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1. Introduction

Let 22 ¢ a, (s,=do+ +-- + a,,n = 0) be a series of real or complex numbers.
Denote by {#{"} and {t*}

@
(1.1) V= 3 aPs, n20(G=12)
k=0
two linear transforms T, and T, of {s,}. Estimates of the form
(1.2) lir?Eup lt,,((B - t,f,f})l s C'lil?j:pld,,l

for sequences {s,} satisfying

1.3 lim sup |d,| < o

where {d,} is a certain fixed linear transform of the sequence {a,} (n = 0) and
n(1)— oo, m(A)— oo (110) depend on the transforms T;, T, and {d,}, were
considered for the first time by Hadwiger [2]. The smallest value of C satisfying
(1.2) for all sequences {s,} satisfying (1.3) is known as the Tauberian constant asso-
ciated with the pair of transforms Ty, T, and {d,}.

In §2 we get the explicit expression of the Tauberian constant associated with
two transforms {t{"}, {t{*}, one a Hausdorff sequence-to-sequence transform
and the other a [J, f(x)] series-to-function transform; {d,} being the Cesaro
transform of order « (0 < o £ 1) of the sequence {na,}. This generalizes the work

of [7].

As an application we derive from Theorem 2.1 of §2 Littlewood’s Tauberian
theorem for the Abel transformation (Theorem 2.3), by using Tauberian constants.

The authors wish to thank the referee for suggestions for the improvement
of this paper.
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2. Tauberian constants and Littlewood’s theorem

Given an infinite sequence {u,} (n = 0) the Hausdorff transform {z,} generated
by the sequence {u,} of a sequence {s,} is defined (see [3]) by

=X (n )(An_kﬂk)sk’ nz0,
k=0 \Kk

where APy =A%y, — APu,,, (p=20), A%, =p,. A Hausdorff transformation
generated by a sequence {u,} is regular if, and only if, there exists a function y(f)
satisfying

(2.1) y(¢) is normalized and of bounded variation in [0, 1], (0) = y(0+) =0 and
D=1,

and p, = [3"dy(?) for n = 0. Thus the regular HausdorfT transform {H,(7)} of a
sequence {s,} may be defined by

1 n
H) = f 'S Pusdy®, n20,
4] k=0

where y(1) satisfies (2.1) and

(Z)t"(l —f"k  if 0<k<n
(2.2) Pu(t) =
0 if k>n
(the function P,(t) defined here is the function P,(f) defined by [9,(2.3)] for
- =Nn).

For a series >, a, and a fixed >0, define the sequence {a'®} as the

Hausdorff transform of {na,} with y(¢) =y, (t), where ¥y, ()=1—-(1 -0 if
0<t<landa>0, Y, () =0if 0 <t <1, Yo(1) = 1. That is {a{”} is the Cesiro
transform of order a of the sequence {na,} and we have the explicit expression

@ = afn+1) X T(h—k+a)
" Tn+a+1), o Tn—-k+1)

a®

-ka, for n=0 and « >0,

= na, for n=0.

The regular series-to-function [J, f(x)]-transform of a series X%, a;
is defined in [8, §5] by

(2.3 J.(p) = E a E (= X" ™ (x) [m!, x>0,
k=0 m=k

where
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1
2.4) fx) = f FApE), x>0,

and B(¢) is a function satisfying
(2.5) B(1) is of bounded variation in [0, 1], f(0) = B(0+) =0, B(1—-0) = p(1) = 1.
Lemma 2.1. Suppose p(t) satisfies (2.5). If for some o, 0 S a <1,

(2.6) fl w[ Ble™)| " 1dt < oo

)

and a{” = O(1) as n - oo, then J (B) exists for x > 0 and

T =ao + E a, f P (w)xBle")du

~a, +f ﬂ(e—") § pa,PX (u)du

where for u,x>0, k>0 PX(u)= e"“‘(xu)"/k' and P} (u) = e

PRrOOF. It is well-known that a{* = O(1)(n— o) implies na, = 0(n*) or
Ia,,l SMn* ! for n21. Now for 0 <a <1 (for « =0 and a =1 the proof is
even simpler) we have

kEo a fE (—x)mf(m)(x)/m! ] 'aol + Z lak H % OoP:‘m(u)dﬂ(e‘u)
= m=k Im=k

= lao] + 2 Ja [" | = ot} dpie
{and integrating by parts)

= Jaol + % |af| [ 8™

(7d_ Y P;",,,(u)duj
(and by term-by-term differentiation) AU m=

< Jao] + % [kay/| [ P50 e |u du
k=1 . 0
s laol+Mfwlﬂ(e'“) u~? f:o PX(u)k*du
0o k=1

= ]aol + Mx* J; lﬁ(e‘")lu““le'x“

oi (xu)qu (xu)(k-l)/p
k=1 {kl}llq {(k 1)v}1l4
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(and by Holder’s inequality with p=1/a>1 and g =1/(1 —«), so that 1/p
+1/g=1)

IIA

]aol +Mx“fw,/3(e'“)]u“"‘e_"“

IIA

lao I + Mx* f: I Ble™™) l u*~tdu

< 0.

Thus by (2.3) J(B) exists for x > 0 and by the same argument (2.7) is true too.

THEOREM 2.1, Let « be a fixed number 0 <a <1. Suppose {H,(y)} and
J(B) are regular transformations and

fl ——,y(t)ldt<oo,f1 ll—ﬁ( )'du<oo f l/‘?(e—“)’du<oo
0 t 0

For a sequence {s,} satisfying a{® = O(1)(n - ) we have for each q,0 < q < 0,
and any pair of functions n(d) — o, x(1) - 00, n(d)/x(A) = q (A— )

2.7 lim sup | H, (1) — Jen(B)| £ G- hm : sup |al|
A=

where

(2.8) GP=HP+ f t“ldt[j; (u—t)"“‘é@u—idu]l,

Hf,“) is, for 0 < o < 1, the total variation on 0 < x < q of

- J;:qt“d, [ﬁx(u—t)‘“}%l)—du] +J;x/qt“d,[fw(v—t)"“ ‘i”]
e f:o(u—x)‘“ ﬁ(ev_") do— af:ua-ldu[f(w —u)‘“l———%i—l-dw]

O - f"l (= K™ = ox/a) | 4
0o

and

The constant Gg“) is the best in the following sense. There is a real sequence
{s.} satisfying a‘® = O(1) and such that both members of inequality (2.7) are
equal.,

Theorem 2.1 for « = 0 and y(#) = 0(0 < ¢t <1), (1) =1, is Theorem 5.1 of [8].
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THEOREM 2.2. Suppose (H(y)) and J(B) are regular transformations such
that y(t) is continuous for 0 £t < 1 and

1 1 At ®
ﬁ L”(tﬁl_dmoo,ﬁ ’_l__’?tie__)'_dmoo,fl [ Ble=*)| du < w.

For a sequence {s,} satisfying a{" = O(1) as n — o we have for each q,0 < q < o,
and any pair of functions n(i) - 00, x(A) — 0, n(A)/x(2) = q (A— ©)

2.9 lim sup | H,;,(3) = Jony(B)| < GV - limsup |al®|
A= n—+w

where
G = f:u]d (7‘(“)_ o ﬂ(e_")), +fwu E (WT_))I + [y —y(1-0)]

if, either: (I) B(t) is continuous at t = 1/e and y(t) is absolutely continuous in
each interval [5, 1 — 0] (0 <5 <%) or (II) B(t) is continuous in some interval
[e~* — &, 1] for some 0 <eg<e™1, B(¥) is absolutely continuous in each interval

-1
[e"'+6,1-106] (0 <d < 1-e ) and y(t) is continuous in [0,1]. G is the

best in the sense of Theorem 2.1.

Theorem 2.2 for y(f)=0 (0 <t < 1), y(1)=1 and B(f) continuous in [0,1] is
Theorem 5.2 of [8]. The assumption j;”l ﬂ(e"’)]dt < oo should be added to the
assumptions of [8, Theorem 5.2].

THEOREM 2.3 (Littlewood). If {s,} (n=0) is summable Abel to s, that is

lim (1 ~x) X s,x"=s, and na,= 0(1) (n— ), then lim s,=s.

xt1 n=0 n—w

PROOF. The A —transform (r = 0) of a sequence {s,} (n = 0) is defined by

vy — x ¥V & m+r x \"
A7) = <x+1> ,,EOS"‘( m ) (x+1)
and it is the J (,(¢)) - transform (see [5, Theorem 8.3] and [6, Example 4]). It
is proved in [10, p. 503] that Abel’s summability of {s,} to s and na, = 0(1)
imply the A —summability for each positive integer r. Now by Theorem 2.1
for a=0,9()=00=t<1),y1)=1, () =1~ (1 —1t), r a positive integer and
q =log r we get
lim sup Isn - SI = lim sup lsn - Jn/logr(‘//r(t))l

n—»oo n—w

< G©, - lim sup]na,,]

logr
n—>w

where (for 0 <A< 1)
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{f fﬁ.logr J‘logr (1 _ e—u)r d + foo 1_(1 _ e—u)rdu
logr logr u

= Il +Iz+13+14.

G(O)

log r

By uniform convergence to zero as r — oo of the integrand we get lim,, I, =0.
We have for each 0 <A<1 I, <1 —r %" log (Alogr)—0 (r— ) and

logr
I3§f d—u—lo 1

g
Alogr u }'

which may be made small by choosing 4 near 1. By the inequality 1 — x* < a(1 —x)
foraz1and 0 x <1 we get

f I_:LI_:.E.—)duér f ¢ du S_L e_"du=._:1__.)0
1 1 logr

og r u og r u o Iogr logr

Hence lim G, = 0. Thus limsup |s,—s[=0or lims,=s.

r—ro n-—o n—o

3. Proof of Theorems 2.1 and 2.2
In the proof of Theorems 2.1 and 2.2 we use the following results.

LemMA 3.1. If f(u) is a complex and bounded function in [0,1] continuous
at the point u =x (0< x < 1), then

3.1 lim E Pnk(x)f( ) = f(x).
n+w k=0

(3.2 Y P w=1for0su=<1and n=1,2,3,...

For a proof see [13, p. 47, Theorem 2.8.2],

LeMMA 3.2. Suppose that f(u) is bounded in every finite interval 0 < u < R,

R >0, and f(u) = O(u®) for some & > 0 as u — co. If f(u) is continuous at a point
u=2_{, then

lim T PY (of( ) 1©.

x—=w k=0

For a proof see [15].

LemMa 3.3. For p=0,1,2,... and x,u > 0 we have

£ PR =LP50) and B o [PLGM] = P3G

k=p

4
d

The proof is immediate,
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LemMMA 3.4. Suppose B(t) satisfies (2.5) and (2.6) for some a, 0<a <1,
I a sequence {s,} satisfies al = 0(1) (n - w), then for x>0

1 5 qof " B - .
o+ rirari s . K] amw e
b= ifogsa<l1
ap + Z a(”f [P L (wu] B(e’“) if a=1
V]

(3.3)

1 °
* R 5, o

. a2

if0gsax<l1

90 + kag.l al waPxT‘(v)d {J;wud (B—(iu_ﬁ” if a=1,

Proor. Assume 0 £ o < 1. We have for p= 0

Pop—k—a—1\ (k+0o\ @
w5078 (e

k=0 p—k
By Lemma 2.1 we get for x >0

1.(8) = ay +ﬁ°° ﬂ(t;‘“) 1 {k O (p—ﬁ:i_l) (k;:a) a,g"):P:,,(u)du,

and, as is shown in the proof of Lemma 2.1, the last integral exists with f(e™*)

replaced by l ﬁ(e“")l. Now we show that the order of double summation in the

above integral may be changed. For fixed x,u > 0 we have for M > xu, since
(@)

ao =0,

Ms
M~

p

k=0 =k
5 g‘,a(“)(k_'_“) 5 (p k—u ) @
k=0 k p=N+1 p—k

Now for 0< k< N we have
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(e |l (s B O =)

Hence, since |a{®| < M < oo for k 2 0,

1.

IIA

ol ok + 5 —k—a—1 N o (k+ ®
2 [af)( k“) z (" y )P;‘,,(u)|§M{Z ( k“)} X PA(u)
k=0 p=N+1 p k=0 p=N+1

o (N+at+1) o, 2 xu \P~N-1

=u (Ve = ()

N+oa+1 xu \~!
=M( ;‘, )P:_N+1(u) (1_']'3‘)

(and by Stirling’s formula)

a+1 (xu)N+ !

W+t ¢
-0 (N - o0).

—Xu

~M1N

Letting N — + oo we see that for x,u > 0 we have

@ ) 4 p—k—a—l) (k+<1) (,)}P
p§1 {k=20 ( p—k k o)
©  ofk+a) 2 [p—k—-o—1
> a,p( ka) P (P ko )p;;,(u).
Thus we get
sap=ap+ [TEEL T oap(* v £ (PR P
k=1 p=k p

The integral on the right hand side exists, by the remark at the beginning of the
proof, if f(e~*)is replaced by I Ble™") I.We prove now that this integral is absolutely
convergent so that the order of integration and summation may be changed.
Choosing a, =0, a, = 1/p(p > 0) in the last integral we see that

Lw,_ﬂ(e_—ll OZOZ (kZa) § (p—k—-(x—l) P:p(u)du

u k=1 p=k p—k

converges. Since (p_k:i_l) < 0 for p >k, (p—l;:o’zc 1)=1>0for
k+a k*

[ wfﬂhz(kZﬂW(mu
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1A

M, f |_ﬁ(_e_")_l 2 k°PX(u)du
0o u k=1
(and as is shown in the proof of Lemma 2.1)

=M, foo lﬁ(e__:),du< + ©
0

ul
we see, because

p—k—a-—1
p—k
that the above integral is absolutely convergent. Hence we may change the order
of summation and integration in the last expression for J (f) and we get

- v @ [T BE™) (k+a) § p—k—oc—l)*
Jx(ﬁ)—ao+k§.1 aj; fo _T( . )pi( p—k P (w)du.

[ ]

py

p=k

PA(0) = 2PE(u) — 3 § —k ““’1)P:‘,,(u)
p=k P - k

Now we have

(k _]: oc‘) pé‘ (P —/;: Z - I)P;"p(u) _ P:k(")pi (= 1) (xpu!)p (,,: :::Z)
w355 ot (227

and (by looking on it as a Cauchy product) we get
(xu)* OZO‘, (k +p+ az) (xu)?

= —1)
k! .20 (=1 k+p p!
1 xt 2

x? ) —a k+p+a—1
= TR -1 —- — pta
= R ora T d & 5V (k+P+ot)f0 =y dv

1 xk u —a @ pxpvk+p+a ’
= T ol +a) kI fo(”"”) [,Eo(—l) P! ] do

v) *[PR(v)"] dv.

1 u
T U=l +9 L O

Substituting this expression in the last form of J,(B) we get

_ 1 © . @ ﬂ(e—u) u Y d . .
JAB)=ao + mk§1 a; )fo _u—d” fo (u —v) 7 [P(v)v*]dv.

By Lemma 3.9 we get now the second form of J,(8)in the statement of our lemma.
This proves our lemma for 0 < « < 1. For =1 the proof is similar and much

simpler. We use now the identity (p + 1) [Pf,(u) — P¥ ., ()] = % [P} (w)u].

https://doi.org/10.1017/51446788700012970 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700012970

[10] Tauberian theorems for [J, f(x)] transformations 211

LeMMA 3.5. Suppose G(t) is absolutely continuous in [0,1]. Then for each
pair of functions n=n(Ad)— + 0, x = x(4) > + ©, n(d)/x(1)—>q, (A-> + ©),
0< g <, we have

0 1
(3.4) lim ¥ ! fo (P, (1) — P%(qu)}dG(u) } =0.

A-o0 k=0
Proor. First we prove the lemma for G(u) = u® where a is a positiveinteger.
We have by (2.2)

w0

f (Pult) ~ Phgu}u"du| = 3

k=n+1

1
f P* (qu)u®~'du
0

—n+1

= E Px,‘(qu)u ““ldu

k=n+1

- q_af"va-l 3 P(o)dv.

0o k=n+1

Given 6 >0, 0 < J < g, define f(1)=f;(t) by f() =1 for t > g — 5 and f(1) =0
for 0 £t < q— 8. Now for > A(8), g — & < n/x = n(A)/x(2). Hence for 1 > A()
we have, since k = n + 1 implies k/x >q — o

q fqv“"‘ Z Pr(v)ydv<q™® fqv“"l T P:(v)dv
0 0

k=n+1
q- a<k/x

=q‘“L“IEP(v)f.,()

(and by Lemma 3.2, since A— oo implies x = x(1) > + o0, and Lebesgue’s
dominated convergence theorem)

~q° f "o (o + o)
0 .

i 1
= q"“f v*" dv.
q—8

Letting 50 we get

(3.5) lim f (o) — PA(qu)u™du | =
A= k= n+1
We have
2 P*(qu)u® 'du < x~@° D _af Z (iik'—?—P:_k+a—l(u)du
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_ 1 w nta—1
Ba~1)f x_("*”q_"J‘ E P¥(u)du
4

lIA

n!

=y T
=‘(H—:_;'_)'i =g {(n+a)fx—

q nta-—1

Y PXu)du

0 k=0
q
—bi{q-—fldu} (A— )
q 0
=0
by Lebesgue’s bounded convergence theorem, the argument used in proving (3.5)
and Lemma 3.2 applied once to the function f,(f) =1 (0<t<q—4,0<5 <q)

fi(®) =0 (t > g — J) and next to the function f,(1) =1 (0 1< g+ ), f2(1) =0
(t > q + 6) and then letting 0] 0. Hence we have

I = lim (1) — PE(qu)u®~ Idu]
A=
n 1 o -]
— lim ¥ f Pt du ~ | Pf;.(qu)u“ﬂdwf P2 (quyu®~ du
A=wm k=0 ] 0 1
n 1 o0
= lim X J. P (wu""'du —f P:k(qu)u“_ldul.
A=+ k=0 0 0

Now we have for

1
0<k<n f P, (wu®" 'du —f PX(quu® 'du = *(xQ)—q]-
0

(n+a)!

(k+a—1)*[ n!
e

Hence the sign of

 § @
[ P,,k(u)u“'idu—f PX(qu)u® 'du
0

is constant for 0< k < n and we get

n 1
(3.6) I = lim f P, (u)u" " 'du — ): f P*(qu)u®" ‘du)|
A=
= lim ]f *~du —f u! E: P:'k(qu)du‘
A= k=0 I

= lf u“_ldu—f u“_ldu|
0 0
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by Lebesgue’s bounded convergence theorem, the argument used in proving (3.5)
and Lemma 3.2 applied once to the function f;(#) and next to the function f,(¢)
and then letting /0. By (3.5) and (3.6) our lemma is true for G(u) =u*, a = 1.
Hence the lemma is also true if G(u) is the integral of a polynomial. Now we prove
the lemma for an arbitrary absolutely continuous function G(u) in [0, 1]. We have
G(t) = [og(u)du for 0<t<1 where g(u)e L,[0,1]. Given ¢>0 there is a
polynomial f(u) such that fé] g(u) — f(u)ldu < ¢/4, since the polynomials are
densein L,[0,1]. Also, by the first part of the proof for A > A(¢) and the polynomial
f(u) we have

o 1
) ]j {P(u) — PE(qu)}P(u)du l < % .
k=0 ! Jo
Now for A > A(e)

w© 1 w
Z fo {Pral) = Pi‘k(qu)}dG(u)! -z

1
Jo {Pu(u) — P3(qu)}g(u)du l

]

2 [ Puw) - A} o) ~ ) + @)
k=0 ]

1A

0 1
) f {P(u) — P¥(qu)} f(u)du '
k=0 'Jo

@© 1
+ X I f {Pnk(u)—P;"k(qu)}{g(u)—f(u)}dul
k=0 0

IA

& 1 «© -] *
5t ﬁ [g(w) — f(w)] {’EO Ppu) + Eo P}(qu) }du

(and since X P, (u) = g Pr(qu) = 1)
k=0

1
+2 [ g - fwdu

+2-

IR

&
4
= &.

This proves the lemma if G(¢)is the integral of a function in L,[0, 1], or equiva-
lently, if G(t) is absolutely continuous in [0, 1].

LEMMA 3.6. Suppose (1) is of bounded variation in [0,1] and p(0)=p(0+)
=0. Then for each o, 0 < a < 1, the function K(t) = [o(1 — u) *u*"' ple”"")du
is of bounded variation in [0, 00) and continuous in (0,00]. If in addition B(t) is
continuous at t = 1, then K(t) is continuous at t =0,
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Proor. For any subdivision 0=ty <t; <t,...7, we have

n—1 . .
k§0 ’K(tk+1) - K(t) j = (fo Jdﬂ(l))])j; - u)_aua_ldu.

Hence K(t) is of bounded variation in [0, o). By Lebesgue’s dominated con-
vergence theorem we get for 0 < t, < 0

1
lim K(1) = J 1- u)'“u“"’(]im Ble™") )du
t—to 0 t—to
- fl(l —u)"u® " fle™ ") du
0
= K(to)

since f(v) is continuous almost everywhere in [0, 1]. Similarly we get lim,;, K(1)
= 0. If B(v) is continuous at v = 1 we get lim, oK(¢) = K(0).

LemMmA 3.7. For a function B(t) of bounded variation in [0,1], a real
number «,0 < « < 1, any two positive functions x(1) - o0, n(1) — o0, n(1)[x(A)—~q
(A > ©), 0<q < o, and any number A, g < A < oc, we have

0 1
L P % ( fo (l—u)‘“u“"’[1—ﬁ(e-"")]du)dt] = 0.

Proor. For 0 < k < n we have
a0 1 N
If PE(D) —t: (J. d—w 1 - ﬁ(e"’“)]du)dtl
A 0

( L+ sup |6 } f P & ( ﬁ (1 -y ) de

0zvsl A t

© *
Mf ka(t)dt'
4 t

Iim X

A=+ k=0

i

1,

IIA

/

Hence

ﬁ LM 2 pr;",‘(t)t"dt_)ou—»oo)
k=0 k=0 JA
by [8, (5.17), (5.18), (5.19)].

LemMa 3.8. For afunction (t) bounded and L-integrable in [0, 1] satisfying
1 - —-u
f —————‘1 Ale )Idu<oo
o u

and a real number a, 0 < a < 1, the function
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M) = t_lfl(l —u)" "1 = Ble™"") | du
0

is Lebesgue-integrable in each interval [0,4], A > 0.
LemMma 3.9. Suppose B(t) is of bounded variation in [0,1], f(0) = B(0+) =0
Ble”®)

and ——=- is Lebesgue-integrable over [1,0). Then for each a, 0 < o« < 1, the

v
N(x) = J;wt“d, [j:w(v -7 Kg;idt;]

Sfunction
is continuous and of bounded variation in each interval [e, ), £> 0,

ProorF. By Fubini’s theorem and Lemma 3.6 we get K(#)/te L[¢, o] for each
&> 0. By changing variables we get

f (v— t)*“—ﬂ(‘;—)du =t "K(t).
t
Using these two results we get by integration by parts and by using Lemma 3.6

— N(x) = K(x) + afm K—(tt)—dt.

x

The proof follows now by Lemma 3.6.

PRrOOF OF THEOREM 2.1. First we establish (3.14) which is the main step in the

proof. For this end properties of & and B¢ defined below are needed. For

0<a<1and k>0 we have by [9, (5.3)] for 1, =n

fl L2201 [y A [Pl

o t
- - Joank(u)du{ f lt’d:“l(”“)-“zgzz)d"”
+ fol Pu()(1 — u)™"u"" 'du
[ (3 fa-ooa)a

1 1
+ fo ﬁil) (a fo ¢! —v)"“v“'ldv)du

= Vnk

For o =0 we have by [9, (5.3)]

(3.8)
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J:) 1 —ty(t)dtj; (t—u) [ (] du

1 1 1

(3.9) - - L P.(0)d, { f d, [ J —1y° @du]}
+ fl Pnk(v) dv
o U
= Y
By [9, (4.5)] we have for 4, =k
' Pu(® , 1

(3.10) fo o=

For A > 0, and in particular for 4 > g, k>0 and 0 < a < 1 we have

L " P, { f “ud, [ f - ﬁ(_e_ngdu”

= k(t)— f A —w)y = '[1- ﬂ(e_’/")]du}dt

f 20 % | f (1= 1~ e

(3.11) — L wP;(t)d, { ﬁ a- u)‘“u“‘lﬂ(e""")du}
+ ‘pr_;;gz {uﬁl(l —u) %! du}dt
= £

For « =0, k> 0 and each 4, g <A < o0, we have

fo PA(1), { f ud, [ f (0 u)—“ﬂev—_—zdv] }
_ ﬁAP:k(t) 1- ,gt(e—t) i Lw p:,;(t) [1- B(e™"]dt

© p¥
0 t

(0)
xk*

For k> 0 we have

(3.12)

I
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0 v k ’

By [9, Lemma 5.4], Lemma 3.4, (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) we
getforO0ga<1

(3.13) an Pal®) 4, 1

1
H,(y)—JB) = I+ o)1 — a)

(3.14)
{E dOG@ - D) _ B pw :

k=n+1

To complete the proof of our theorem it is sufficient, by Agnew’s theorem (see [8])
to show that we have

P_}m {r(l + “)r(l—“)}‘ { Z I Vn(;) k ﬁx(l) k,"‘ ) ,ﬂx(l)k : = Gt(la)

k=n(A)+1

and lim,_, ,[7$0)) ¢~ B%%),.1] = O for each k = 1. By [8, Theorem 2.1 and Remark
(2.2)], Lemma 3.1, Lemma 3.9, we get by applying to (3.11) an obvious modi-

fication of (5.13) and (5.16) of [8],
d,[ﬁw (u—t)"“Lz_Qdu] [ .

By the second conclusion of [9, Theorem 3.1 for assumption (I1I)], Lemmas 3.5,
(3.6), (3.7) and (3.8) and [9,(5.8), (5.10)] we get for 0 <a <1

A= k=n+1

(3.15) lim X g% = f t°

(
}1m E [ Pochoe = Bethy i
—ook=

A A
+ f:/qt“d,[ fl co(v— t)-“il}]

_ x“fw(,,_x)‘“—'%—;v—)d”— - 1[f (w — _ﬂ’_ld ]}l

x
- g@
= Hq ;

and for «a =0

0) B f ‘1—/3(9_") (u/‘I)l H(O)

Paiiyo — n(;.) k

(3.17) lim T
A-+o k=1

It is easy to see that we have
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(3.18) lim [y — SOy =0 for k=1,2,....
A

The proof follows now by the remark after (3.14), by (3.15), (3.16), (3.17) and
(3.18).

Lemma 3.10. If B(¢) is of bounded variation in [0,1] and B(e~*) e L[1, ]
and x(1) = o0, n(A) = o0, n(1) [x(1) = q (0 < g < ), then for each A,q < A < 0,

we have
i 5[] [t HT)

Proor. We have for 4> g

3 f Paod | f a(FE ’3“’_“))]

n 7o) _ -t n o]

-~ 3 | o l_l’;(L’dt ~ % | PE(DE™
k=1 A k=1 A

= Iﬁl) + Iﬁz).

As in the proof of Lemma 3.7 we have

|1{’>]§KZ" wP—:’;—(th_)o (A1 0).

k=1 JA

Integrating by parts we get

LY = B z Pi(4) + f Ble™) di i Pl (u)du
+ x f " Bl U — A g

= ﬁ(e"‘) Z Pr(A)—e *Ble™ +x J Ble e ™dt— J B(e™*)P* (H)dt
= 1521)_*_[;(.22)_,_[&23) +I§24).

We have by Lemma 3.2
lim IV =0 and lim I{?® = 0.

A= A0

We have

]Iff”ngle e""dt=K1J‘ e 'du—>0  (A— ).
A A

x
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Since P¥ (t) is a decreasing function in ¢ for t = n/x we get

[139] < xPA(A4) f | B dt
A
(and by Stirling’s formula for n!)
-0 (2> o).

This completes the proof.

PROOF OF THEOREM 2.2. We have by [9, Lemmas 5.4 and (5.5) (for 4, =n)]
and by Lemma 3.4

H») = J.(8) = kE o | - f Pult)d U (Y(u))] T
- L“’p:k(od U ud( fe ))]}
- af‘mfo Px(t)d [J: (ﬂ(e;"))]

By (3.13) we get (for g < 4 < o)

Jo recoal [T (B ([ 4 ) prcoa] [ (552

Hence

Bt = [pacoa [ wa (23]
(. [2) preoa [ (%))
- E, 0 [ ron] [ (M2

To complete the proof of our theorem it is sufficient, by Agnew’s Theorem (see
[8]) to show that we have

A3 Ll
(Lo [ (5
o
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[ [ ()]
([ o[22 -

for each k2> 1.

and

Repeating the argument used in [8] to prove that in [8, (8.10)] we have

- 5 _ [~ laen
m X, g ol [
m(d)/x(A)-q

we get here
i o] ) o)

Write (1) = y,(1) +y,(#) where y,() =3() O=<t<1, y,(1)=7y(1—0). Note
that P, (1) =0 for 0 < k < n. The proof follows now by Lemma 3.10, and by
repeating the argument used in the proof of [9, Theorem 2.2] and by using the
fact that for 1> A

f : PA(nd [ f O'ud (L—J;(_ej)]
(f:! dl fot“d (=21 max PO = Ky L

(by Stirling’s formula) ~ K,-n"t >0 (A — o0).

IA
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