TAUBERIAN THEOREMS FOR $[J, f(x)]$ TRANSFORMATIONS

A. JAKIMOVSKI and A. LIVNE
(Received 12 August 1970; revised 2 September 1971)
Communicated by G. Szekeres

1. Introduction

Let $\sum_{n=0}^{\infty} a_{n}\left(s_{n}=a_{0}+\cdots+a_{n}, n \geqq 0\right)$ be a series of real or complex numbers. Denote by $\left\{t_{n}^{(1)}\right\}$ and $\left\{t_{n}^{(2)}\right\}$

$$
\begin{equation*}
t_{n}^{(j)}=\sum_{k=0}^{\infty} a_{n k}^{(j)} s_{k} n \geqq 0(j=1,2) \tag{1.1}
\end{equation*}
$$

two linear transforms T_{1} and T_{2} of $\left\{s_{n}\right\}$. Estimates of the form

$$
\begin{equation*}
\underset{\lambda \rightarrow \infty}{\limsup }\left|t_{n(\lambda)}^{(1)}-t_{m(\lambda)}^{(2)}\right| \leqq C \cdot \limsup _{n \rightarrow \infty}\left|d_{n}\right| \tag{1.2}
\end{equation*}
$$

for sequences $\left\{s_{n}\right\}$ satisfying

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|d_{n}\right|<\infty \tag{1.3}
\end{equation*}
$$

where $\left\{d_{n}\right\}$ is a certain fixed linear transform of the sequence $\left\{a_{n}\right\}(n \geqq 0)$ and $n(\lambda) \rightarrow \infty, m(\lambda) \rightarrow \infty(\lambda \uparrow \infty)$ depend on the transforms T_{1}, T_{2} and $\left\{d_{n}\right\}$, were considered for the first time by Hadwiger [2]. The smallest value of C satisfying (1.2) for all sequences $\left\{s_{n}\right\}$ satisfying (1.3) is known as the Tauberian constant associated with the pair of transforms T_{1}, T_{2} and $\left\{d_{n}\right\}$.

In $\S 2$ we get the explicit expression of the Tauberian constant associated with two transforms $\left\{t_{n}^{(1)}\right\}$, $\left\{t_{n}^{(2)}\right\}$, one a Hausdorff sequence-to-sequence transform and the other a $[J, f(x)]$ series-to-function transform; $\left\{d_{n}\right\}$ being the Cesàro transform of order $\alpha(0 \leqq \alpha \leqq 1)$ of the sequence $\left\{n a_{n}\right\}$. This generalizes the work of [7].

As an application we derive from Theorem 2.1 of $\$ 2$ Littlewood's Tauberian theorem for the Abel transformation (Theorem 2.3), by using Tauberian constants.

The authors wish to thank the referee for suggestions for the improvement of this paper.

2. Tauberian constants and Littlewood's theorem

Given an infinite sequence $\left\{\mu_{n}\right\}(n \geqq 0)$ the Hausdorff transform $\left\{t_{n}\right\}$ generated by the sequence $\left\{\mu_{n}\right\}$ of a sequence $\left\{s_{n}\right\}$ is defined (see [3]) by

$$
t_{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\Delta^{n-k} \mu_{k}\right) s_{k}, \quad n \geqq 0
$$

where $\Delta^{p+1} \mu_{r}=\Delta^{p} \mu_{r}-\Delta^{p} \mu_{r+1}(p \geqq 0), \Delta^{0} \mu_{r}=\mu_{r}$. A Hausdorff transformation generated by a sequence $\left\{\mu_{n}\right\}$ is regular if, and only if, there exists a function $\gamma(t)$ satisfying
(2.1) $\gamma(t)$ is normalized and of bounded variation in $[0,1], \gamma(0)=\gamma(0+)=0$ and $\gamma(1)=1$,
and $\mu_{n}=\int_{0}^{1} t^{n} d \gamma(t)$ for $n \geqq 0$. Thus the regular Hausdorff transform $\left\{H_{n}(\gamma)\right\}$ of a sequence $\left\{s_{n}\right\}$ may be defined by

$$
H_{n}(\gamma)=\int_{0}^{1} \sum_{k=0}^{n} P_{n k}(t) s_{k} d \gamma(t), \quad n \geqq 0
$$

where $\gamma(t)$ satisfies (2.1) and

$$
P_{n k}(t)=\left\{\begin{array}{cl}
\binom{n}{k} t^{k}(1-t)^{n-k} & \text { if } 0 \leqq k \leqq n \tag{2.2}\\
0 & \text { if } k>n
\end{array}\right.
$$

(the function $P_{n k}(t)$ defined here is the function $P_{n k}(t)$ defined by [9,(2.3)] for $\lambda_{n}=n$).

For a series $\Sigma_{n=0}^{\infty} a_{n}$ and a fixed $\alpha \geqq 0$, define the sequence $\left\{a_{n}^{(\alpha)}\right\}$ as the Hausdorff transform of $\left\{n a_{n}\right\}$ with $\gamma(t)=\psi_{\alpha}(t)$, where $\psi_{\alpha}(t)=1-(1-t)^{\alpha}$ if $0 \leqq t \leqq 1$ and $\alpha>0, \psi_{0}(t)=0$ if $0 \leqq t<1, \psi_{0}(1)=1$. That is $\left\{a_{n}^{(\alpha)}\right\}$ is the Cesàro transform of order α of the sequence $\left\{n a_{n}\right\}$ and we have the explicit expression

$$
\begin{aligned}
& a_{n}^{(\alpha)}=\frac{\alpha \Gamma(n+1)}{\Gamma(n+\alpha+1)} \sum_{k=0}^{n} \frac{\Gamma(n-k+\alpha)}{\Gamma(n-k+1)} \cdot k a_{k} \text { for } n \geqq 0 \text { and } \alpha>0, \\
& a_{n}^{(0)}=n a_{n} \quad \text { for } n \geqq 0
\end{aligned}
$$

The regular series-to-function $[J, f(x)]$-transform of a series $\sum_{k=0}^{\infty} a_{k}$ is defined in $[8, \S 5]$ by

$$
\begin{equation*}
J_{x}(\beta) \equiv \sum_{k=0}^{\infty} a_{k} \sum_{m=k}^{\infty}(-x)^{m} f^{(m)}(x) / m!, \quad x>0 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\int_{0}^{1} t^{x} d \beta(t), \quad x>0 \tag{2.4}
\end{equation*}
$$

and $\beta(t)$ is a function satisfying
(2.5) $\beta(t)$ is of bounded variation in $[0,1], \beta(0)=\beta(0+)=0, \beta(1-0)=\beta(1)=1$.

Lemma 2.1. Suppose $\beta(t)$ satisfies (2.5). If for some $\alpha, 0 \leqq \alpha \leqq 1$,

$$
\begin{equation*}
\int_{1}^{\infty}\left|\beta\left(e^{-t}\right)\right| t^{\alpha-1} d t<\infty \tag{2.6}
\end{equation*}
$$

and $a_{n}^{(\alpha)}=O(1)$ as $n \rightarrow \infty$, then $J_{x}(\beta)$ exists for $x>0$ and

$$
\begin{aligned}
J_{x}(\beta) & =a_{0}+\sum_{p=1}^{\infty} a_{p} \int_{0}^{\infty} P_{x, p-1}^{*}(u) x \beta\left(e^{-u}\right) d u \\
& =a_{0}+\int_{0}^{\infty} \frac{\beta\left(e^{-u}\right)}{u} \sum_{p=1}^{\infty} p a_{p} P_{x p}^{*}(u) d u
\end{aligned}
$$

where for $u, x>0, k>0 \quad P_{x k}^{*}(u)=e^{-x u}(x u)^{k} / k!$ and $P_{x, 0}^{*}(u)=e^{-x u}$.
Proof. It is well-known that $a_{n}^{(\alpha)}=O(1)(n \rightarrow \infty)$ implies $n a_{n}=O\left(n^{\alpha}\right)$ or $\left|a_{n}\right| \leqq M n^{\alpha-1}$ for $n \geqq 1$. Now for $0<\alpha<1$ (for $\alpha=0$ and $\alpha=1$ the proof is even simpler) we have

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right|\left|\sum_{m=k}^{\infty}(-x)^{m} f^{(m)}(x) / m!\right| & =\left|a_{0}\right|+\sum_{k=1}^{\infty}\left|a_{k}\right| \sum_{m=k}^{\infty} \int_{0}^{\infty} P_{x m}^{*}(u) d \beta\left(e^{-u}\right) \mid \\
& =\left|a_{0}\right|+\sum_{k=1}^{\infty}\left|a_{k}\right|\left|\int_{0}^{\infty}\left\{\sum_{m=k}^{\infty} P_{x m}^{*}(u)\right\} d \beta\left(e^{-u}\right)\right|
\end{aligned}
$$

(and integrating by parts)

$$
\begin{aligned}
= & \left|a_{0}\right|+\sum_{k=1}^{\infty}\left|a_{k}\right| \mid
\end{aligned} \int_{0}^{\infty} \beta\left(e^{-u}\right) .
$$

(and by term-by-term differentiation)

$$
\begin{aligned}
& \leqq\left|a_{0}\right|+\sum_{k=1}^{\infty}\left|k a_{k}\right|\left|\int_{0}^{\infty} P_{x k}^{*}(u)\right| \beta\left(e^{-u}\right) \mid u^{-1} d u \\
& \leqq\left|a_{0}\right|+M \int_{0}^{\infty}\left|\beta\left(e^{-u}\right)\right| u^{-1} \sum_{k=1}^{\infty} P_{x k}^{*}(u) k^{\alpha} d u \\
& =\left|a_{0}\right|+M x^{\alpha} \int_{0}^{\infty}\left|\beta\left(e^{-u}\right)\right| u^{x-1} e^{-x u} \\
& \sum_{k=1}^{\infty} \frac{(x u)^{k / q}}{\{k!\}^{1 / q}} \frac{(x u)^{(k-1) / p}}{\{(k-1)!\}^{1 / q}}
\end{aligned}
$$

(and by Holder's inequality with $p=1 / \alpha>1$ and $q=1 /(1-\alpha)$, so that $1 / p$ $+1 / q=1$)

$$
\begin{aligned}
& \leqq\left|a_{0}\right|+M x^{\alpha} \int_{0}^{\infty}\left|\beta\left(e^{-u}\right)\right| u^{\alpha-1} e^{-x u} \\
& \qquad\left(\sum_{k=1}^{\infty} \frac{(x u)^{k}}{k!}\right)^{1 / 1}\left(\sum_{k=1}^{\infty} \frac{(x u)^{k-1}}{(k-1)!}\right)^{1 / p} d u \\
& \leqq\left|a_{0}\right|+M x^{\alpha} \int_{0}^{\infty}\left|\beta\left(e^{-u}\right)\right| u^{\alpha-1} d u \\
& <\infty
\end{aligned}
$$

Thus by (2.3) $J_{x}(\beta)$ exists for $x>0$ and by the same argument (2.7) is true too.
Theorem 2.1. Let α be a fixed number $0 \leqq \alpha<1$. Suppose $\left\{H_{n}(\gamma)\right\}$ and $J_{x}(\beta)$ are regular transformations and

$$
\int_{0}^{1} \frac{|\gamma(t)|}{t} d t<\infty, \int_{0}^{1} \frac{\left|1-\beta\left(e^{-u}\right)\right|}{u} d u<\infty, \int_{1}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u^{1-\alpha}} d u<\infty
$$

 and any pair of functions $n(\lambda) \rightarrow \infty, x(\lambda) \rightarrow \infty, n(\lambda) / x(\lambda) \rightarrow q(\lambda \rightarrow \infty)$

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sup \left|H_{n(\lambda)}(\gamma)-J_{x(\lambda)}(\beta)\right| \leqq G_{q}^{(\alpha)} \cdot \limsup _{n \rightarrow \infty}\left|a_{n}^{(\alpha)}\right| \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{q}^{(\alpha)}=H_{q}^{(\alpha)}+\int_{q}^{\infty} t^{\alpha}\left|d t\left[\int_{t}^{\infty}(u-t)^{-\alpha} \frac{\beta\left(e^{-u}\right)}{u} d u\right]\right|, \tag{2.8}
\end{equation*}
$$

$H_{q}^{(x)}$ is, for $0<\alpha<1$, the total variation on $0 \leqq x \leqq q$ of

$$
\begin{aligned}
& -\int_{x / q}^{1} t^{\alpha} d_{t}\left[\int_{t}^{1}(u-t)^{-\alpha} \frac{\gamma(u)}{u} d u\right]+\int_{0}^{x / q} t^{\alpha} d_{t}\left[\int_{1}^{\infty}(v-t)^{-\alpha} \frac{d v}{v}\right] \\
& \quad-x^{\alpha} \int_{x}^{\infty}(v-x)^{-\alpha} \frac{\beta\left(e^{-\nu}\right)}{v} d v-\alpha \int_{0}^{x} u^{\alpha-1} d u\left[\int_{u}^{\infty}(w-u)^{-\alpha} \frac{1-\beta\left(e^{-w}\right)}{w} d w\right]
\end{aligned}
$$

and

$$
H_{q}^{(0)}=\int_{0}^{q} \frac{\left|1-\beta\left(e^{-x}\right)-\gamma(x / q)\right|}{x} d x
$$

The constant $G_{q}^{(\alpha)}$ is the best in the following sense. There is a real sequence $\left\{s_{n}\right\}$ satisfying $a_{n}^{(\alpha)}=O(1)$ and such that both members of inequality (2.7) are equal.

Theorem 2.1 for $\alpha=0$ and $\gamma(t)=0(0 \leqq t<1), \gamma(1)=1$, is Theorem 5.1 of [8].

THEOREM 2.2. Suppose $\left(H_{n}(\gamma)\right)$ and $J_{x}(\beta)$ are regular transformations such that $\gamma(t)$ is continuous for $0 \leqq t<1$ and

$$
\int_{0}^{1} \frac{|\gamma(t)|}{t} d t<\infty, \int_{0}^{1} \frac{\left|1-\beta\left(e^{-t}\right)\right|}{t} d t<\infty, \int_{1}^{\infty}\left|\beta\left(e^{-u}\right)\right| d u<\infty .
$$

For a sequence $\left\{s_{n}\right\}$ satisfying $a_{n}^{(1)}=O(1)$ as $n \rightarrow \infty$ we have for each $q, 0<q<\infty$, and any pair of functions $n(\lambda) \rightarrow \infty, x(\lambda) \rightarrow \infty, n(\lambda) / x(\lambda) \rightarrow q(\lambda \rightarrow \infty)$

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sup \left|H_{n(\lambda)}(\gamma)-J_{x(\lambda)}(\beta)\right| \leqq G_{q}^{(1)} \cdot \limsup _{n \rightarrow \infty}\left|a_{n}^{(1)}\right| \tag{2.9}
\end{equation*}
$$

where

$$
G_{q}^{(1)}=\int_{0}^{a} u\left|d\left(\frac{\gamma_{1}(u)-1+\beta\left(e^{-u}\right)}{u}\right)\right|+\int_{q}^{\infty} u\left|d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right|+|\gamma(1)-\gamma(1-0)|
$$

if, either: (I) $\beta(t)$ is continuous at $t=1 / e$ and $\gamma(t)$ is absolutely continuous in each interval $[\delta, 1-\delta]\left(0<\delta<\frac{1}{2}\right)$ or (II) $\beta(t)$ is continuous in some interval [$e^{-1}-\varepsilon, 1$] for some $0<\varepsilon<e^{-1}, \beta(t)$ is absolutely continuous in each interval $\left[e^{-1}+\delta, 1-\delta\right]\left(0<\delta<\frac{1-e^{-1}}{2}\right)$ and $\gamma(t)$ is continuous in $[0,1] . G_{q}^{(1)}$ is the best in the sense of Theorem 2.1.

Theorem 2.2 for $\gamma(t)=0(0 \leqq t<1), \gamma(1)=1$ and $\beta(t)$ continuous in $[0,1]$ is Theorem 5.2 of [8]. The assumption $\int_{1}^{\infty}\left|\beta\left(e^{-t}\right)\right| d t<\infty$ should be added to the assumptions of [8, Theorem 5.2].

Theorem 2.3 (Littlewood). If $\left\{s_{n}\right\}$ ($n \geqq 0$) is summable Abel to s, that is

$$
\lim _{x \uparrow 1}(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}=s, \text { and } n a_{n}=O(1)(n \rightarrow \infty), \text { then } \lim _{n \rightarrow \infty} s_{n}=s
$$

Proof. The $A^{(r)}$-transform $(r \geqq 0)$ of a sequence $\left\{s_{n}\right\}(n \geqq 0)$ is defined by

$$
A^{(r)}(x) \equiv\left(\frac{x}{x+1}\right)^{r} \sum_{m=0}^{\infty} s_{m}\binom{m+r}{m}\left(\frac{x}{x+1}\right)^{m}
$$

and it is the $J_{x}\left(\psi_{r}(t)\right)$-transform (see [5, Theorem 8.3] and [6, Example 4]). It is proved in $\left[10\right.$, p. 503] that Abel's summability of $\left\{s_{n}\right\}$ to s and $n a_{n}=O(1)$ imply the $A^{(r)}$ - summability for each positive integer r. Now by Theorem 2.1 for $\alpha=0, \gamma(t)=0(0 \leqq t<1), \gamma(1)=1, \beta(t) \equiv 1-(1-t)^{r}, r$ a positive integer and $q=\log r$ we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|s_{n}-s\right|=\underset{n \rightarrow \infty}{\lim \sup } \mid s_{n} & -J_{n / \operatorname{logr}(}\left(\psi_{r}(t)\right) \mid \\
& \leqq G_{\log r}^{(0)} \cdot \limsup _{n \rightarrow \infty}\left|n a_{n}\right|
\end{aligned}
$$

where (for $0<\lambda<1$)

$$
\begin{aligned}
G_{\log r}^{(0)} & =\left\{\int_{0}^{1}+\int_{1}^{\lambda \log r} \int_{\lambda \log r}^{\log r}\right\} \frac{\left(1-e^{-u}\right)^{r}}{u} d u+\int_{\log r}^{\infty} \frac{1-\left(1-e^{-u}\right)^{r}}{u} d u \\
& \equiv I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

By uniform convergence to zero as $r \rightarrow \infty$ of the integrand we get $\lim _{r \rightarrow \infty} I_{1}=0$. We have for each $0<\lambda<1 I_{2} \leqq\left(1-r^{-\lambda}\right)^{r} \log (\lambda \log r) \rightarrow 0(r \rightarrow \infty)$ and

$$
I_{3} \leqq \int_{\lambda \log r}^{\log r} \frac{d u}{u}=\log \frac{1}{\lambda}
$$

which may be made small by choosing λ near 1 . By the inequality $1-x^{\alpha} \leqq \alpha(1-x)$ for $\alpha \geqq 1$ and $0 \leqq x \leqq 1$ we get

$$
\int_{\log r}^{\infty} \frac{1-\left(1-e^{-u}\right)^{r}}{u} d u \leqq r \int_{\log r}^{\infty} \frac{e^{-u}}{u} d u \leqq \frac{r}{\log r} \int_{\log r}^{\infty} e^{-u} d u=\frac{1}{\log r} \rightarrow 0
$$

$$
(r \rightarrow \infty)
$$

Hence $\lim _{r \rightarrow \infty} G_{\log r}^{(0)}=0$. Thus $\underset{n \rightarrow \infty}{\limsup }\left|s_{n}-s\right|=0$ or $\lim _{n \rightarrow \infty} s_{n}=s$.

3. Proof of Theorems 2.1 and 2.2

In the proof of Theorems 2.1 and 2.2 we use the following results.
Lemma 3.1. If $f(u)$ is a complex and bounded function in $[0,1]$ continuous at the point $u=x(0 \leqq x \leqq 1)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} P_{n k}(x) f\left(\frac{k}{n}\right)=f(x) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} P_{n k}(u)=1 \text { for } 0 \leqq u \leqq 1 \text { and } n=1,2,3, \ldots \tag{3.2}
\end{equation*}
$$

For a proof see [13, p. 47, Theorem 2.8.2].
Lemma 3.2. Suppose that $f(u)$ is bounded in every finite interval $0 \leqq u \leqq R$, $R>0$, and $f(u)=O\left(u^{\delta}\right)$ for some $\delta>0$ as $u \rightarrow \infty$. If $f(u)$ is continuous at a point $u=\zeta$, then

$$
\lim _{x \rightarrow \infty} \sum_{k=0}^{\infty} P_{x k}^{*}(\zeta) f\left(\frac{k}{x}\right)=f(\zeta)
$$

For a proof see [15].
Lemma 3.3. For $p=0,1,2, \ldots$ and $x, u>0$ we have

$$
\frac{d}{d u} \sum_{k=p}^{\infty} P_{x k}^{*}(u)=\frac{p}{u} P_{x p}^{*}(u) \text { and } \sum_{k=p}^{\infty} \frac{1}{k+1}\left[P_{x k}^{*}(u) u\right]^{\prime}=P_{x p}^{*}(u) .
$$

The proof is immediate.

Lemma 3.4. Suppose $\beta(t)$ satisfies (2.5) and (2.6) for some $\alpha, 0 \leqq \alpha \leqq 1$. If a sequence $\left\{s_{n}\right\}$ satisfies $a_{n}^{(\alpha)}=O(1)(n \rightarrow \infty)$, then for $x>0$
$J_{x}(\beta)=\left\{\begin{array}{lc}a_{0}+\frac{1}{\Gamma(1+\alpha) \Gamma(1-\alpha)} \sum_{k=1}^{\infty} a_{k}^{(\alpha)} \int_{0}^{\infty} \frac{\beta\left(e^{-t}\right)}{t} d t \int_{0}^{t}(t-u)^{-\alpha}-\frac{d}{d u}\left\{u^{\alpha} P_{x k}^{*}(u)\right\} d u \\ a_{0}+\sum_{k=1}^{\infty} a_{k}^{(1)} \int_{0}^{\infty} \frac{d}{d u}\left[P_{x k}^{*}(u) u\right] \frac{\beta\left(e^{-u}\right)}{u} d u \quad \text { if } 0 \leqq \alpha<1\end{array}\right.$

$$
=\left\{\begin{align*}
& a_{0}+\frac{1}{\Gamma(1+\alpha) \Gamma(1-\alpha)} \sum_{k=1}^{\infty} a_{k}^{(x)} \int_{0}^{\infty} P_{x k}^{*}(t) d_{t} \tag{3.3}\\
&\left\{\int_{t}^{\infty} u^{\alpha} d_{u}\left[\int_{u}^{\infty}(v-u)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v\right]\right\} \\
& a_{0}+\sum_{k=1}^{\infty} a_{k}^{(1)} \int_{0}^{\infty} P_{x k}^{*}(v) d\left\{\int_{v}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right\} \text { if } 0 \leqq \alpha<1
\end{align*}\right\}
$$

Proof. Assume $0 \leqq \alpha<1$. We have for $p \geqq 0$

$$
p a_{p}=\sum_{k=0}^{p}\binom{p-k-\alpha-1}{p-k}\binom{k+\alpha}{k} a_{k}^{(\alpha)}
$$

By Lemma 2.1 we get for $x>0$

$$
J_{x}(\beta)=a_{0}+\int_{0}^{\infty} \frac{\beta\left(e^{-u}\right)}{u} \sum_{p=1}^{\infty}\left\{\sum_{k=0}^{p}\binom{p-k-\alpha-1}{p-k}\binom{k+\alpha}{k} a_{k}^{(\alpha)}\right\} P_{x p}^{*}(u) d u
$$

and, as is shown in the proof of Lemma 2.1, the last integral exists with $\beta\left(e^{-u}\right)$ replaced by $\left|\beta\left(e^{-u}\right)\right|$. Now we show that the order of double summation in the above integral may be changed. For fixed $x, u>0$ we have for $M>x u$, since $a_{0}^{(\alpha)}=0$,

$$
\begin{aligned}
& \sum_{p=1}^{N}\left\{\sum_{k=0}^{p}\binom{p-k-\alpha-1}{p-k}\binom{k+\alpha}{k} a_{k}^{(\alpha)}\right\} P_{x p}^{*}(u) \\
& =\sum_{k=0}^{N} a_{k}^{(\alpha)}\binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) \\
& -\sum_{k=0}^{N} a_{k}^{(\alpha)}\binom{k+\alpha}{k} \sum_{p=N+1}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) .
\end{aligned}
$$

Now for $0 \leqq k \leqq N$ we have

$$
\left.\left|\binom{p-k-\alpha-1}{p-k}\right|=\left\lvert\,\left(1-\frac{\alpha+1}{1}\right) \ldots\left(1-\frac{\alpha+1}{p-k}\right)\right.\right] \leqq 1 .
$$

Hence, since $\left|a_{k}^{(\alpha)}\right| \leqq M<\infty$ for $k \geqq 0$,

$$
\begin{aligned}
& \sum_{k=0}^{N}\left|a_{k}^{(\alpha)}\binom{k+\alpha}{k} \sum_{p=N+1}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u)\right| \leqq M\left\{\sum_{k=0}^{N}\binom{k+\alpha}{k}\right\}_{p=N+1} \sum_{x p}^{\infty} P_{x p}^{*}(u) \\
& \quad=M\binom{N+\alpha+1}{N} P_{x, N+1}^{*}(u) \sum_{p=N+1}^{\infty}\left(\frac{x u}{N}\right)^{p-N-1} \\
& \quad=M\binom{N+\alpha+1}{N} P_{x, N+1}^{*}(u)\left(1-\frac{x u}{N}\right)^{-1}
\end{aligned}
$$

(and by Stirling's formula)

$$
\begin{aligned}
& \sim M_{1} N^{a+1} \frac{(x u)^{N+1}}{(N+1)!} e^{-x u} \\
& \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

Letting $N \rightarrow+\infty$ we see that for $x, u>0$ we have

$$
\begin{aligned}
& \sum_{p=1}^{\infty}\left\{\sum_{k=0}^{p}\binom{p-k-\alpha-1}{p-k}\binom{k+\alpha}{k} a_{k}^{(\alpha)}\right\} P_{x p}^{*}(u) \\
= & \sum_{k=0}^{\infty} a_{k}^{(\alpha)}\binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) .
\end{aligned}
$$

Thus we get

$$
J_{x}(\beta)=a_{0}+\int_{0}^{\infty} \frac{\beta\left(e^{-u}\right)}{u} \sum_{k=1}^{\infty} a_{k}^{(\alpha)}\binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) d u .
$$

The integral on the right hand side exists, by the remark at the beginning of the proof, if $\beta\left(e^{-u}\right)$ is replaced by $\left|\beta\left(e^{-u}\right)\right|$. We prove now that this integral is absolutely convergent so that the order of integration and summation may be changed. Choosing $a_{0}=0, a_{p}=1 / p(p>0)$ in the last integral we see that

$$
\int_{0}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u} \sum_{k=1}^{\infty}\binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) d u
$$

converges. Since $\binom{p-k-\alpha-1}{p-k}<0$ for $p>k,\binom{p-k-\alpha-1}{p-k}=1>0$ for

$$
p=k \text { and }\left(\operatorname{by}\binom{k+\alpha}{k} \sim \frac{k^{\alpha}}{\Gamma(\alpha+1)}(k \rightarrow \infty)\right)
$$

$$
\int_{0}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u} \sum_{k=1}^{\infty}\binom{k+\alpha}{k} P_{x k}^{*}(u) d u
$$

$$
\leqq M_{1} \int_{0}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u} \sum_{k=1}^{\infty} k^{\alpha} P_{x h}^{*}(u) d u
$$

(and as is shown in the proof of Lemma 2.1)

$$
\leqq M_{1} \int_{0}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u^{1-\alpha}} d u<+\infty
$$

we see, because

$$
\sum_{p=k}^{\infty}\left|\binom{p-k-\alpha-1}{p-k}\right| P_{x k}^{*}(u)=2 P_{k x}^{*}(u)-\sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u)
$$

that the above integral is absolutely convergent. Hence we may change the order of summation and integration in the last expression for $J_{x}(\beta)$ and we get

$$
J_{x}(\beta)=a_{0}+\sum_{k=1}^{\infty} a_{k}^{(\alpha)} \int_{0}^{\infty} \frac{\beta\left(e^{-u}\right)}{u}\binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u) d u
$$

Now we have

$$
\begin{aligned}
& \binom{k+\alpha}{k} \sum_{p=k}^{\infty}\binom{p-k-\alpha-1}{p-k} P_{x p}^{*}(u)=P_{x k}^{*}(u) \sum_{p=0}^{\infty}(-1)^{p} \frac{(x u)^{p}}{p!}\binom{k+\alpha}{k+p} \\
= & P_{x k}^{*}(u) \sum_{p=0}^{\infty} \frac{(x u)^{p}}{p!} \sum_{r=0}^{p}(-1)^{r}\binom{p}{r}\binom{k+r+\alpha}{k+r}
\end{aligned}
$$

and (by looking on it as a Cauchy product) we get

$$
\begin{aligned}
& =\frac{(x u)^{k}}{k!} \sum_{p=0}^{\infty}(-1)^{p}\binom{k+p+\alpha}{k+p} \frac{(x u)^{p}}{p!} \\
& =\frac{1}{\Gamma(1-\alpha) \Gamma(1+\alpha)} \frac{x^{k}}{k!} \sum_{p=0}^{\infty}(-1)^{p} \frac{x^{p}}{p!}(k+p+\alpha) \int_{0}^{u}(u-v)^{-\alpha} v^{k+p+\alpha-1} d v \\
& =\frac{1}{\Gamma(1-\alpha) \Gamma(1+\alpha)} \frac{x^{k}}{k!} \int_{0}^{u}(u-v)^{-\alpha}\left[\sum_{p=0}^{\infty}(-1)^{p} \frac{x^{p} v^{k+p+\alpha}}{p!}\right]^{\prime} d v \\
& =\frac{1}{\Gamma(1-\alpha) \Gamma(1+\alpha)} \int_{0}^{u}(u-v)^{-\alpha}\left[P_{x k}^{*}(v) v^{\alpha}\right]^{\prime} d v .
\end{aligned}
$$

Substituting this expression in the last form of $J_{\boldsymbol{x}}(\beta)$ we get
$J_{x}(\beta)=a_{0}+\frac{1}{\Gamma(1-\alpha) \Gamma(1+\alpha)} \sum_{k=1}^{\infty} a_{k}^{(\alpha)} \int_{0}^{\infty} \frac{\beta\left(e^{-u}\right)}{u} d u \int_{0}^{u}(u-v)^{-\alpha} \frac{d}{d v}\left[P_{x k}^{*}(v) v^{\alpha}\right] d v$.
By Lemma 3.9 we get now the second form of $J_{x}(\beta)$ in the statement of our lemma. This proves our lemma for $0 \leqq \alpha<1$. For $\alpha=1$ the proof is similar and much simpler. We use now the identity $(p+1)\left[P_{x p}^{*}(u)-P_{x . p+1}^{*}(u)\right]=\frac{d}{d u}\left[P_{x p}^{*}(u) u\right]$.

Lemma 3.5. Suppose $G(t)$ is absolutely continuous in [0,1]. Then for each pair of functions $n \equiv n(\lambda) \rightarrow+\infty, x \equiv x(\lambda) \rightarrow+\infty, n(\lambda) / x(\lambda) \rightarrow q,(\lambda \rightarrow+\infty)$, $0<q<\infty$, we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} d G(u)\right|=0 . \tag{3.4}
\end{equation*}
$$

Proof. First we prove the lemma for $G(u)=u^{a}$ where a is a positive integer. We have by (2.2)

$$
\begin{aligned}
\sum_{k=n+1}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} u^{a-1} d u\right| & =\sum_{k=n+1}^{\infty}\left|\int_{0}^{1} P_{x k}^{*}(q u) u^{a-1} d u\right| \\
& =\sum_{k=n+1}^{\infty} \int_{0}^{1} P_{x k}^{*}(q u) u^{a-1} d u \\
& =q^{-a} \int_{0}^{q} v^{a-1} \sum_{k=n+1}^{\infty} P_{x k}^{*}(v) d v
\end{aligned}
$$

Given $\delta>0,0<\delta<q$, define $f(t) \equiv f_{\delta}(t)$ by $f(t)=1$ for $t>q-\delta$ and $f(t)=0$ for $0 \leqq t \leqq q-\delta$. Now for $\lambda>\lambda(\delta), q-\delta<n / x=n(\lambda) / x(\lambda)$. Hence for $\lambda>\lambda(\delta)$ we have, since $k \geqq n+1$ implies $k / x>q-\delta$

$$
\begin{gathered}
q^{-a} \int_{0}^{q} v^{a-1} \sum_{k=n+1}^{\infty} P_{x k}^{*}(v) d v \leqq q^{-a} \int_{0}^{q} v^{a-1} \sum_{\substack{k \\
q-\delta<k / x}} P_{x k}^{*}(v) d v \\
=q^{-a} \int_{0}^{q} v^{a-1} \sum_{k=0}^{\infty} P_{x k}^{*}(v) f_{\delta}\left(\frac{k}{x}\right) d v
\end{gathered}
$$

(and by Lemma 3.2, since $\lambda \rightarrow \infty$ implies $x \equiv x(\lambda) \rightarrow+\infty$, and Lebesgue's dominated convergence theorem)

$$
\begin{aligned}
& \rightarrow q^{-a} \int_{0}^{q} v^{a-1} f_{\delta}(v) d v \quad(\lambda \rightarrow+\infty) \\
& =q^{-a} \int_{q-\delta}^{a} v^{a-1} d v .
\end{aligned}
$$

Letting $\delta \downarrow 0$ we get

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} u^{a-1} d u\right|=0 \tag{3.5}
\end{equation*}
$$

We have

$$
\sum_{k=0}^{n} \int_{1}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u \leqq x^{-(a-1)} q^{-a} \int_{q}^{\infty} \sum_{k=0}^{n} \frac{(k+a-1)!}{k!} P_{x . k+a-1}^{*}(u) d u
$$

$$
\begin{aligned}
& \leqq \frac{(n+a-1)!}{n!} x^{-(a-1)} q^{-a} \int_{q}^{\infty} \sum_{k=0}^{n+a-1} P_{x k}^{*}(u) d u \\
& =\frac{(n+a-1)!}{n!} x^{-(a-1)} q^{-a}\{(n+a) / x- \\
& \left.\rightarrow \frac{1}{q}\left\{q-\int_{0}^{q} 1 d u\right\} \quad \int_{0}^{q} \sum_{k=0}^{n+a-1} P_{x k}^{*}(u) d u\right\} \\
& =0
\end{aligned}
$$

by Lebesgue's bounded convergence theorem, the argument used in proving (3.5) and Lemma 3.2 applied once to the function $f_{1}(t)=1(0 \leqq t \leqq q-\delta, 0<\delta<q)$ $f_{1}(t)=0(t>q-\delta)$ and next to the function $f_{2}(t)=1(0 \leqq t \leqq q+\delta), f_{2}(t)=0$ ($t>q+\delta$) and then letting $\delta \downarrow 0$. Hence we have

$$
\begin{aligned}
I & \equiv \lim _{\lambda \rightarrow \infty} \sum_{k=0}^{n}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} u^{a-1} d u\right| \\
& =\lim _{\lambda \rightarrow \infty} \sum_{k=0}^{n}\left|\int_{0}^{1} P_{n k}(u) u^{a-1} d u-\int_{0}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u+\int_{1}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u\right| \\
& =\lim _{\lambda \rightarrow \infty} \sum_{k=0}^{n}\left|\int_{0}^{1} P_{n k}(u) u^{a-1} d u-\int_{0}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u\right| .
\end{aligned}
$$

Now we have for

$$
0 \leqq k \leqq n \int_{0}^{1} P_{n k}(u) u^{a-1} d u-\int_{0}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u=\frac{(k+a-1)!}{k!}\left[\frac{n!}{(n+a)!}-(x q)^{-a}\right] .
$$

Hence the sign of

$$
\int_{0}^{1} P_{n k}(u) u^{a-1} d u-\int_{0}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u
$$

is constant for $0 \leqq k \leqq n$ and we get

$$
\begin{align*}
I & \left.=\lim _{\lambda \rightarrow \infty} \mid \sum_{k=0}^{n} \int_{0}^{1} P_{n k}(u) u^{a-1} d u-\sum_{k=0}^{n} \int_{0}^{\infty} P_{x k}^{*}(q u) u^{a-1} d u\right) \mid \tag{3.6}\\
& =\lim _{\lambda \rightarrow \infty}\left|\int_{0}^{1} u^{a-1} d u-\int_{0}^{1} u^{a-1} \sum_{k=0}^{n} P_{x k}^{*}(q u) d u\right| \\
& =\left|\int_{0}^{1} u^{a-1} d u-\int_{0}^{1} u^{a-1} d u\right| \\
& =0
\end{align*}
$$

by Lebesgue's bounded convergence theorem, the argument used in proving (3.5) and Lemma 3.2 applied once to the function $f_{1}(t)$ and next to the function $f_{2}(t)$ and then letting $\delta \downarrow 0$. By (3.5) and (3.6) our lemma is true for $G(u)=u^{a}, a \geqq 1$. Hence the lemma is also true if $G(u)$ is the integral of a polynomial. Now we prove the lemma for an arbitrary absolutely continuous function $G(u)$ in $[0,1]$. We have $G(t)=\int_{0}^{t} g(u) d u$ for $0 \leqq t \leqq 1$ where $g(u) \in L_{1}[0,1]$. Given $\varepsilon>0$ there is a polynomial $f(u)$ such that $\int_{0}^{1}|g(u)-f(u)| d u<\varepsilon / 4$, since the polynomials are dense in $L_{1}[0,1]$. Also, by the first part of the proof for $\lambda>\lambda(\varepsilon)$ and the polynomial $f(u)$ we have

$$
\sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} P(u) d u\right|<\frac{\varepsilon}{2}
$$

Now for $\lambda>\lambda(\varepsilon)$

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} d G(u)\right|=\sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} g(u) d u\right| \\
& \quad=\sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\}\{g(u)-f(u)+f(u)\} d u\right| \\
& \\
& \leqq \sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\} f(u) d u\right| \\
& \\
& +\sum_{k=0}^{\infty}\left|\int_{0}^{1}\left\{P_{n k}(u)-P_{x k}^{*}(q u)\right\}\{g(u)-f(u)\} d u\right| \\
& \\
& \leqq \frac{\varepsilon}{2}+\int_{0}^{1}|g(u)-f(u)|\left\{\sum_{k=0}^{\infty} P_{n k}(u)+\sum_{k=0}^{\infty} P_{x k}^{*}(q u)\right\} d u \\
& \\
& \begin{aligned}
\text { (and since } & \left.\sum_{k=0}^{\infty} P_{n k}(u)=\sum_{k=0}^{\infty} P_{x k}^{*}(q u) \equiv 1\right) \\
& =\frac{\varepsilon}{2}+2 \int_{0}^{1}|g(u)-f(u)| d u \\
& <\frac{\varepsilon}{2}+2 \cdot \frac{\varepsilon}{4} \\
& =\varepsilon .
\end{aligned}
\end{aligned}
$$

This proves the lemma if $G(t)$ is the integral of a function in $L_{1}[0,1]$, or equivalently, if $G(t)$ is absolutely continuous in [0,1].

Lemma 3.6. Suppose $\beta(t)$ is of bounded variation in $[0,1]$ and $\beta(0)=\beta(0+)$ $=0$. Then for each $\alpha, 0<\alpha<1$, the function $K(t) \equiv \int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} \beta\left(e^{-t / u}\right) d u$ is of bounded variation in $[0, \infty)$ and continuous in $(0, \infty]$. If in addition $\beta(t)$ is continuous at $t=1$, then $K(t)$ is continuous at $t=0$.

Proof. For any subdivision $0=t_{0}<t_{1}<t_{2} \ldots t_{n}$ we have

$$
\sum_{k=0}^{n-1}\left|K\left(t_{k+1}\right)-K\left(t_{k}\right)\right| \leqq\left(\int_{0}^{1}|d \beta(v)|\right) \int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} d u
$$

Hence $K(t)$ is of bounded variation in $[0, \infty)$. By Lebesgue's dominated convergence theorem we get for $0<t_{0}<\infty$

$$
\begin{aligned}
\lim _{t \rightarrow t_{0}} K(t) & =\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left(\lim _{t \rightarrow t_{0}} \beta\left(e^{-t / u}\right)\right) d u \\
& =\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} \beta\left(e^{-t_{0} / u}\right) d u \\
& =K\left(t_{0}\right)
\end{aligned}
$$

since $\beta(v)$ is continuous almost everywhere in $[0,1]$. Similarly we get $\lim _{t \uparrow \infty} K(t)$ $=0$. If $\beta(v)$ is continuous at $v=1$ we get $\lim _{t^{\prime} 0} K(t)=K(0)$.

Lemma 3.7. For a function $\beta(t)$ of bounded variation in [0,1], a real number $\alpha, 0<\alpha<1$, any two positive functions $x(\lambda) \rightarrow \infty, n(\lambda) \rightarrow \infty, n(\lambda) / x(\lambda) \rightarrow q$ $(\lambda \rightarrow \infty), 0<q<\infty$, and any number $A, q<A<\infty$, we have

$$
\lim _{\lambda \rightarrow \infty} \sum_{k=0}^{n}\left|\int_{A}^{\infty} P_{x k}^{*}(t) \frac{\alpha}{t}\left(\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left[1-\beta\left(e^{-t / u}\right)\right] d u\right) d t\right|=0
$$

Proof. For $0 \leqq k \leqq n$ we have

$$
\begin{aligned}
I_{k} & \equiv\left|\int_{A}^{\infty} P_{x k}^{*}(t) \frac{\alpha}{t}\left(\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left[1-\beta\left(e^{-t / u}\right)\right] d u\right) d t\right| \\
& \leqq\left(1+\sup _{0 \leqq v \leqq 1}|\beta(v)|\right\} \int_{A}^{\infty} P_{x k}^{*}(t) \frac{\alpha}{t}\left(\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} d u\right) d t \\
& \equiv M \int_{A}^{\infty} \frac{P_{x k}^{*}(t)}{t} d t .
\end{aligned}
$$

Hence

$$
\sum_{k=0}^{n} I_{k} \leqq M \sum_{k=0}^{n} \int_{A}^{\infty} P_{x k}^{*}(t) t^{-1} d t \rightarrow 0(\lambda \rightarrow \infty)
$$

by $[8,(5.17),(5.18),(5.19)]$.
Lemma 3.8. For a function $\beta(t)$ bounded and L-integrable in $[0,1]$ satisfying

$$
\int_{0}^{1} \frac{\left|1-\beta\left(e^{-u}\right)\right|}{u} d u<\infty
$$

and a real number $\alpha, 0<\alpha<1$, the function

$$
M(t) \equiv t^{-1} \int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left|1-\beta\left(e^{-t / u}\right)\right| d u
$$

is Lebesgue-integrable in each interval [$0, A], A>0$.
Lemma 3.9. Suppose $\beta(t)$ is of bounded variation in $[0,1], \beta(0)=\beta(0+)=0$ and $\frac{\beta\left(e^{-v}\right)}{v}$ is Lebesgue-integrable over $[1, \infty)$. Then for each $\alpha, 0 \leqq \alpha<1$, the function

$$
N(x) \equiv \int_{x}^{\infty} t^{\alpha} d_{t}\left[\int_{t}^{\infty}(v-t)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v\right]
$$

is continuous and of bounded variation in each interval $[\varepsilon, \infty), \varepsilon>0$.
Proof. By Fubini's theorem and Lemma 3.6 we get $K(t) / t \in[[\varepsilon, \infty]$ for each $\varepsilon>0$. By changing variables we get

$$
\int_{t}^{\infty}(v-t)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v=t^{-\alpha} K(t)
$$

Using these two results we get by integration by parts and by using Lemma 3.6

$$
-N(x)=K(x)+\alpha \int_{x}^{\infty} \frac{K(t)}{t} d t .
$$

The proof follows now by Lemma 3.6.
Proof of Theorem 2.1. First we establish (3.14) which is the main step in the proof. For this end properties of $\gamma_{n k}^{(\alpha)}$ and $\beta_{x k}^{(x)}$ defined below are needed. For $0<\alpha<1$ and $k>0$ we have by [$9,(5.3)]$ for $\lambda_{n}=n$

$$
\begin{align*}
& \int_{0}^{1} \frac{1-\gamma(t)}{t} d t \int_{0}^{t}(t-u)^{-\alpha} \frac{d}{d u}\left[P_{n k}(u) u^{\alpha}\right] d u \\
&=-\int_{0}^{1} P_{n k}(u) d_{u}\left\{\int_{u}^{1} t^{\alpha} d t\left[\int_{t}^{1}(v-t)^{-\alpha} \frac{\gamma(v)}{v} d v\right]\right\} \\
&+\int_{0}^{1} P_{n k}(u)(1-u)^{-\alpha} u^{\alpha-1} d u \tag{3.8}\\
&-\int_{0}^{1} P_{n k}(u)\left(\frac{\alpha}{u} \int_{0}^{u}(1-v)^{-\alpha} v^{\alpha-1} d v\right) d u \\
&+\int_{0}^{1} \frac{P_{n k}(u)}{u}\left(\alpha \int_{0}^{1}(1-v)^{-\alpha} v^{\alpha-1} d v\right) d u \\
&= \gamma_{n k}^{(\alpha)} .
\end{align*}
$$

For $\alpha=0$ we have by $[9,(5.3)]$

$$
\begin{aligned}
\int_{0}^{1} \frac{1-\gamma(t)}{t} & d t \int_{0}^{1}(t-u)^{-\alpha} \frac{d}{d u}\left[P_{n k}(u) u^{\alpha}\right] d u \\
= & -\int_{0}^{1} P_{n k}(v) d_{v}\left\{\int_{v}^{1} t^{\alpha} d_{t}\left[\int_{t}^{1}(u-t)^{-\alpha} \frac{\gamma(u)}{u} d u\right]\right\} \\
& +\int_{0}^{1} \frac{P_{n k}(v)}{v} d v \\
\equiv & \gamma_{n k}^{(0)}
\end{aligned}
$$

By $[9,(4.5)]$ we have for $\lambda_{k}=k$

$$
\begin{equation*}
\int_{0}^{1} \frac{P_{n k}(v)}{v} d v=\frac{1}{k} \tag{3.10}
\end{equation*}
$$

For $A>0$, and in particular for $A>q, k>0$ and $0<\alpha<1$ we have

$$
\begin{aligned}
\int_{0}^{\infty} P_{x k}^{*}(t) d t & \left\{\int_{t}^{\infty} u^{\alpha} d u\left[\int_{u}^{\infty}(v-u)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v\right]\right\} \\
= & -\int_{0}^{A} P_{x k}^{*}(t) \frac{\alpha}{t}\left\{\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left[1-\beta\left(e^{-t / u}\right)\right] d u\right\} d t \\
& -\int_{A}^{\infty} P_{x k}^{*}(t) \frac{\alpha}{t}\left\{\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1}\left[1-\beta\left(e^{-t / u}\right)\right] d u\right\} d t \\
& -\int_{0}^{\infty} P_{x k}^{*}(t) d_{t}\left\{\int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} \beta\left(e^{-t / v}\right) d u\right\} \\
1) & +\int_{0}^{\infty} \frac{P_{x k}^{*}(t)}{t}\left\{\alpha \int_{0}^{1}(1-u)^{-\alpha} u^{\alpha-1} d u\right\} d t \\
\equiv & \beta_{x k}^{(\alpha)} .
\end{aligned}
$$

For $\alpha=0, k>0$ and each $A, q<A<\infty$, we have

$$
\begin{align*}
& \int_{0}^{\infty} P_{x k}^{*}(t) d_{t}\left\{\int_{t}^{\infty} u^{\alpha} d_{u}\left[\int_{u}^{\infty}(v-u)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v\right]\right\} \\
&=-\int_{0}^{A} P_{x k}^{*}(t) \frac{1-\beta\left(e^{-t}\right)}{t} d t-\int_{A}^{\infty} \frac{P_{x k}^{*}(t)}{t}\left[1-\beta\left(e^{-t}\right)\right] d t \tag{3.12}\\
&+\int_{0}^{\infty} \frac{P_{x k}^{*}(t)}{t} d t \\
&= \beta_{x k}^{(0)}
\end{align*}
$$

For $k>0$ we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{P_{x k}^{*}(v)}{v} d v=\frac{1}{k} \tag{3.13}
\end{equation*}
$$

By [9, Lemma 5.4], Lemma 3.4, (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) we get for $0 \leqq \alpha<1$

$$
\begin{equation*}
H_{n}(\gamma)-J_{x}(\beta)=\frac{1}{\Gamma(1+\alpha) \Gamma(1-\alpha)} \tag{3.14}
\end{equation*}
$$

$$
\cdot\left\{\sum_{k=1}^{n} a_{k}^{(\alpha)}\left(\gamma_{n k}^{(\alpha)}-\beta_{x k}^{(\alpha)}\right)-\sum_{k=n+1}^{\infty} a_{k}^{(\alpha)} \beta_{x k}^{(\alpha)}\right\}
$$

To complete the proof of our theorem it is sufficient, by Agnew's theorem (see [8]) to show that we have

$$
\lim _{\lambda \rightarrow \infty}\{\Gamma(1+\alpha) \Gamma(1-\alpha)\}^{-1}\left\{\sum_{k=1}^{n(\lambda)}\left|\gamma_{n(\lambda), k}^{(\alpha)}-\beta_{x(\lambda), k}^{(\alpha)}\right|+\sum_{k=n(\lambda)+1}^{\infty}\left|\beta_{x(\lambda), k}^{(\alpha)}\right|\right\}=G_{q}^{(\alpha)}
$$

and $\lim _{\lambda \rightarrow \infty}\left[\gamma_{n(\lambda), k}^{(\alpha)}-\beta_{x(\lambda), k}^{(\alpha)}\right]=0$ for each $k \geqq 1$. By [8, Theorem 2.1 and Remark (2.2)], Lemma 3.1, Lemma 3.9, we get by applying to (3.11) an obvious modification of (5.13) and (5.16) of [8],

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|\beta_{x(\lambda), k}^{(\alpha)}\right|=\int_{q}^{\infty} t^{\alpha}\left|d_{t}\left[\int_{t}^{\infty}(u-t)^{-\alpha} \frac{\beta\left(e^{-u}\right)}{u} d u\right]\right| \tag{3.15}
\end{equation*}
$$

By the second conclusion of [9, Theorem 3.1 for assumption (III)], Lemmas 3.5, (3.6), (3.7) and (3.8) and [9,(5.8), (5.10)] we get for $0<\alpha<1$

$$
\lim _{\lambda \rightarrow \infty} \sum_{k=1}^{n}\left|\gamma_{n(\lambda), k}^{(\alpha)}-\beta_{x(\lambda), k}^{(\alpha)}\right|
$$

$$
\begin{align*}
= & \int_{0}^{q} \left\lvert\, d_{x}\left\{-\int_{x / q}^{1} t^{\alpha} d_{t}\left[\int_{t}^{1}(u-t)^{-\alpha} \frac{\gamma(u)}{u} d u\right]\right.\right. \tag{3.16}\\
& +\int_{0}^{x / q} t^{\alpha} d_{t}\left[\int_{1}^{\infty}(v-t)^{-\alpha} \frac{d v}{v}\right] \\
& \left.-x^{\alpha} \int_{x}^{\infty}(v-x)^{-\alpha} \frac{\beta\left(e^{-v}\right)}{v} d v-\alpha \int_{0}^{x} u^{\alpha-1}\left[\int_{u}^{\infty}(w-u)^{-\alpha} \frac{1-\beta\left(e^{-w}\right)}{w} d w\right]\right\} \mid \\
= & H_{q}^{(\alpha)}
\end{align*}
$$

and for $\alpha=0$
(3.17) $\lim _{\lambda \rightarrow \infty} \sum_{k=1}^{n}\left|\gamma_{n(\lambda), k}^{(0)}-\beta_{n(\lambda), k}^{(0)}\right|=\int_{0}^{q} \frac{\left|1-\beta\left(e^{-u}\right)-(u / q)\right|}{u} d u=H_{q}^{(0)}$.

It is easy to see that we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}\left|\gamma_{x(\lambda), k}^{(\alpha)}-\beta_{x(\lambda), k}^{(\alpha)}\right|=0 \text { for } k=1,2, \ldots \tag{3.18}
\end{equation*}
$$

The proof follows now by the remark after (3.14), by (3.15), (3.16), (3.17) and (3.18).

Lemma 3.10. If $\beta(t)$ is of bounded variation in $[0,1]$ and $\beta\left(e^{-t}\right) \in L_{1}[1, \infty]$ and $x(\lambda) \rightarrow \infty, n(\lambda) \rightarrow \infty, n(\lambda) / x(\lambda) \rightarrow q(0<q<\infty)$, then for each $A, q<A<\infty$, we have

$$
\lim _{\lambda \rightarrow \infty} \sum_{k=1}^{n} \int_{A}^{\infty} P_{x k}^{*}(t) d\left[\int_{0}^{t} u d\left(\frac{1-\beta\left(e^{-u}\right)}{u}\right)\right]=0
$$

Proof. We have for $A>q$

$$
\begin{aligned}
\sum_{k=1}^{n} & \int_{A}^{\infty} P_{x k}^{*}(t) d\left[\int_{0}^{t} u d\left(\frac{1-\beta\left(e^{-u}\right)}{u}\right)\right] \\
& =-\sum_{k=1}^{n} \int_{A}^{\infty} P_{x k}^{*}(t) \frac{1-\beta\left(e^{-t}\right)}{t} d t-\sum_{k=1}^{n} \int_{A}^{\infty} P_{x k}^{*}(t) d \beta\left(e^{-t}\right) \\
& \equiv I_{\lambda}^{(1)}+I_{\lambda}^{(2)}
\end{aligned}
$$

As in the proof of Lemma 3.7 we have

$$
\left|I_{\lambda}^{(1)}\right| \leqq K \sum_{k=1}^{n} \int_{A}^{\infty} \frac{P_{x k}^{*}(t)}{t} d t \rightarrow 0 \quad(\lambda \uparrow \infty)
$$

Integrating by parts we get

$$
\begin{aligned}
I_{\lambda}^{(2)}= & \beta\left(e^{-A}\right) \sum_{k=0}^{n} P_{x k}^{*}(A)+\int_{A}^{\infty} \beta\left(e^{-u}\right) \frac{d}{d u} \sum_{k=0}^{n} P_{x k}^{*}(u) d u \\
& +x \int_{A}^{\infty} \beta\left(e^{-u}\right) e^{-x u} d u-e^{-A x} \beta\left(e^{-A}\right) \\
= & \beta\left(e^{-A}\right) \sum_{k=0}^{n} P_{x k}^{*}(A)-e^{-A x} \beta\left(e^{-A}\right)+x \int_{A}^{\infty} \beta\left(e^{-t}\right) e^{-x t} d t-x \int_{A}^{\infty} \beta\left(e^{-t}\right) P_{x n}^{*}(t) d t \\
\equiv & I_{\lambda}^{(21)}+I_{\lambda}^{(22)}+I_{\lambda}^{(23)}+I_{\lambda}^{(24)}
\end{aligned}
$$

We have by Lemma 3.2

$$
\lim _{\lambda \rightarrow \infty} I_{\lambda}^{(21)}=0 \text { and } \lim _{\lambda \rightarrow \infty} I_{\lambda}^{(22)}=0
$$

We have

$$
\left|I_{\lambda}^{(23)}\right| \leqq K_{1} x \int_{A}^{\infty} e^{-x t} d t=K_{1} \int_{A x}^{\infty} e^{-u} d u \rightarrow 0 \quad(\lambda \rightarrow \infty)
$$

Since $P_{x n}^{*}(t)$ is a decreasing function in t for $t \geqq n / x$ we get

$$
\left|I_{\lambda}^{(24)}\right| \leqq x P_{x n}^{*}(A) \int_{A}^{\infty}\left|\beta\left(e^{-t}\right)\right| d t
$$

(and by Stirling's formula for n !)

$$
\rightarrow 0 \quad(\lambda \rightarrow \infty) .
$$

This completes the proof.
Proof of Theorem 2.2. We have by [9, Lemmas 5.4 and (5.5) (for $\lambda_{n}=n$)] and by Lemma 3.4

$$
\begin{aligned}
H_{n}(\gamma)-J_{x}(\beta) & =\sum_{k=1}^{n} a_{k}^{(1)}\left\{-\int_{0}^{1} P_{n k}(t) d\left[\int_{t}^{1} u d\left(\frac{\gamma(u)}{u}\right)\right]+\frac{1}{k}\right. \\
& \left.-\int_{0}^{\infty} P_{x k}^{*}(t) d\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]\right\} \\
& -\sum_{k=n+1}^{\infty} a_{k}^{(1)} \int_{0}^{\infty} P_{x k}^{*}(t) d\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]
\end{aligned}
$$

By (3.13) we get (for $q<A<\infty$)

$$
\int_{0}^{\infty} P_{x k}^{*}(t) d\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]+\left\{\int_{0}^{A}+\int_{A}^{\infty}\right\} P_{x k}^{*}(t) d_{t}\left[\int_{0}^{t} u d\left(\frac{1-\beta\left(e^{-u}\right)}{u}\right)\right]+\frac{1}{k} .
$$

Hence

$$
\begin{aligned}
H_{n}(\gamma)-J_{x}(\beta) & =\sum_{k=1}^{n} a_{k}^{(1)}\left\{-\int_{0}^{1} P_{n k}(t) d_{t}\left[\int_{t}^{1} u d\left(\frac{\gamma(u)}{u}\right)\right]\right. \\
& \left.-\left(\int_{0}^{A}+\int_{A}^{\infty}\right) P_{x k}^{*}(t) d_{t}\left[\int_{0}^{t} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]\right\} \\
& -\sum_{k=n+1}^{\infty} a_{k}^{(1)} \int_{0}^{\infty} P_{x k}^{*}(t) d\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right] .
\end{aligned}
$$

To complete the proof of our theorem it is sufficient, by Agnew's Theorem (see [8]) to show that we have

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty}\left\{\sum_{k=1}^{\infty} \left\lvert\,-\int_{0}^{1} P_{n k}(t) d_{t}\left[\int_{t}^{1} u d\left(\frac{\gamma(u)}{u}\right)\right]\right.\right. \\
& \left.-\left(\int_{0}^{A}+\int_{A}^{\infty}\right) P_{x k}^{*}(t) d_{t}\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right] \right\rvert\, \\
& +\sum_{k=n+1}^{\infty}\left|\int_{0}^{\infty} P_{x k}^{*}(t) d_{t}\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]\right|=G_{q}^{(1)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{i \rightarrow \infty}\left\{-\int_{0}^{1} P_{n k}(t) d_{t}\left[\int_{t}^{1} u d\left(\frac{\gamma(u)}{u}\right)\right]\right. \\
& -\left(\int_{0}^{A}+\int_{A}^{\infty}\right) P_{x k}^{*}(t) d_{t}\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]=0
\end{aligned}
$$

for each $k \geqq 1$.
Repeating the argument used in [8] to prove that in $[8,(8.10)]$ we have

$$
\lim _{\substack{\lambda \rightarrow \infty \\ m(\lambda) / x(\lambda) \rightarrow q}} \sum_{k=m+1}^{\infty} \frac{1}{k}\left|D_{k}(x)\right|=\int_{q}^{\infty} \frac{\left|\beta\left(e^{-u}\right)\right|}{u} d u
$$

we get here

$$
\lim _{\lambda \rightarrow \infty} \sum_{k=n(\lambda)+1}^{\infty}\left|\int_{0}^{\infty} P_{x k}^{*}(t) d\left[\int_{t}^{\infty} u d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right]\right|=\int_{q}^{\infty} u\left|d\left(\frac{\beta\left(e^{-u}\right)}{u}\right)\right| .
$$

Write $\gamma(t)=\gamma_{1}(t)+\gamma_{2}(t)$ where $\gamma_{1}(t)=\gamma(t)\left(0 \leqq t<1, \gamma_{1}(1)=\gamma(1-0)\right.$. Note that $P_{n k}(1)=0$ for $0 \leqq k<n$. The proof follows now by Lemma 3.10, and by repeating the argument used in the proof of [9, Theorem 2.2] and by using the fact that for $\lambda>\Lambda$

$$
\begin{aligned}
\int_{0}^{A} P_{x n}^{*}(t) d & {\left[\int_{0}^{t} u d\left(\frac{1-\beta\left(e^{-u}\right)}{u}\right)\right] } \\
& \leqq\left(\int_{0}^{A}\left|d\left[\int_{0}^{t} u d\left(\frac{1-\beta\left(e^{-u}\right)}{u}\right)\right]\right|\right) \cdot \max _{0 \leqq t \leqq A} P_{x n}^{*}(t)=K_{2} \cdot \frac{n^{n}}{n!} e^{-n}
\end{aligned}
$$

(by Stirling's formula) $\sim K_{3} \cdot n^{-\frac{1}{2}} \rightarrow 0 \quad(\lambda \rightarrow \infty)$.

References

[1] R. P. Agnew, 'Abel transforms anad partial sums of Tauberian series', Ann. of Math. 50(1949), 110-117.
[2] H. Hadwiger, 'Über ein Distanztheorem bei der A-Limitierung', Comment. Math. 16 (1944), 209-214.
[3] G. H. Hardy, Divergent series (Oxford University Press, 1949).
[4] E. W. Hobson, The theory of functions of a real variable, Vol. 1 (Dover, New York, 1957), 545.

15] A. Jakimovski (Amir), 'Some relations between the methods of summability of Abel, Borel Cesàro, Holder and Hausdorff,' J. d'Analyse Math., 3 (1953/4), 346-381.
[6] A. Jakimovski, 'The sequence-to-function analogues to Hausdorff transformations', Bull. Res. Council Israel 8F (1960), 135-154.
[7] A. Jakimovski, 'Tauberian constants for the Abel and Cesàro transformations', Proc. Amer. Math. Soc. 14 (1963), 228-238.
[8] A. Jakimovski and D. Leviatan, 'A property of approximation operators and applications to Tauberian constants', Math. Z. 102 (1967), 177-204.
[9] A. Jakimovski and A. Livne, 'Approximation operators and Tauberian constants', Israel. J. Math. 7 (1969), 263-292.
[10] K. Knopp, Theory and applications of infinite series (Blackie and Son, London and Glasgow, 1944).
[11] D Leviaten, 'Tauberian constants for generalized Hausdorff transformations', J. London Math. Soc. 43 (1968), 308-314.
[12] D. Leviatan, 'Some Tauberian theorems for quasi-Hausdorff transforms', Math. Z. 108 (1969), 213-222.
[13] G. G. Lorentz, Bernstein polynomials (Toronto University Press, 1953).
[14] A. Meir, 'Limit-distance of Hausdorff transforms of Tauberian series', J. London Math. Soc. 40 (1965), 295-302.
[15] O. Szasz, 'Generalization of S. Bernstein's polynomials to the infinite interval', Collected mathematical works (University of Cincinnati, 1955), 1401-1407.
[16] D. V. Widder, The Laplace transform (Princeton University Press, 1946).

Tel Aviv University
Israel

