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Abstract

We relate a previous result of ours on families of Diophantine equations having only trivial solutions with
a result on the approximation of an algebraic number by products of rational numbers and units. We
compare this approximation with a Liouville type estimate, and with an estimate arising from a lower
bound for a linear combination of logarithms.
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1. Introduction

In a previous paper [3], we proved that certain families of Diophantine equations have
only trivial solutions. In this note (Theorem 3), we show how to deduce from our
results on families of Diophantine equations [3] some results on the approximation
of an algebraic number by products of rational numbers and units. Since the proofs
rest on Schmidt’s subspace theorem, these results are noneffective. They improve
elementary estimates (Proposition 1) obtained along the lines of Liouville’s arguments.
A different type of estimate (Theorem 6), which is effective, is achieved by means of
a lower bound for a linear combination of logarithms of algebraic numbers.

2. A variant of the Liouville inequality

Rational numbers will be written p/q with q > 0 and gcd(p, q) = 1 (and with q = 1
in case p = 0). When α is an algebraic number of degree d, its minimal polynomial
will be denoted by

f (X) = a0Xd + a1Xd−1 + · · · + ad ∈ Z[X] (1)
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where a0 > 0. In C[X], this polynomial splits as

f (X) = a0

∏
σ

(X − σ(α))

where σ in the product runs through the set of embeddings of the field K := Q(α) in
C. We denote by α the maximum complex modulus of the algebraic conjugates of α
in C:

α = max
σ
|σ(α)|.

The absolute logarithmic height of α (see [7, Ch. 3]) is

h(α) = log a0 +
∑
σ

log max{1, |σ(α)|}.

The proof of the next result is close to that of Liouville.

P 1. Let α ∈ C be an algebraic number of degree d with minimal polynomial
as in (1). Then for any p/q ∈Q and for any unit ε of Q(α) such that εα , p/q,∣∣∣∣∣α − p

q
· ε−1

∣∣∣∣∣ ≥ κ1

qd ε d−1|ε|
with κ1 =

1
a0(2 α + 1)d−1

.

The conclusion can also be written: for any p/q ∈Q and for any unit ε of Q(α) such
that εα , p/q,

|qεα − p| ≥
κ1

(q ε )d−1
.

Proposition 1 holds for any algebraic integer ε lying in Q(α), not only units, provided
that we take into account the leading coefficient of the minimal polynomial of ε.
Indeed, from [7, Proposition 3.14] (which follows from the fact that the norm of a
nonzero rational integer has absolute value at least 1 and which also follows from the
product formula), one deduces that for any algebraic number field K of degree d, any
element γ in K and any rational number p/q with qγ , p,

|qγ − p| ≥
1

(|p| + q)d−1edh(γ)
.

We prefer to restrict the situation in Proposition 1 to the special case where γ = εα for
the sake of comparison with Theorems 3 and 6.

P. We assume that the rational number p/q ∈Q and the unit ε of Q(α) satisfy
εα , p/q and we aim to prove (a third formulation for) the conclusion of Proposition 1,
namely ∣∣∣∣∣εα − p

q

∣∣∣∣∣ ≥ κ1

qd ε d−1
.

As we have just seen, this will complete the proof of Proposition 1.

https://doi.org/10.1017/S1446788712000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000663


[3] Approximation of an algebraic number 123

We consider the embeddings σ of Q(α) into C; since α ∈ C, one of them is the
inclusion of Q(α) in C, which we denote Id. Letting

fε(X) = a0

∏
σ

(X − σ(εα)) and Fε(X, Y) = Yd fε(X/Y),

we can write
|Fε(p, q)| = a0qd

∣∣∣∣∣εα − p
q

∣∣∣∣∣ ∏
σ,Id

∣∣∣∣∣σ(εα) −
p
q

∣∣∣∣∣. (2)

Since q ≥ 1, κ1 < 1 and ε ≥ 1, the inequality that we want to establish is trivial if
|εα − p/q| ≥ 1. Therefore we can assume that |εα − p/q| < 1, in which case, for every
σ, ∣∣∣∣∣σ(εα) −

p
q

∣∣∣∣∣ ≤ |σ(εα) − εα| + 1 ≤ 2 εα + 1 ≤ (2 α + 1) ε .

By assumption εα , p/q; hence, for each σ, the Galois conjugate σ(εα) of εα is
distinct from σ(p/q) = p/q, and therefore Fε(p, q) , 0. Since Fε(p, q) ∈ Z, we have
|Fε(p, q)| ≥ 1, and the conclusion follows. �

Proposition 1 is trivial when d = 1. In Section 3, we will show that this result is
not optimal when d ≥ 3, in the sense that we can replace κ1 by an arbitrarily large
constant, provided that q is sufficiently large. Consider the case d = 2. Let α be a
quadratic number. The conclusion of Proposition 1 is still trivial if α is not real. So
we suppose that α ∈ R and we denote by ε0 the fundamental unit greater than 1 of the
real quadratic field Q(α). We plan to investigate how close to a best possible one is the
lower bound exhibited in Proposition 1. For ease of notation we assume ε > 0 without
loss of generality. There are two cases: if ε > 1, then we write ε = εn

0 with n > 0; while
if ε < 1, then we write ε = ε−n

0 , again with n > 0. From Proposition 1 we infer, for all
p/q ∈Q and all n > 0, that∣∣∣∣∣εn

0α −
p
q

∣∣∣∣∣ ≥ κ1

q2εn
0

and
∣∣∣∣∣ε−n

0 α −
p
q

∣∣∣∣∣ ≥ κ1

q2εn
0

.

The next result shows that, infinitely often, these estimates cannot be improved: the
dependence on q is sharp in the quadratic case.

L 2. Let ε0 be the fundamental unit greater than 1 of the real quadratic field Q(α).
For any n ≥ 0, with at most one exception, there exist a constant κ2 and infinitely many
rational numbers p/q such that ∣∣∣∣∣εn

0α −
p
q

∣∣∣∣∣ ≤ κ2

q2εn
0

,

and infinitely many rational numbers p/q such that∣∣∣∣∣ε−n
0 α −

p
q

∣∣∣∣∣ ≤ κ2

q2εn
0

.

An admissible value for the constant is κ2 = εn
0/
√

5.
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However this lemma does not give a satisfactory answer to the question of
optimality, because n is fixed and κ2 depends on n. In Section 4 we show that the
dependence on ε is not sharp in Liouville’s estimate, even in the quadratic case.

P  L 2. The possible exception is n such that εn
0α or ε−n

0 α is rational,
and the result follows from a theorem of Hurwitz (see, for instance, [4, Ch. 1,
Theorem 2F]). �

3. A refinement of Liouville’s estimate

Let α be an algebraic number of degree d over Q and let K be the field Q(α). In this
section, we plan to prove the following result.

T 3. For any constant κ > 0, the set of pairs (p/q, ε) ∈Q × Z×K such that
[Q(εα) : Q] ≥ 3 and ∣∣∣∣∣εα − p

q

∣∣∣∣∣ ≤ κ

qd ε d−1
(3)

is finite.

Theorem 3 is trivial when d = 1 and when d = 2. For the proof we can suppose
that d ≥ 3. For κ < κ1, inequality (3) is a consequence of Proposition 1, and the set of
exceptional (p/q, ε) has at most one element. The point is that Theorem 3 holds true
for any arbitrarily large constant κ. The conclusion can also be stated as

(q ε )d−1‖qε‖ −→ +∞ as max{q, ε } −→ +∞.

We twist the minimal polynomial (1) of α by a unit ε of K by writing

fε(X) = a0

∏
σ

(X − σ(εα)) and Fε(X, Y) = Yd fε(X/Y).

Theorem 3 is a corollary of the following theorem whose proof can be found in [3].

T 4. For any integer k , 0, the set of triples (x, y, ε) ∈ Z2 × Z×K with xy , 0
satisfying

[Q(εα) : Q] ≥ 3 and Fε(x, y) = k

is finite.

P  T 3. Let κ > 0 and let (p/q, ε) ∈Q × Z×K satisfy (3). We have ε ≥ 1.
There is no restriction in supposing qd ≥ κ. Consider relation (2). For σ , Id, we use
the upper bound∣∣∣∣∣σ(εα) −

p
q

∣∣∣∣∣ ≤ |εα − σ(εα)| +
∣∣∣∣∣εα − p

q

∣∣∣∣∣ ≤ |εα − σ(εα)| + 1,

which comes from a weak form of (3). Since

|εα − σ(εα)| + 1 ≤ 2 εα + 1 ≤ (2 α + 1) ε ,
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we deduce, by taking into account (3), that

|Fε(p, q)| ≤ a0qd
∣∣∣∣∣εα − p

q

∣∣∣∣∣(2 α + 1)d−1 ε d−1 ≤ a0κ(2 α + 1)d−1.

Theorem 4 allows us to conclude that the set of rational numbers p/q which satisfy (3)
is finite. �

To illustrate Theorem 3, let us make explicit the case of a cubic field whose unit
group is of rank one.

C 5. Let α be a real cubic number which has two Galois imaginary
conjugates. Let ε0 be the real fundamental unit greater than 1 of the cubic field Q(α).
For any constant κ > 0, the set of pairs (p/q, n) ∈Q × Z with n > 0, such that∣∣∣∣∣α − p

qεn
0

∣∣∣∣∣ ≤ κ

q3ε3n
0

,

is finite, and the set of pairs (p/q, n) ∈Q × Z with n > 0, such that∣∣∣∣∣α − pεn
0

q

∣∣∣∣∣ ≤ κ

q3
,

is finite.

P. In Theorem 3, take ε = εn
0 with ε = εn

0 for the first part of the statement of
Corollary 5, and ε = ε−n

0 with ε = εn/2
0 for the second one. �

4. Effective estimates

A sharp estimate from below for |εα − p/q| in terms of ε can be achieved in an
effective way by means of a lower bound for linear combinations of logarithms of
algebraic numbers.

T 6. Let K be a number field and let α ∈ K. There exists an effectively
computable constant κ3 > 0 such that, for any unit ε ∈ Z×K and any rational number
p/q with εα , p/q, ∣∣∣∣∣εα − p

q

∣∣∣∣∣ ≥ (log( ε + 2))−κ3 log max{|p|,q,2}. (4)

We will easily deduce Theorem 6 as a consequence of [7, Proposition 9.21], but we
can also deduce it from [1, Theorem 4.1] with an explicit value for κ4. At the same
time we notice that Theorem 6 can be generalized to groups of S -units of a number
field in place of Z×K , which amounts to replacing Z×K by any finitely generated subgroup
of the multiplicative group of a fixed number field.
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P 7. Let m and D be positive integers. There exists an effectively computable
positive number κ4 depending only on m and D with the following property. Let
λ1, . . . , λm be logarithms of algebraic numbers; define α j = exp(λ j) (1 ≤ j ≤ m).
Assume that the degree of the number field Q(α1, . . . , αm) over Q is at most D. Let
b1, . . . , bm be rational integers, not all of which are zero. Further, let B, A1, . . . , Am

be positive real numbers. Assume that

log A j ≥max{h(α j), |λ j|, 1} (1 ≤ j ≤ m)

and
B ≥max{|b1|, . . . , |bm|, e}.

Assume further that the number

Λ := b1λ1 + · · · + bmλm

is nonzero. Then

|Λ| > exp{−κ4(log B)(log A1) · · · (log Am)}.

The following auxiliary lemma will also be used in the proof of Theorem 6.

L 8. Let K be a number field of degree d = r1 + 2r2 and unit group of rank
r = r1 + r2 − 1, where r1 is the number of real embeddings of K into R and r2 is the
number of pairs of nonreal embeddings of K into C. Let ε1, . . . , εr be a basis of the
torsion-free part of the group of units Z×K of K. Then there is a constant κ8 > 0 such
that, for any unit ε of K written as

ε = ζεb1
1 · · · ε

br
r

where ζ is a root of unity in K and b1, . . . , br are rational integers,

max{|b1|, . . . , |br |} ≤ κ8 log ε . (5)

P  L 8. Consider the logarithmic embedding λ of K× in Rr1+r2 given by

λ(α) = (log |σi(α)|)1≤i≤r1+r2 ,

where σ1, . . . , σr1 are the real embeddings of K into R and σr1+1, . . . , σr1+r2 are the
pairwise nonconjugate nonreal embeddings of K into C. Denote by ‖ · ‖1 the sup norm
on Rr1+r2 , so that, for α ∈ K×,

‖λ(α)‖1 = log α .

The image of Z×K under λ is a lattice in the hyperplane H of equation

x1 + · · · + xr1 + 2xr1+1 + · · · + 2xr1+r2 = 0.
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A basis of H is B = {λ(ε1), . . . , λ(εr)}. We denote by ‖ · ‖2 the sup norm on H with
respect to the basis B. For ε ∈ Z×K written as

ε = ζεb1
1 · · · ε

br
r ,

where ζ is a root of unity in K and b1, . . . , br are rational integers,

‖λ(ε)‖2 = max{|b1|, . . . , |br |}.

Lemma 8 follows from the equivalence of the norm ‖ · ‖2 and the restriction to H of
the norm ‖ · ‖1. More explicitly, we deduce (5) by looking at the absolute values of the
numbers bi obtained via Cramer’s formulas for the solutions of the system of linear
equations

b1 log |σ j(ε1)| + · · · + br log |σ j(εr)| = log |σ j(ε)| ( j = 1, . . . , r1 + r2),

which has rank r since the regulator of K does not vanish. �

P  T 6. The estimate (4) we want to prove is trivial in the case∣∣∣∣∣εα − p
q

∣∣∣∣∣ ≥ |p|2q
,

hence we may assume that the number γ := εαq/p satisfies

0 < |γ − 1| < 1
2 ,

and so the principal value λ0 of the logarithm of γ satisfies (see [7, Exercise 1.1.b])

0 < |λ0| < 2|γ − 1|. (6)

Let ε1, . . . , εr be a basis of the torsion-free part of the group Z×K of units of K. Write

ε = ζεb1
1 · · · ε

br
r

where ζ is a root of unity in K and b1, . . . , br are rational integers. For 1 ≤ j ≤ r, select
a logarithm log ε j of ε j, and set

λr+1 = λ0 − b1 log ε1 − · · · − br log εr,

so that eλr+1 = ζαq/p. We use Proposition 7 with m = r + 1, λ j = log ε j for 1 ≤ j ≤ r
and br+1 = 1. The number κ4 is a constant depending only on α and K, and we may
choose for A1, . . . , Ar constants which also depend only on α and K. Moreover, for
Ar+1 and B, we take

Ar+1 = κ5 max{|p|, q, 2} and B = κ6 log( ε + 1),

where again κ5 and κ6 are constants depending only on α and K. The upper bound for
max{|b1|, . . . , |br |} follows from Lemma 8. We deduce that there exists a constant κ7,
depending only on α and K, such that

|λ0| = |b1 log ε1 + · · · + br log εr + λr+1| ≥ exp{−κ7(log B) log max{|p|, q, 2}}. (7)

The result easily follows from (6) and (7). �
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5. Comparison with a result of Corvaja and Zannier

Denote by ‖ · ‖ the distance to the nearest integer: for x ∈ R,

‖x‖ := min
n∈Z
|x − n|.

Let Q denote the field of complex numbers which are algebraic over Q. Following [2],
call a (complex) algebraic number ξ a pseudo-Pisot number if:

(i) |ξ| > 1 and all its conjugates have (complex) absolute value strictly less than 1;
(ii) ξ has integral trace TrQ(ξ)/Q(ξ) ∈ Z.

The main theorem of Corvaja and Zannier [2], whose proof also rests on Schmidt’s
subspace theorem, can be stated as follows.

T 9. Let Γ ⊂Q
×

be a finitely generated multiplicative group of algebraic
numbers, let α ∈Q

×
be a nonzero algebraic number and let η > 0 be fixed. Then there

are only finitely many pairs (q, ε) ∈ Z × Γ with δ = [Q(ε) : Q] such that |αqε| > 1, αqε
is not a pseudo-Pisot number and

0 < ‖αqε‖ <
1

eηh(ε)qδ+η
. (8)

The special case ε = 1, δ = 1 of Theorem 9 is a Roth-type estimate. The proof
we gave in Section 3 relies on our result on Diophantine equations in [3], which
is a consequence of Schmidt’s subspace theorem, while the proof of Corvaja and
Zannier in [2] uses Schmidt’s fundamental result on linear forms in algebraic numbers
directly. It is likely that an improvement of our result could be achieved by adapting
the arguments of [2], so one would expect to obtain a refinement of our conclusion
which would also include the statement of Theorem 9.

However, it turns out that in some very particular cases, Theorem 9 is weaker than
Liouville’s estimate (Proposition 1), hence weaker than our Theorem 3. Here is an
example. Assume in Theorem 9 that Γ is the group of units Z×K of a number field K of
degree d = δ and that α ∈ K. In this special case, for ε ∈ Z×K , we may replace log ε by
h(ε) without spoiling the result, since

log ε ≤ h(ε) ≤ d log ε .

Hence Theorem 9 implies that for any η > 0, there are only finitely many pairs
(q, ε) ∈ Z × Z×K such that |αqε| > 1, αqε is not a pseudo-Pisot number and

0 < ‖αqε‖ <
1

ε ηqd+η
.

In other words, if |αqε| > 1 and αqε is not a pseudo-Pisot number, then for all pairs
(q, ε) ∈ Z × Z×K , except for finitely many of them,

‖αqε‖ ≥
1

ε ηqd+η
. (9)
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It may be observed that a more concise form of this statement is

lim inf
d log q + log ‖αqε‖

log q + log ε
≥ 0 as max{q, ε } −→ +∞,

where (q, ε) ∈ Z × Z×K with |αqε| > 1 and αqε being not a pseudo-Pisot number.
In the case where the pairs (q, ε) belong to a set in which ε d−1q−1 is bounded from

above, (9) is weaker than the lower bound

(q ε )d−1‖qαε‖ ≥ κ1

given by Liouville’s inequality (Proposition 1), hence it is weaker than the result which
one deduces from Theorem 3.

For the comparison with (4), let us consider a set of pairs (q, ε) in which
(log |ε|)(log q)−1 is bounded from above by a positive constant and at the same time
log ε (log q)−1(log log q)−1 is bounded from below by a positive constant. In this case
one deduces from Theorem 6 that

‖αqε‖ ≥ exp{−κ5(log log( ε + 2)) log max{|qε|, 2}}

where κ5 is an effectively computable constant depending only on α and K. Hence in
this special case, the lower bound for ‖αqε‖ which we deduce from (4) is a power of
log( ε ), while Theorem 9 yields a weaker lower bound, namely a power of ε . Thus
Theorem 3 sometimes yields sharper estimates than Theorems 6 and 9 when q is large,
Theorem 6 is effective and may be sharper than Theorems 3 and 9 when ε is large,
while Theorem 9 is most often sharper than Theorems 3 and 6 for an intermediate
range. However, we emphasize the fact that Theorem 9 has a wider scope, even if it
sometimes happens to be less strong than other results.

We conclude with two selected examples in which we take α = 1.

E 10. Consider a cubic number field K with group of units of rank one and let
ε0 > 1 be the fundamental unit, so that Z×K = {1, −1} × 〈ε0〉 and ε0 = ε0. Theorem 3
states that for any κ > 0, there are only finitely many (n, q) ∈ N2 such that

‖qεn
0‖ ≤

κ

ε2n
0 q2

.

This means that the function

(q, n) 7−→ ε2n
0 q2‖qεn

0‖

tends to infinity as max{q, n} tends to infinity. Liouville’s inequality (Proposition 1)
gives only a lower bound for ε2n

0 q2‖qεn
0‖with an explicit positive constant. The equality

(8) cannot be used because qεn
0 is a pseudo-Pisot number. The conclusion of Theorem 6

is
‖qεn

0‖ ≤ n−κ6nq−κ6 log n

for n ≥ 2, which is weaker than the estimates that we deduced from Theorem 3.
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For an explicit example, let D be an integer greater than 1 and let ω =
3
√

D3 − 1 > 1.
The fundamental unit greater than 1 of the cubic field Q(ω) is ε0 = 1/(D − ω) =

D2 + Dω + ω2 (see [6]).

E 11. Let K be a number field of degree d. Assume that there are two
independent real units ε2 > ε1 > 1 in K. Since ε1, ε2 are multiplicatively independent,
the numbers log ε1, log ε2 are linearly independent over Q, hence Z log ε1 + Z log ε2 is
a dense subgroup of R and therefore the multiplicative subgroup of R×+ generated by ε1,
ε2 is dense. Hence there exists a sequence of units εn = εan

1 ε
−bn
2 such that 1/2 ≤ εn ≤ 2.

The numbers an and bn are positive integers which tend to infinity. Since

|log εn| = |an log ε1 − bn log ε2| ≤ log 2,

the limit of the sequence an/bn is (log ε2)/(log ε1). For instance, one can take for an/bn

the convergents of the continued fraction expansion of (log ε2)/(log ε1). The sequences

( log εn

an log ε1

)
n≥1

and
( log εn

bn log ε2

)
n≥1

converge to the positive limit

max
σ:K→C

( log |σε1|

log ε1
−

log |σε2|

log ε2

)
.

For n sufficiently large, we have εn ≥ ee. Liouville’s inequality from Proposition 1 is

(q εn )d−1‖qεn‖ ≥ κ1,

and Theorem 3 yields

(q εn )d−1‖qεn‖ −→ +∞ as max{q, n} −→ +∞,

while Theorem 6 gives the lower bound

‖qεn‖ ≥ exp{−κ7(log log εn ) log max{q, 2}},

and Theorem 9 yields

lim inf
d log q + log ‖qεn‖

log q + log εn
≥ 0

as max{q, n} −→ +∞ with qεn being not a pseudo-Pisot number. Hence Theorem 6 is
sharper, when n is large, than the estimate which one deduces from Theorem 3 and
than the estimate which one deduces from Theorem 9.
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For an explicit example, let D be an integer greater than 1 and let ω =
4
√

D4 − 1 > 1.
A pair of independent units of the biquadratic number field Q(ω) is (see [5])

ε1 = D2 + ω2 =
1

D2 − ω2
and ε2 =

1
D − ω

= D3 + D2ω + Dω2 + ω3.
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