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THE MAXIMAL IDEAL SPACE OF Hœ + C 
ON THE BALL IN O 

GERARD McDONALD 

Let S denote the unit sphere in Cn, B the (open) unit ball in Cn and Hœ(B) 
the collection of all bounded holomorphic functions on B. For / £ Hœ(B) 
the limits 

/*(f) = Hm/(rf) 

exist for almost every f in S, and the m a p / —» /* defines an isometric isomor
phism from Hœ(B) onto a closed subalgebra of Lœ(S), denoted Hœ(S). (The 
only measure on 5 we will refer to in this paper is the Lebesgue measure, da, 
generated by Euclidean surface area.) Rudin has shown in [4] that the spaces 
Hœ(B) + C(B) and Hœ(S) + C(S) are Banach algebras in the sup norm. In 
this paper we will show that the maximal ideal space of Hœ(B) + C(B), 
£ (Hœ(B) + CCS)), is naturally homeomorphic to £ (Hœ(B))} and that 
Z (Hœ(S) + C(S)) is naturally homeomorphic to £ (Hœ(S))\B. This last 
result is an extension of Sarason's theorem for Hœ + C on the unit circle 
[5; p. 199]. 

1. Preliminaries. Let A(B) denote the Banach algebra of all functions 
holomorphic on B and continuous on B. The maximal ideal space Yl (A (B)) 
consists precisely of the evaluation functionals eç, where f G B and 

edl) =/(f), f£A(E). 
The map f —> £$• is a homeomorphism from B onto J2 (A (B)). With this in 
mind we will write B for Yl (A(B)). 

If f G -5 we can consider e$- as an element of both J2 (Hœ(B)) and 

E (H~(B) + CCB)). 

We set 

Bœ = {m Ç £ (£P(£)) : m = er> f G SJ , 

and 

^œ+c = jme Z (#-(£) + c(5)) :w = «r,re Bf . 

Since the map f* —•/ is an isomorphism from Hœ(S) onto Hœ(B), there is an 
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induced homeomorphism r from £ (Hœ(B)) onto £ (Hœ(S)) defined by 

T(m)U*)=m(f), mÇ. E (H°° (B)), f € H™ (B). 

Let Bœ>s = r(Bœ). It is evident that 

B œ i l = \m e £ (H^iS)) :m(f*) = / ( f ) , for some fixed f in B 

and all/* 6 tf00^)} . 

2. Statement of theorems. The first two theorems below are more or less 
lemmas for the remaining two. They remain true if B is replaced by any strongly 
pseudoconvex domain in Cn. We have been informed that Theorem 2 was 
proved previously by Garnett using methods apparently similar to our own. 
Since we were unable to find proofs of either theorem in the literature, we will 
prove them in the next section. 

THEOREM 1. The map p : £ (Hœ(B)) —> B defined by 

p{m) = m\A(B) 

is continuous and onto. The map p~l is well-defined on B and is a homeomorphism 
onto an open subset of £ (Hœ(B)). This subset is precisely Bœ. 

ForX G S,letFx = {^ (X)} . It follows from Theorem 1 that £ (Hœ(B))\Bm 

is closed and that 

D (H~(B))\Bœ = U Fx. 

This says simply that the multiplicative linear functionals on H°°(B) which 
are not evaluation at some point in B are precisely those which, when re
stricted to A(B), are evaluation at a point on the boundary of B. It also follows 
that T o p~l is a homeomorphism of B onto BœtS and that the latter is an open 
subset of £ (Hœ(S)). 

THEOREM 2. Suppose f £ Hœ(B), X £ S, and a £ C. There exists an m Ç F\ 
such that m(f) — a if and only if there is a sequence {Çk} in B converging to X 
such thai'f(tje) converges to a. 

We define pB : £ (Hœ(B) + C(B)) -> £ (Hœ(B)) by 

pB(m) = w|iT°(S), 

and ps : £ (Hœ(S) + C(S)) -* £ (H~(S)) by 

ps(m) = m\Hœ(S). 

THEOREM 3. The map pB is a homeomorphism from £ (Hœ(B) + C(B)) 
ontoZ (Hœ(B)). 

THEOREM 4. The map ps is a homeomorphism from £ (Hœ(S) + C(S)) 
ontoZ (H°°(S))\BœiS. 
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These results can be writ ten as £ (fl°°(5) + C(B)) = £ (ff°°(S)) and 

E ( f f"(5) + C(5) ) = £ ( F " ( 5 ) ) \ S . 
Theorem 3 will be proved in Section 4. The main difficulty in the proof lies 

in showing tha t each element of XI (Hœ(B))\Bœ is extendable to a multiplica
tive linear functional on Hœ (B) + C(B). This is where we need Theorem 2. 
Theorem 4 will be proved in Section 5. We will show tha t the " n a t u r a l " 
homeomorphism from Hœ(B) + C{B) to Hœ(S) + C(S) defined by 

v+f-xp* + (f\S) 

induces a homeomorphism from ^ (Hœ(S) + C(S)) onto 5Z (Hœ(S))\Bœ,s 

and tha t this induced map is p s. 

3. Proof of T h e o r e m s 1 and 2. The proof of Theorem 1 when B is the uni t 
disc in C 1 can be found in [6] and [1 ; pp. 160-161]. The proofs of the continui ty 
of p and p~1 are independent of the dimension of B, and we omit them. T o see 
tha t p is onto, note t ha t p(Bœ) = B, and hence 

B C p ( E r ( S ) ) ) C.B. 

Since p is continuous and ^ (Hœ(B)) is compact, p(J2 (Hœ(B))) must be 
compact , and so closed. Thus p(Yl (Hœ(B))) = B. Again since p is continuous, 
p~1(B) must be an open subset of ^ (Hœ(B)). I t remains to show tha t p~l is 
in fact well-defined on B. To do this we need the following lemma due to 
Kerzman and Nagel [3; p. 215(4)]. In the case n = 1 the lemma can be 
proved using Blaschke products. For n > 1 sheaf-theoretic methods are used. 

LEMMA 5. Let B be the unit ball in Cn, n *z 1. If <p £ Hœ(B) has a zero at 
f = (fi, . . . , fw) in B, then there exist hi, . . . , hn in Hœ(B) such that 

cp = (jgj - fi)fei + . . . + (Zn - fn)A„. 

I t now follows tha t p~l is well-defined over B. For suppose p(m) = f for 
m in XI (Hœ(B)). Choose an arbi t rary ç in Hœ(B). By Lemma 5 there are 
functions hi, . . . , hn in Hœ(B) such tha t 

¥> - p(f) = (21 - fi)Ai + . . . + (zn - fn)Aw. 

By hypothesis m(zj — f ; ) = 0 for j = 1 w, and therefore 

m(<p) - p(f) = w(ç? - p ( f ) ) 

= m(zi - fi)w(Ai) + . . . + w(z„ — Çn)m(hn) 

= 0. 

Since <̂  was arbi t rary we must have m = £$• on IIe0(B). 
As with Theorem ] , the proof of Theorem 2 is exactly the same for B of 

a rb i t rary dimension as it is for the unit disc ([6] and [Î ; pp. 161-162]), with 
the exception of Lemma 7 below. On the uni t disc the lemma is proved by 
using Blaschke products. We need first a result due to Kerzman [2; pp. 342-345]. 
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LEMMA 6. If $ is a smooth, bounded, closed (0, l)-form on B then there exists 
a smooth function u on B, continuous on B, such that du = 4>. 

By bounded we mean that if $ = ]T (ptdzi} then each <p* is a bounded function 
on B. This result is only part of a much more general result. In particular B may 
be replaced by any strongly pseudoconvex domain in Cn with suitably smooth 
boundary. We will need, however, nothing stronger than Lemma 6 in this paper. 

LEMMA 7. Let <p Ç Hœ(B) and X £ dB. If <p is bounded away from zero on a 
neighborhood of X in B, then there exists \p Ç Hœ(B) such that for any sequence 
\tk} inB within —> A, 

^ ( r * ) -> i . 

Proof. Choose a neighborhood V of X in B on which p is bounded away from 
zero and l e t / be a smooth function on Cn which is identically 1 on a neighbor
hood of X in Cn with supp / C\ B contained in V. Thus (l/<p)f is defined and 
bounded on B, and 

It follows from Lemma 6 that there exists u in C(B) such that 

5" = 5(V)-
and thus (l/<p)f — u G Hœ(B). Nothing changes if we subtract a constant 
from u, so we can assume u(\) = 0. Since/ = 1 on a neighborhood of X in B, 
on the same neighborhood we have 

<py-f - uj = 1 - <pu. 

Since u is continuous on B and equal to 0 at X, and since <p is bounded, we have 

(1 - *>«)($-*)->1 

for any sequence {Çk\ in B converging to X, and hence 

Let ^ = {\/<p)f — u. This completes the proof of Lemma 7 and hence the 
proof of Theorem 2. 

4. Proof of Theorem 3. Let {ma) be a net in J2(Hco(B) + C(B)) converging 
to m. By définition of the topology on J2 (Hœ'(B) + C(B)) this means 

ma(f) ->m(f) 
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for a l l / in Hœ(B) + C(B), and so for a l l / in Hœ(B). Therefore 

pB(ma) = ma\H
co(B)-^m\Hœ(B) = pB(m), 

and so pB is continuous. Since the maximal ideal spaces are compact and 
Hausdorfï, the theorem will be established once we have shown tha t pB is 
bijective. This means showing t ha t every multiplicative linear functional on 
i7°°(B) has a unique extension to a multiplicative linear functional on Hœ(B) 
+ C(B). 

We first show tha t every m in ]T (Hœ) can be extended. If m = eç belongs to 
Bœ then m extends to eç in Bœ+C. If m belongs to YJ (Hœ(B))\Bœ then m £ F\ 
for some X £ dB. Let 

W = ) ^ <Ppz : jo a multi-index, k a positive integer, <pp £ Hœ(B) ( . 

W is obviously an algebra, and is dense in Hœ(B) + C(B) by the S tone -
Weierstrass Theorem. Define m orvW by 

m\JL n^j = m\ H <P^J . 

By the continuity of the z& a t X and the boundedness of the <pp} given ]T ^ ^ in 
#^ and e > 0, we can find a neighborhood U of X in 5 such t h a t 

sup 
u 

sup 
I £/ 

S W?2 

By Theorem 2 we have 

m ( E «*') ^ sup £ M « 

since ^ ^ ^ is m Hœ(B) and m belongs to Fx. Thus 

m Z «*') < 1 ] p/32 

T h e above inequalities show tha t m is bounded on W. I t is clear t ha t m is a 
multiplicative linear functional onW, and so, being bounded, it can be extended 
to a multiplicative linear functional on Hœ(B) + C(B), the closure oîW. This 
extension is an extension of m since m is an extension of m. 

We must now establish uniqueness. Suppose mi, m2 G E (Hœ(B) + C(B)) 
and t ha t 

w i | / r ( ^ ) - m2\H
œ(B). 

We want to show mi = ra2 on Hœ(B) + C(B). S i n c e ^ is dense in Hm(B) + 
C ( 5 ) it suffices to show tha t for all m in £ ( # œ ( £ ) + C ( 5 ) ) , 

tn(Zj) = rn(zj), j = 1, . . . , n. 
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The spectra of all the real coordinate functions are [ — 1, 1], relative to Hœ(B) 
+ C(B). Thus each m(xj), m(yj) is real for every m in J^ (Hœ(B) + C(B))} 

and consequently 

m(zf) = m(Xj — ijj) 

= mixj) — im(yj) 

= m(xj) + irn(yf) 

= m(Zj). 

5. Proof of Theorem 4. Let ^ = <p +f belong to Hœ(B) + C(B), with 
<p G Hœ(B) a n d / Ç C{B). For almost every f in 5, l im^i \p(rÇ) exists, and 

lim^(rf) - lim (*>(rf) + / ( r f ) ) . 
r->1 r->1 

If we let 

(1) **(f) =HmiKrf) , 
r->l 

then ^* belongs to H°°(S) + C(5), and 

^* = ^* -)- /*, 

where f* = f\S. Let I0 = {f G C(5): /* = 0}. 

LEMMA 8. 77ze wa/j 7 0/0 = ^* ^ an algebra homeomorphism from Hœ(B) + 

Proof. It is obvious from (1) that y is a homeomorphism into Hœ(S) + C(5). 
From the definition of Hœ(S) it follows that y is onto, and from the definition 
of I0 it follows that ker y contains I0. Let P be the Poisson-Szego kernel on 73, 

PM)-l*fP$=X&. -reçues. 
If ^ G 77^(73) a n d / Ç c7(5)f then for s Ç 73 

(2) <p(z) = §sP(z,S)<p*(S)d°{Ç), 

and 

(3) g(2) = ( P(z,S)f*(£)da(£), 
J s 

where g is a continuous function on B with g* = /*. Details can be found in 
[7; p. 19]. Any element \p in H°°(B) + C{B) can be written in the form \p = 
<£ ~~ /» <£ a n d / as above. If 7(1/0 = 0 then <̂>* = /*, a.e. on S. Thus the integrals 
in (2) and (3) are equal. It follows that <p is continuous on B and hence that 
* € CCS). 
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The induced map 

y*(m)(f) = m(y(f)), m ç £ (Hœ(S) + C(S))J G Hœ(B) + C(B), 

is a homeomorphism from E (Hœ(S) + C(5)) onto the subset of E (Hœ(B) + 
C(B)) consisting of those functionals which vanish on I0. 

We saw in the proof of Theorem 3 tha t each element of E (Hœ(B) + 
C(B))\Bœ+c, when restricted to C(B), is evaluation at some point X on 5. These 
elements therefore vanish on I0. Since no element of Bœ+C vanishes identically 
on I0, 7* is a homeomorphism onto ^2(H°°(B) + C(B))\Bœ+c. Hence the map 
T o pB o 7*, r as defined in the preliminaries, is a homeomorphism from 
E (H°°(S) + C(S)) onto E Hœ(S)\BœtS. Unravelling the definitions will show 
tha t ps = T o pB o 7*. 

6. C o n c l u s i o n . Lemma 6 played a central par t in the preceding work. We 
would like to end this paper with one further example of the close relationship 
between this result and Hœ + C. 

Let D be a relatively compact open set in Cn and let ^^(D) denote the col
lection of smooth functions on D. 

PROPOSITION 9. If Lemma 6 is valid on D, then 

clos (Hœ(D) + C(D)) = clos {<p Ç tfœ(D): <p, 3<p bounded}. 

the closure being taken with respect to the sup norm. The space 

clos (Hœ(D) + C(D)) is an algebra. 

Proof. Suppose Lemma 6 is valid and tha t <p and d<p are bounded. We can 
find a u f ^(D) C\ C(D) such tha t du = d<f. Therefore <p - u Ç Hœ(D) 
and cp = (if ~ u) + u (£ Hœ(D) + C(D), and so 

{<? € c€œ(D): <p, d<p bounded! C Hœ(D) + C(D). 

This proves inclusion in Proposition 9 in one direction. The set {<£>+/: 
<p Ç Hœ(D), f a polynomial in the real coordinate functions} is dense in 
Hœ(D) + C(D), by the Stone-Weierstrass Theorem, and is obviously contained 
in {ip 6 c€co(P)\ <p, d(p bounded}. Therefore inclusion follows in the other 
direction. The set {<p Ç céyco(D): cp, dç bounded} is obviously an algebra, and 
so its closure is as well. Thus clos (77e0(ZJ) -)-- C(D)) is an algebra. 

Remarks. I t follows immediately from Proposition 10 tha t Hœ'(B) + C(B) 
is an algebra. This in turn implies Hœ(S) + C(S) is an algebra as well. The 
proof of these facts in [4; pp. 105-111] does not use Lemma 6 explicitly and is 
much longer. Finally, Rudin shows in [4; pp. 104-105] tha t if <p in Hœ(Un), 
Un the unit polydisc, does not have a continuous extension to Ûn

} then 

zn<p ft Hœ(H») + C(Vn), 

for n > 1. We conclude from Proposition 10 tha t Lemma G is not valid on Un, 
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n > 1. In fact, since 

d(zn<p) = <pdzni 

it is clear that there does not exist a u Ç ^^{JJ71) C\ C(Vn) such that 

du = ^>dzn. 

Of course, by Dolbeault's Lemma there is a solution in (ifco(Un). 
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