application we derive from Theorem 2.1 of §2 Littlewood's Tauberian
theorem for the Abel transformation (Theorem 2.3), by using Tauberian constants.

The authors wish to thank the referee for suggestions for the improvement
of this paper.
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[2] Tauberian theorems for [/, f(x)] transformations 203

2. Tauberian constants and Little wood's theorem

Given an infinite sequence {//„} (n S: 0) the Hausdorff transform {tn} generated
by the sequence {/*„} of a sequence {sn} is defined (see [3]) by

where Ap+1fir =Apfir — Apfir+1 (p 7z 0), A°fir = nr. A Hausdorff transformation
generated by a sequence {//„} is regular if, and only if, there exists a function y(t)
satisfying

(2.1) y(t) is normalized and of bounded variation in [0,1], y(0) = y(0+) = 0 and

r(i) = i,

and nn = llfdy(t) for n ^ 0. Thus the regular Hausdorff transform {Hn(y)} of a
sequence {sn} may be defined by

Hn(y) = f »E PB,(0strfy(0, n^0,
JO k=O

where y(r) satisfies (2.1) and

(Y"Wl -0""* if Ogfcgn
(2-2) Pn,(0 = i V 7

I 0 if fe>n
(the function Pnk(t) defined here is the function Pnk(t) defined by [9,(2.3)] for

For a series Sn°t0
 fl

n
 a nd a fixed a ^ 0 , define the sequence {an

a)} as the
Hausdorff transform of {nan} with y(t) = ^ ( 0 , where ij/Jj) = 1 - (1 - 0" if
0 g i ^ 1 and a > 0, i^0(0 = 0 if 0 <L t < 1, i^0(l) = 1- That is {a*"0} is the Cesaro
transform of order a of the sequence {nan} and we have the explicit expression

a^0) = nan for n ^ 0.

The regular series-to-function [ J , / (x ) ] - transform of a series Ef=o flt
is defined in [8, §5] by

(2.3) Jjip)= S « J (-x)m/(m)W/m!, x>0,
k=O m=k

where
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(2.4)
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x>o,

[3]

= f\
Jo

and fi(t) is a function satisfying

(2.5) fi(i) is of bounded variation in [0,1], 0(0) = 0(0+) = 0, 0(1 -0 ) = 0(1) = 1.

LEMMA 2.1. Suppose 0(0 satisfies (2.5). / / /o r some a, 0 5£ a ̂  1,

(2.6) j^\p(e-')\t"-1dt <oo

and a^= 0(1) as n -*• oo, J/ien J,,.(0) exists for x > 0

p = l JO

Jo P = i

where for u,x>0, k>0 P*k(u) = e-xu(xu)k/kl and P*0(«) = e~x".

PROOF. It is well-known that a^a) = 0(1) ( n ^ oo) implies nan = O(n") or
|an| ^ Mn""1 for n ̂  1. Now for 0 < a < 1 (for a = 0 and a. = 1 the proof is
even simpler) we have

E ,

m=k

(and integrating by parts)

(and by term-by-term differentiation)

=S |«o|+ 5

00 /» 00

S P*xm{uW(
m=k Jo

r ( 2 P£,(«
Jo lm=*

r°°j8(e-")
Jo

^ - S Pjm(«)da
m~k

f"p
Jo

g |ao|+M f " ! ^ - ) ^ - 1 £ P?k
Jo fc = i

= \ao\+Mx" r\P(e-u)\u*-ie-*u

Jo
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(and by Holder's inequality with p = I / a > 1 and q — 1/(1 — a), so that l/p

g \ao\+Mxx f \p(e~u)\ux~1e~x"
Jo

( y ^Lf2_\ ' / y ^XM^

^ |ao|+Mx" f"|j8(e-")|«—^M
J o

< 00.

Thus by (2.3) JX(P) exists for x > 0 and by the same argumsnt (2.7) is true too.

THEOREM 2.1. Let a be a fixed number 0 ^ a < l . Suppose {Hn(y)} and
JX(P) are regular transformations and

< oo.Jo t Jo u

For a sequence {sn} satisfying a(
n
a) = 0 ( l ) ( n -» oo) we have for each q,0 <q < oo,

and any pair of functions n(A)-> oo, x(A)^ oo, n(A)/x(A)-»q (2-» oo)

(2.7) lim sup | HnW(y) - JxW(0) | ^ G^a)- lim sup | «<" |
A-*co n-*oo

(2.8) Gja> = ffW + J Vja> = ffW + J °

Hl
q

x) is,forO<oc<l, the total variation on O^x ^q of

xr « p ,„. «J
w

= r
Jo

The constant G^ is the best in the following sense. There is a real sequence
[sn} satisfying a^= 0(1) and such that both members of inequality (2.7) are
equal.

Theorem 2.1 for a = 0 and y(t) = 0 (0 g ( < 1), y(l) = 1, is Theorem 5.1 of [8].
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THEOREM 2.2. Suppose (Hn(y)) and Jx(fi) are regular transformations such
that y(t) is continuous for 0 ^ t < 1 and

C I^U<oo, f1 I1-*«%*,< co, f"|«e-)|d«<co.
Jo t Jo t Jx

For a sequence {sn} satisfying a^ = 0(1) as n -*• oo we have for each q,0 <q < oo,
and any pair of functions n(X)-* oo, x(A)->- oo, n(X)/x(X)-+q (A-> oo)

(2.9) lim sup | tfnW(y) - JX(A)0) | ^ G<X) • lim sup | a<' > |

where

j \j
j / , either: (I) )?(/) is continuous at t = l/e and y(t) is absolutely continuous in
each interval [<5, 1 — 5] (0 < 3 < £) or (II) /?(f) is continuous in some interval
[e - 1 — e, 1] for some 0 < e < e~l, j?(f) is absolutely continuous in each interval

[ e " 1 + 5, 1 - <5] JO < d < —^—I and y(t) is continuous in [0,1]. G,(1) is the

best in the sense of Theorem 2.1.

Theorem 2.2 for y(t)=O (0^t< 1), y(l) = l and fi(t) continuous in [0,1] is
Theorem 5.2 of [8]. The assumption \T\P<,e~')\dt < oo should be added to the
assumptions of [8, Theorem 5.2].

THEOREM 2.3 (Littlewood). / / { s j (n ^ 0) is summable Abel to s, that is

GO

lim (1 — x) 2 snx" = s, and nan = 0(1) (« -> oo), then lim sn = s.
n = 0

PROOF. The 4(r)—transform (r ^ 0) of a sequence {sn} (n ^ 0) is defined by

and it is the Jx(^ir{t)) - transform (see [5, Theorem 8.3] and [6, Example 4]). It
is proved in [10, p. 503] that Abel's summability of {sn} to s and nan = 0(1)
imply the Air)- summability for each positive integer r. Now by Theorem 2.1
for a = 0, y(0 = 0 (0 ^ t < 1), y(l) = 1, fi(t) s 1 - (1 - t)r, r a positive integer and
q = log r we get

lim sup | sB - s| = lim sup | sn -

r • lim sup | nan
n-*oo

where (for 0 < A < 1)
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Uo J l jAlogrJ u Jiogr U

= /l + h + h + h-

By uniform convergence to zero as r-» oo of the integrand we get lira^^I^ = 0.
We have for each 0 < X < 1 I2 ^ (1 - r~A)r log (Alogr) ->• 0 (r-> oo) and

^ f'Ogr du . !
~ !T = IogT

which may be made small by choosing A near 1. By the inequality 1 — x" 5S a(l—x)
for a ^ 1 and O g x ^ l we get

< r du < I e du = ; >0
~ Jiogr « logr JIogP lIogP logr

( r^oo) .
Hence lim G(,°lr = 0. Thus lim sup | sn — s \ = 0 or lim sn = s.

r-^oo n~*oo n->oo

3. Proof of Theorems 2.1 and 2.2

In the proof of Theorems 2.1 and 2.2 we use the following results.

LEMMA 3.1. / / / (« ) is a complex and bounded function in [0,1] continuous
at the point u = x (0 <̂  x <£ 1), r/ien

(3.1)

(3.2) S Pnt(w) = 1 /or O ^ u g l and n = 1,2,3,....

For a proof see [13, p. 47, Theorem 2.8.2].

LEMMA 3.2. Suppose that f(u) is bounded in every finite interval O^u^R,
R>0, andf(u) = O(ud)for some 5 > 0 as u -» oo. Iff(u) is continuous at a point
u = C, then

lim E
x-»oo k = O

For a proof see [15].

LEMMA 3.3. For p = 0,1,2,... and x,u> Owe have

rfu k=p
 xk u xp

The proof is immediate.
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LEMMA 3.4. Suppose P(t) satisfies (2.5) and (2.6) for some <x, O ^ a ^ l .
Jfa sequence {sn} satisfies a<,°° = 0(1) (n -> oo), then for x>0

(3.3)

a0 +

a0 +

+

u)-"-^{u'Pik(u)}du

if 0 ^ a < 1
00 /»00

i = l JO

J/ 0 ^ a < 1

PROOF. Assume 0 ^ a < 1. We have for p 2: 0

* /p - k - a - 1 \ Ik + a
( )() (

By Lemma 2.1 we get for x > 0

and, as is shown in the proof of Lemma 2.1, the last integral exists with P(e~")
replaced by |/?(e~")|. Now we show that the order of double summation in the
above integral may be changed. For fixed x, u > 0 we have for M > xw, since

2

Now for 0 < k < N we have
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Hence, since | a[x) | ^ M < oo for k ^ 0,

* = 0

,,(N + a+l\D* , , v (xu

= M ( ^ )nw+t(«)FJ+i ( ^

(and by Stirling's formula)

M
(37+1)1

-+ 0 (AT->oo).

Letting N -> + oo we see that for x, u > 0 we have

(p-k-a-l\ (k + a

Thus we get

p=k

The integral on the right hand side exists, by the remark at the beginning of the
proof, if p(e~u) is replaced by | J?(e~") |. We prove now that this integral is absolutely
convergent so that the order of integration and summation may be changed.
Choosing a0 = 0, ap = 1 \p(p > 0) in the last integral we see that

converges. Since J , I < 0 for p > k, I a J = l > 0

p = kand (by (fc + a ) ~ f ^ - ^ oo)

for
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^ Mx f " \E*Z)\ I k"P*k(u)du
J0 « fc = l

(and as is shown in the proof of Lemma 2.1)

we see, because

that the above integral is absolutely convergent. Hence we may change the order
of summation and integration in the last expression for Jx(ft) and we get

w*n _,_ v («) r P(e~") {k + u\ "J ^ ) = a0 + ^ a£ j o _ _ ( k j pE

Now we have

P\

and (by looking on it as a Cauchy product) we get

(xuf
} \k\ Pt0

( } \ k + p ) pi

xk c r V H V

TET / ( -»»" ' [ ? ( - " ' S r ~ ] *

Substituting this expression in the last form of Jx(jS) we get

By Lemma 3.9 we get now the second form of Jx(P)in the statement of our lemma.
This proves our lemma for 0 ̂  a < 1. For a = 1 the proof is similar and much

+ iW] = -7 - [^JP(")"]-simpler. We use now the identity {p + 1) [P*p(») -
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LEMMA 3.5. Suppose G(t) is absolutely continuous in [0,1]. Then for each
pair of functions n = n(A)-> + oo, x = x(A)-> + oo, n(A)/x(/l)->4, (A-> + oo),
0 < q < oo, we have

(3.4) lim £ I f{PJu)-P&qu)}d(Ku)
* - c o * = 0 I JO

= 0.

PROOF. First we prove the lemma for G(u) = u" where a is a positive integer.
We have by (2.2)

£
*=»+l I Jo

f
*=n+lI Jo

= £ Cp*xk{qu)u°-ldu
Jt=n+ 1 Jo

^ v"-1 I P*xk(v)dv.
o *=n+l

Given 5 > 0, 0 < S < q, define /(/) =fs{t) by f(t) = 1 for f > q - 5 and /(/) = 0
for 0 ^ ( ̂  r̂ - 5. Now for A > X(5), q-3<n/x = n(X)/x(X). Hence for X > X(5)
we have, since k ^ n + 1 implies k/x> q — S

q-" fV"1 £ ^00^4"" fV"1 L Pi(o)d»
JO k=n+l JO t

q-d<k/x

J V - i
JO k-

(and by Lemma 3.2, since A->oo implies x = x(A)-* + oo, and Lebesgue's
dominated convergence theorem)

Jo

= ?"" f * v'~xdv.
Jq-S

Letting ^ | 0 we get

(3.5) lim £ | f {Pnk(u)-P*k(qu)}ua-1du = 0.
A->oo * = n + l I JO

We have
B /• 00

Z< P*k(qu)u"~ du ^ x~(a~ g"
t=o J i
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(n + a-1)! _,,_,,

[11]

n!

• a —

Jq fc=O

TT
n + a - 1

S
0 fc=0

1
—>

q

= o
by Lebesgue's bounded convergence theorem, the argument used in proving (3.5)
and Lemma 3.2 applied once to the function fx(t) = 1 (Of^t<Lq- 5, 0 <8 <q)
/x(() = 0 (t> q - 3) and next to the function f2(t) = 1 (0 ̂  f ̂  q + 8), f2(t) =0
(t > q + 3) and then letting (5j,0. Hence we have

/ = lim i \! {Pnk(.u)-Ptk(qu)}ua~1du
A - > o o k = 0 ' J Ok = 0

= lim £
A-»oo fc=0 I JO J 1

= lim £
A-»oo fc=0

Now we have for

f PJuyu'-Uu -
Jo JO

Hence the sign of

f Pnk{u)u"-ldu- rp*xk(qu)ua-ldu
Jo Jo

is constant for 0 <; k < n and we get

(3.6) / = lim | £ f Pnk(u)ua~ldu- £ f " p ^ t / K
A-><» U=0 Jo k=0 Jo

-xdu)

= lim - 1 u"-1 z Pi(««)«/u
' o * = o

I Jo Jo

= 0
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by Lebesgue's bounded convergence theorem, the argument used in proving (3.5)
and Lemma 3.2 applied once to the function / t ( () and next to the function f2(t)
and then letting 5|0. By (3.5) and (3.6) our lemma is true for G(«) = u", a S: 1.
Hence the lemma is also true if G(M) is the integral of a polynomial. Now we prove
the lemma for an arbitrary absolutely continuous function G(M) in [0,1]. We have
G ( 0 = $'og(u)du for O ^ f ^ l where g(u)eLl[0,i]. Given e > 0 there is a
polynomial/(u) such that jl\g(u) — f(u)\du < e/4, since the polynomials are
dense in L^O, 1]. Also, by the first part of the proof for X > A(s) and the polynomial
f(u) we have

£
k=0

{PJ.U) - <±.
Now for X > X(e)

£ If {Pnk(u) - P*k(qu)}dG(u)\ = £ I f {Pnk{u)-PUqu)}g{u)du
k=O • JO i ft = 0 ' J 0

= £
k=0

ft = 0

£

^ T + fV(")-/(")l f 2 p
2 Jo l*=o

(and since £ Pnk(u) = S P » = l )
\ *=0 |fc=o /

= £.

This proves the lemma if G(t) is the integral of a function in Lt [0,1], or equiva-
lently, if G(t) is absolutely continuous in [0,1].

LEMMA 3.6. Suppose fi(t) is of bounded variation in [0,1] and j?(0) = j3(0 + )
/

= 0. Then for each a, 0 < a < 1, the function K(t) = $(1 - uyxu"~l P(e~t/u)du
is of bounded variation in [0, oo) and continuous in (0,oo].//in addition p(t) is
continuous at t = 1, *Jien K(0 JS continuous at t — 0,
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PROOF. For any subdivision 0=f0 < tl < t2 ... tn we have

" ' \K{tk^)-K{tk)\^
* = c

Hence K(t) is of bounded variation in [0, oo). By Lebesgue's dominated con-
vergence theorem we get for 0 < t0 < oo

lim K(t) = I (l-uyxux-1(]imp(e~"u))du
t-'to Jo \ t->t0 I

= f (i-urv-'/j(e''o/>
Jo

= K(t0)
since /?(i>) is continuous almost everywhere in [0,1]. Similarly we get lim,tooK(0
= 0. If j}(y) is continuous at v = 1 we get lim,;OK(0 = K(0).

LEMMA 3.7. For a function fS(t) of bounded variation in [0,1], a real
number a, 0 < a < 1, any fwo positive functions x{X) -» oo, n(l) -» oo, n(
(A -• oo), 0 < # < oo, anc? any number A, q < A < oo, we

lim px*(0 4 f f1(l-«)-V-1[l-
» \Jo

= 0.

PROOF. For 0 < fc < n we have

Hence

i IkSM 2
t = o t = o

by [8, (5.17), (5.18), (5.19)].

LEMMA 3.8. For a function fi(t) bounded and L-integrable in [0,1] satisfying

C1 I t - p(e-u)l .A ^ ildu <
Jo «

and a real number a, 0 < a < 1, the function

oo
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M(t) = r 1 f (1 - «)-'«"-' 11 -
Jo

is Lebesgue-integrable in each interval [0,-4], A > 0.

LEMMA 3.9. Suppose P(t) is of bounded variation in [0,1], j8(0) = /?(0+) = 0

function

and — is Lebesgue-integrable over [1, oo). Then for each a, 0 ^ a < 1,;

= J
is continuous and of bounded variation in each interval [e, oo), e > 0.

PROOF. By Fubini's theorem and Lemma 3.6 we get K(t)/t e L[e, oo] for each
e > 0. By changing variables we get

f °°O - dv = t~'K(t).

Using these two results we get by integration by parts and by using Lemma 3.6

- N(x) = K(x) + a f ^Q- dt.
J* (

The proof follows now by Lemma 3.6.

PROOF OF THEOREM 2.1. First we establish (3.14) which is the main step in the
proof. For this end properties of yff and /}^ ' defined below are needed. For
0 < a < 1 and k > 0 we have by [9, (5.3)] for Xn = n

/ .

f1 -a «-i

(3.8) J0

7/ifc •

For a = 0 we have by [9, (5.3)]
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(3.9)

Jo »

= 7nk-

By [9, (4.5)] we have for Xk = ,

(3.10)

For A > 0, and in particular for A > q, k > 0 and 0 < a < 1 we have

~

(3.11) - j"p*(t)dt [j\l - uT'u'-l

— Pxk •

For cc — 0,k>0 and each ^4, ^ <A < oo, we have

(3.i2) = _ [Ap*xk(t) i^Midt- r ^
Jo t JA t
f °° P%X0

Jo t

Pxk-

For k > 0 we have

https://doi.org/10.1017/S1446788700012970 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012970


[16]

(3.13)

Tauberian theorems for [J, f(x)] transformations

,»OO

217

Jo v k

By [9, Lemma 5.4], Lemma 3.4, (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) we
get for 0 g a < 1

Hn(y) - JAP) = r r 1 . J L „,

CO \

a * I7n* — Pxk) — ^ ak Pxk \ •

To complete the proof of our theorem it is sufficient, by Agnew's theorem (see [8])
to show that we have

f n(A

and limA.,«,[>>!$),*- j8^)>t] = 0 for each k ^ 1. By [8, Theorem 2.1 and Remark
(2.2)], Lemma 3.1, Lemma 3.9, we get by applying to (3.11) an obvious modi-
fication of (5.13) and (5.16) of [8],

(3.15)
co /*co r |*co Of J~u\ 1

lim S \0%,k\ = r rfj ( M _ O - Z ! ^ U

By the second conclusion of [9, Theorem 3.1 for assumption (III)], Lemmas 3.5,
(3.6), (3.7) and (3.8) and [9,(5.8), (5.10)] we get for 0 < a < 1

am

(3.16) Jo

-dw

and for a = 0

It is easy to see that we have
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(3.18) lim \y%,k - 0%,k\ = 0 for k = 1,2,....
A-»oo

The proof follows now by the remark after (3.14), by (3.15), (3.16), (3.17) and
(3.18).

LEMMA 3.10. If P(t) is of bounded variation in [0,1] and P(e~t)eLl\\,co]
and x(X) ->• oo, n(X) -* oo, n{X)lx{X) -* q(0 < q< oo), then for each A, q < A < oo,
we have

PROOF. We have for A > q

As in the proof of Lemma 3.7 we have

l/i'^XE P ^ ^ O (A too).

Integrating by parts we get

/i2 ) = Ke~A) i P?k(A) + ^ P{e~u) -L i P*xk(u)du
k=0 JA «M k=0

+ x f P(e~")e~xudu - e~Axp(e~A)
JA

k=0

We have by Lemma 3.2
| 2 1 ) l im/1 2 2 ) = 0.

We have

| * O O | * CO

'du^O (A-
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Since P*n(t) is a decreasing function in t for r ^ n /x we get

(and by Stirling's formula for n!)

This completes the proof.

PROOF OF THEOREM 2.2. We have by [9, Lemmas 5.4 and (5.5) (for Xn = n)]
and by Lemma 3.4

By (3.13) we get (for q < A < oo)

Hence

i

/
To complete the proof of our theorem it is sufficient, by Agnew's Theorem (see
[8]) to show that we have

+ E
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and

for each k ^ 1.

Repeating the argument used in [8] to prove that in [8, (8.10)] we have

Urn £ ±

we get here

Write y(0 = Ti(0 + y2(t) where yi(*) = y(r) (0 £ f < 1, ^( l ) = y(l - 0). Note
that Pn4(l) = 0 for 0 ^ fc < n. The proof follows now by Lemma 3.10, and by
repeating the argument used in the proof of [9, Theorem 2.2] and by using the
fact that for X > A

(by Stirling's formula) ~ K3 • n~i -»0 (A -» oo).
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