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Abstract

We consider the following stochastic model for a mobile service scenario. Consider a
stationary Poisson process in R

d , with its points radially ordered with respect to the origin
(the anchor); if d = 2, the points may correspond to locations of, e.g. restaurants. A user,
with a location different from the origin, asks for the location of the first Poisson point and
keeps asking for the location of the next Poisson point until the first time that he/she can
be completely certain that he/she knows which Poisson point is his/her nearest neighbour.
This waiting time is the communication cost, while the inferred privacy region is a random
set obtained by an adversary who only knows the anchor and the points received from
the server, where the adversary ‘does the best’ to infer the possible locations of the user.
Probabilistic results related to the communication cost and the inferred privacy region
are established for any dimension d ≥ 1. Furthermore, special results when d = 1 and
particularly when d = 2 are derived.
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1. Introduction

The mobile Internet offers services that, e.g. receive the location of the nearest point of
interest such as a store, restaurant, or tourist attraction; see [9] and the references therein. This
paper demonstrates that tools from applied probability and in particular stochastic geometry
can be useful when analysing the performance of such services.

In this paper we consider a setting for a mobile service protocol proposed in [9], where a user
is located at a point q ∈ R

d and a stationary Poisson point process � = {X1, X2, . . .} ⊂ R
d

is given; for the problem setting in [9], d = 2 and the points in � may, e.g. correspond to the
locations of stores. In order to preserve some privacy, the user queries a server for nearby points
in � but he/she reports not his/her correct location q but another location q ′ ∈ R

d referred to as
the anchor. An incremental query processing on the server is used so that the points X1, X2, . . .

are ordered in increasing distance to the anchor. The user then stops to query the server as soon
as possible, i.e. when the nearest point in � with respect to q can be determined. The waiting
time for this to happen is called the communication cost and is denoted by M . Another object of
interest is the inferred privacy region, which is a random set R ⊂ R

d obtained by an adversary
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who knows only the location of the anchor and the points received from the server, where the
adversary ‘does the best’ to infer the possible locations of the user. The precise definitions of
M and R are given in Sections 2 and 3, respectively.

The assumption that � is a stationary Poisson process is motivated by the fact that this is
the most fundamental spatial point process model in stochastic geometry, and it often serves
as a natural starting point for statistical analysis; see, e.g. [1], [4], and [8]. Our objective is to
analyse the distribution of M and various properties of R, where we exploit the independence
properties of the Poisson process to derive analytical results; for other point process models,
Monte Carlo simulations will probably be needed. In Section 2, the distribution and moments
for M are derived in detail. In Section 3 we describe first the geometric properties of R, and
then establish results related to the probability that R contains a given point in R

d and the
expected value of V , where V = |R| is the d-dimensional volume of the inferred privacy
region.

2. The communication cost

2.1. Preliminaries

2.1.1. Assumptions. Throughout the sequel, it may be assumed without loss of generality that
q ′ = o, the origin in R

d ; we will keep using the notation q ′ in order to remind the reader that
this refers to the anchor. Denote by l = ‖q − q ′‖ the distance between the anchor and the user
location, and by Ri = ‖Xi − q ′‖ the distance of Xi to the anchor. The case where l = 0 turns
out to be trivial since � is a stationary Poisson process, so we assume that l > 0. Any point Xi

in � is a random variable, and we order the points in � such that 0 ≤ R1 ≤ R2 ≤ · · · . Note
that these inequalities are strict almost surely. Denote by Z the nearest neighbour to q among
X1, X2, . . .. For i = 1, 2, . . ., let Qi be the nearest neighbour to q among the first i points
X1, . . . , Xi , and set Di = ‖q −Qi‖ (so Z and Qi are almost surely uniquely defined). Denote
by

B(x, r) = {y ∈ R
d : ‖y − x‖ ≤ r}

the closed ball in R
d with centre x ∈ R

d and radius r ≥ 0. Let | · | denote the volume (Lebesgue
measure) in R

d , and let

ωd = |B(0, 1)| = πd/2

�(1 + d/2)

be the volume of the d-dimensional unit ball, where � is the gamma function. Finally, denote
by ρ > 0 the intensity of � and define

α = (ρ|B(0, l)|)1/d = (ωdρ)1/d l.

2.1.2. Definition of the communication cost. Denote by N = {1, 2, . . .} the set of positive
integers. For i ∈ N, define the demand space by Di = B(q, Di) and the supply space
by Si = B(q ′, Ri). Then (Di )i∈N is decreasing, (Si )i∈N is increasing, and we define the
communication cost as the discrete random variable M given by the first time the demand space
is included in the supply space, that is,

M = inf{i ∈ N : Di ⊆ Si} (1)

(setting inf ∅ = ∞). See Figure 1. In other words, for any m ∈ N, M = m if m is the first time
the user can be completely ensured that Z = Qm when he/she has only received X1, . . . , Xm

from the server, i.e. no matter where the points Xm+1, Xm+2, . . . could potentially be located
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Figure 1: A planar example (d = 2) with M = 3, showing the corresponding demand space D3 and
supply space S3. Note that D2 = D3 and Z = Q2 = Q3.

in R
d \ B(q ′, Rm). Note that M is almost surely finite (this is verified in Lemma 1 below), in

which case
Z = QM (2)

is returned as the nearest neighbour to q.

2.2. Results

For d ≥ 2, we can exclude certain events of zero probability and thereby simplify the
meaning of M and Z as stated in the following lemma.

Lemma 1. For d ≥ 2, with probability 1, M is finite and given by the smallest integer m ≥ 2
such that Dm−1 is a strict subset of Sm, and

Z = QM = QM−1, DM = DM−1, RM ≥ l.

Proof. Clearly, by (1), RM ≥ l. Since M = 1 implies that X1 lies on the half-line H with
endpoint q and direction q − q ′, and this happens with probability 0, we have, almost surely,
M ≥ 2. Furthermore, with probability 1, for m ∈ {2, 3, . . .}, M = m implies that Qm 
= Xm

because Qm = Xm would imply that Xm ∈ H , which happens with probability 0. Moreover,
with probability 1, the sequence R1, R2, . . . is strictly increasing to ∞, and so the sequence of
supply spaces S1 ⊂ S2 ⊂ · · · tends to R

d . On the other hand, the sequence of demand spaces
decreases. Combining these facts with (1) and (2), the assertions of the lemma are seen to be
true.

Let T = ‖Z − q‖ be the distance from the user to its nearest point in �, and let � =
� ∩ [B(q ′, T + l) \ B(q, T )] be the restriction of � to the random set B(q ′, T + l) \ B(q, T ).
Let N denote the number of points in �, and set S = ωdρT d and

� = ρ|B(q ′, l + T ) \ B(q ′, T )| = (α + S1/d)d − S =
d−1∑
i=0

(
d

i

)
αd−iSi/d . (3)

Since � is a Poisson process, then

(i) S is exponentially distributed with parameter 1;

(ii) conditional on Z, � \ B(q, T ) is a homogeneous Poisson process on R
d \ B(q, T ) with

intensity ρ, and � is a homogeneous Poisson process on B(q ′, T + l) \ B(q, T ) with its
mean number of points equal to �;
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(iii) in the special case d = 1, the event Z = XM is equivalent to the event that Z − q has the
same sign as q − q ′, so P(Z = XM) = 1

2 , and if Z = XM then N = M − 1 and � =
{X1, . . . , XM−1}, while if Z 
= XM then N = M − 2 and � = {X1, . . . , XM−1} \ {Z};

(iv) for d ≥ 2, with probability1, N = M −2 and � = {X1, . . . , XM−1}\ {Z}; cf. Lemma 1.

These results are now used to obtain the distribution of N (or, equivalently, M), where Po(α)

denotes the Poisson distribution with parameter α.

Theorem 1. (a) For d = 1, N is independent of Z and follows Po(α),

P(M = 1) = e−α

2
, P(M = m) =

(
αm−1

(m − 1)! + αm−2

(m − 2)!
)

e−α

2
, m = 2, 3, . . . , (4)

and M has mean and variance

E(M) = α + 3
2 , var(M) = α + 1

4 , (5)

with α = 2ρl.

(b) For d = 2,

P(M = m) =
∫ ∞

0

(α2 + 2α
√

s)m−2

(m − 2)! e−(α2+2α
√

s+s) ds, m = 2, 3, . . . , (6)

and
E(M) = α2 + √

πα + 2, var(M) = (5 − π)α2 + √
πα, (7)

with α = √
πρ l.

(c) For d ≥ 2, M − 2 conditional on Z follows Po(�), and

E(M) = 2 +
d−1∑
i=0

(
d

i

)
αd−i�

(
1 + i

d

)
, (8)

var(M) =
d−1∑
i=0

(
d

i

)
αd−i�

(
1 + i

d

)

+
d−1∑
i=1

d−1∑
j=1

(
d

i

)(
d

j

)
α2d−i−j

[
�

(
1 + i + j

d

)
− �

(
1 + i

d

)
�

(
1 + j

d

)]
. (9)

(d) For d ≥ 1 and any number β, E(Mβ) < ∞.

Proof. If d = 1, since � = α is then deterministic, (ii) implies that N is independent of Z

and follows Po(α). Hence, (iii) easily implies (4) and (5), and so (a) follows.
If d ≥ 2 then, by (ii), N conditional on Z follows Po(�), and, by (iv), M = N + 2, so

E(M) = 2 + E(�) and

var(M) = var(N) = E(var(N | �)) + var(E(N | �)) = E(�) + var(�).

Combining this with (3) and the fact that, by (i), E(Sβ) = �(β + 1) for β > −1, we find,
after a straightforward calculation, that (8) and (9) hold for d ≥ 2, where (7) is the case with
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d = 2. Then (6) immediately follows by combining (3), (i), and the fact that N conditional on
S follows Po(�). Thereby, (b)–(c) are verified.

For β ≤ 0, Mβ ≤ 1, and so (d) clearly holds. For β > 0, (d) follows immediately from (a)
if d = 1, and from (c) and (3) if d ≥ 2, using again the fact that E(Sβ) = �(β + 1). Hence,
(d) is verified.

Suppose that d = 2, and let erf(α) = (2/
√

π)
∫ α

0 exp(−t2) dt be the ‘error function’. Then
(6) gives

P(M = 2) = exp(−α2) + α
√

π(erf(α) − 1),

which strictly decreases from 1 to 0 as α increases from 0 to ∞. We have also evaluated the
integral in (6) for m = 3, 4, . . . using the computational software program MAPLE®, but,
since the number of terms increases fast as m increases, we omit the results here. By (3) and
Theorem 1(c), M − 2 conditional on S follows Po(α2 + 2α

√
S). Hence, as α → ∞, M/α − α

converges in distribution to a mixture of normal distributions with mean 2
√

S and unit variance.

3. The inferred privacy region

3.1. Preliminaries

3.1.1. Definition of the inferred privacy region. Suppose that an adversary knows the location
q ′ of the anchor, the termination conditions (1)–(2), the termination time M , and the points
X1, . . . , XM received from the server, while the location q of the user is unknown to him/her.
If the adversary then wants to infer the possible locations of q, the best the adversary can do is
to estimate q to be contained in the inferred privacy region which is a random set R specified
below.

Consider the Voronoi tessellation of R
d generated by {X1, . . . , XM}, with cells

Ci = {x ∈ R
d : ‖x − Xi‖ ≤ ‖x − Xj‖, j = 1, . . . , M}, i = 1, . . . , M.

The Voronoi cells have disjoint interiors with boundaries of zero volume (with respect to
Lebesgue measure in R

d ), and, with probability 1, they are d-dimensional sets [3], [5]. Note
that B(x, ‖x − Xi‖) ⊆ B(q ′, r) if and only if ‖x − q ′‖ + ‖x − Xi‖ ≤ r . Consequently, if
M ≥ 2 and i ∈ {1, . . . , M − 1}, the set

Ei = {x ∈ Ci : RM−1 < ‖x − q ′‖ + ‖x − Xi‖ ≤ RM} (10)

consists ‘essentially’ of all possible locations x of the user such that Xi is returned under the
termination conditions as the nearest neighbour to x. By ‘essentially’ we mean that if x is on
the boundary of Ci so that x ∈ Cj for some j < i, then Xi would not have been returned,
but the set of such points x has zero volume and, as argued in comment (E) below, it plays no
important role but is just convenient that we have included such points in Ei . Moreover, the set
of all possible locations x ∈ CM \ ⋃M−1

i=1 Ci of the user is given by

EM = [q ′, XM ] \
M−1⋃
i=1

Ci, (11)

where [q ′, XM ] is the closed line segment with end points q ′ and XM , and we set
⋃M−1

i=1 Ci = ∅

if M = 1. The inferred privacy region is therefore given by

R =
M⋃
i=1

Ei. (12)
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Figure 2: A planar inferred privacy region R (the solid lines except those on the boundary of the square)
defined by M = 16 points (the triangles marked 1, . . . , 16), and the anchor q ′. The Voronoi tessellation
with nuclei X1, . . . , XM is shown as dashed lines. Also, the user location q is shown, but the inferred

privacy region is unchanged if any other point in R had been the location of the user.

Figure 2 shows an example of R when d = 2 and the Poisson points are generated by the
conventional radial simulation algorithm due to Quine and Watson [6].

3.1.2. Comments. Some remarks are in order.

(A) If M = 1 then simply R = EM = [q ′, XM ].
(B) If 1 ≤ i ≤ M − 1 then by (10), Ei = Ci ∩ (Fi \ Gi), where Fi and Gi are the ellipsoidal

regions with foci q ′ and Xi , such that any point on the boundary has its sum of distances
to the foci equal to RM and RM−1, respectively (see cells 1, . . . , 15 in Figure 2). As
illustrated in Figure 2, Ei can be a connected set (see, e.g. cell 1) or a disconnected set
(see cell 9) or the empty set (see, e.g. cell 3), GM−1 = [q ′, XM−1] is a closed line segment
(see cell 15), while, for 1 ≤ i ≤ M − 2, Fi and Gi are almost surely of dimension d.

(C) If M ≥ 2 then EM is the line segment given by the intersection of [q ′, XM ] and the
interior of CM (see cell 16 in Figure 2); cf. (11).

(D) If d ≥ 2, EM has zero d-dimensional volume, and the adversary could exclude both the
possibility that M = 1 and the possibility that XM is the nearest point in � to the user,
since the event that M = 1 or x ∈ [q, XM ] has probability 0.

(E) Recalling the considerations in connection to (10) concerning the boundary points of the
Voronoi cells, note that R = ⋃M

i=1 E′
i , where E′

i = Ei \ ⋃i−1
j=1 Cj is exactly the set of all
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possible locations x of the user such that Xi is returned under the termination conditions
as the nearest neighbour to x (setting

⋃i−1
j=1 Cj = ∅ if i = 1). Clearly, Ei \ E′

i has zero
volume.

3.2. Representation formula

The volume of the inferred privacy region, V = |R|, is a ‘measure of privacy’ with mean
value

E(V ) =
∫

p(x) dx, (13)

where, for any location x ∈ R
d ,

p(x) = P(x ∈ R)

is the probability that x is in the inferred privacy region. Writing Z = q + T U , then U is
a uniformly distributed unit vector in R

d , T and U are independent, and T d is exponentially
distributed with rate ρωd , so Z has density function

f (z) = ρ exp(−ρωd‖z − q‖d). (14)

Our strategy is first to determine the conditional probability

p(x | z) = P(x ∈ R | Z = z),

second to calculate

p(x) =
∫

p(x | z)f (z) dz, (15)

and, finally, to obtain E(V ) from (13).
In the remainder of this paper, we focus on the case d ≥ 2. Theorem 2 below establishes

an expression for p(x | z); similar techniques apply in the special case d = 1, but the details
are then somewhat more complicated since we have to account for each of the cases where
Z = XM and Z 
= XM ; cf. (iii) (above Theorem 1).

Let 1[·] denote the indicator function. For x, y ∈ R
d and r, s, t ≥ 0, define

c(r, s, t) = |B(x, s) ∩ B(y, t)| if r = ‖x − y‖
and

p(x, y, t) = 1[‖x − q ′‖ + ‖y − x‖ ≥ t + l]
× exp(−ρ{ωd [(‖x − q ′‖ + ‖y − x‖)d − (t + l)d ]

− c(‖x − q ′‖, t + l, ‖y − x‖) + c(‖x − q‖, t, ‖y − x‖)})
+ 1[‖x − q ′‖ + ‖y − x‖ < t + l]

× exp(−ρ{ωd [(t + l)d − td − (‖x − q ′‖ + ‖y − x‖)d + ‖y − x‖d ]
+ c(l, t, ‖x − q ′‖ + ‖y − x‖) − c(‖x − q‖, t, ‖y − x‖)}). (16)

Note that c(r, s, t) = 0 if r ≥ s + t or s = 0 or t = 0, and c(r, s, t) = ωd min{sd, td} if r = 0.
If d = 2, r < s + t , and r, s, t > 0, then

c(r, s, t) = s2 arccos

(
r2 + s2 − t2

2rs

)
− r2 + s2 − t2

4r2 [4r2s2 − (r2 + s2 − t2)2]1/2

+ t2 arccos

(
r2 + t2 − s2

2rt

)
− r2 + t2 − s2

4r2 [4r2t2 − (r2 + t2 − s2)2]1/2.
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Theorem 2. For d ≥ 2 and x, z ∈ R
d , letting t = ‖z − q‖, then

p(x | z) = p(x, z, t)

+ ρ

∫
1[y ∈ B(q ′, t + l) \ B(q, t),

z ∈ B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖)]p(x, y, t) dy. (17)

Proof. We start by verifying that

p(x, y, t) = p1(x, y, t)p2(x, y, t), (18)

where
p1(x, y, t) = exp(−ρωd max{0, (‖x − q ′‖ + ‖y − x‖)d − (t + l)d})

and

p2(x, y, t)

= exp(−ρ|{B(q ′, t + l) \ B(q, t)} \ {B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖)}|).
Note that

p1(x, y, t)p2(x, y, t) = 1[‖x − q ′‖ + ‖y − x‖ ≥ t + l]p1(x, y, t)p2(x, y, t)

+ 1[‖x − q ′‖ + ‖y − x‖ < t + l]p2(x, y, t). (19)

If ‖x − q ′‖ + ‖y − x‖ ≥ t + l then B(q, t) ⊆ B(q ′, t + l) ⊆ B(q ′, ‖x − q ′‖ + ‖y − x‖), and
so

p2(x, y, t) = exp(−ρ[c(‖x − q ′‖, t + l, ‖y − x‖) − c(‖x − q‖, t, ‖y − x‖)]). (20)

If ‖x − q ′‖+‖y − x‖ < t + l then B(x, ‖y − x‖) ⊆ B(q ′, ‖x − q ′‖+‖y − x‖) ⊆ B(q ′, t + l)

and B(q, t) ⊆ B(q ′, t + l), and so if Ac = R
d \ A denotes the complement of a set A ⊆ R

d ,

|{B(q ′, t + l) \ B(q, t)} \ {B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖)}|
= |B(q ′, t + l) ∩ B(q, t)c ∩ [B(q ′, ‖x − q ′‖ + ‖y − x‖)c ∪ B(x, ‖y − x‖)]|
= |B(q ′, t + l) ∩ B(q, t)c ∩ B(q ′, ‖x − q ′‖ + ‖y − x‖)c|

+ |B(q ′, t + l) ∩ B(q, t)c ∩ B(x, ‖y − x‖)|
= [|B(q ′, t + l)| − |B(q, t)| − |B(q ′, ‖x − q ′‖ + ‖y − x‖)|

+ |B(q, t) ∩ B(q ′, ‖x − q ′‖ + ‖y − x‖)|]
+ [|B(x, ‖y − x‖)| − |B(q, t) ∩ B(x, ‖y − x‖)|]. (21)

Now, (18) follows from (16) and (19)–(21).
Denote by Z(x) the almost surely unique nearest point to x in {X1, . . . , XM} = �∪{Z, XM}

(so Z(q) = Z). By (10)–(12) and (D) in Section 3.1.2,

P(x ∈ R | Z) = P(Z = Z(x), RM−1 < ‖x − q ′‖ + ‖Z − x‖ ≤ RM | Z)

+ E

( N∑
i=1

1[Xi = Z(x), RM−1 < ‖x − q ′‖ + ‖Xi − x‖ ≤ RM ]
∣∣∣∣ Z

)
.

(22)
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By (iv) (above Theorem 1), with probability 1,

Z = Z(x) ⇐⇒ [� ∪ {XM}] ∩ B(x, ‖Z − x‖) = ∅.

Conditional on Z, Rd
M − (T + l)d is exponentially distributed and independent of �; cf. (ii)

(above Theorem 1). Therefore, ignoring the null set where

‖Z − q ′‖ = ‖x − q ′‖ + ‖Z − x‖

(i.e. ‖Z − q ′‖ < ‖x − q ′‖ + ‖Z − x‖ almost surely),

P(Z = Z(x), RM−1 < ‖x − q ′‖ + ‖Z − x‖ ≤ RM | Z)

= P(‖x − q ′‖ + ‖Z − x‖ ≤ RM, XM 
∈ B(x, ‖Z − x‖) | Z)

× P(� ⊂ B(q ′, ‖x − q ′‖ + ‖Z − x‖) \ B(x, ‖Z − x‖) | Z)

= p1(x, Z, T )p2(x, Z, T ), (23)

using in the last equality the fact that‖x−q ′‖+‖Z−x‖ ≤ RM implies thatXM 
∈ B(x, ‖Z−x‖),
since

B(x, ‖Z − x‖) ⊆ B(q ′, ‖x − q ′‖ + ‖Z − x‖).
Moreover,

E

( N∑
i=1

1[Xi = Z(x), RM−1 < ‖x − q ′‖ + ‖Xi − x‖ ≤ RM ]
∣∣∣∣ Z

)

= E

( N∑
i=1

1[[(� \ {Xi}) ∪ {Z, XM}] ∩ B(x, ‖Xi − x‖) = ∅,

(� \ {Xi}) ∪ {Z} ⊂ B(q ′, ‖x − q ′‖ + ‖Xi − x‖),
‖x − q ′‖ + ‖Xi − x‖ ≤ RM ]

∣∣∣∣ Z

)

= ρ

∫
1[y ∈ B(q ′, T + l) \ B(q, T ),

Z ∈ B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖)]
× P(‖x − q ′‖ + ‖y − x‖ ≤ RM, XM 
∈ B(x, ‖y − x‖) | Z)

× P(� ⊂ B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖) | Z) dy

= ρ

∫
1[y ∈ B(q ′, T + l) \ B(q, T ),

Z ∈ B(q ′, ‖x − q ′‖ + ‖y − x‖) \ B(x, ‖y − x‖)]
× p1(x, y | Z)p2(x, y | Z) dy, (24)

using in the second equality the Slivnyak–Mecke formula for the Poisson process � \ {Z}
conditional on Z [2], [7] (or see Theorem 3.2 of [4]), and using in the last equality a similar
argument as when we obtained the last equality in (23). Finally, from (22)–(24), we obtain (17).
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3.3. Equivariance and scaling properties

The following equivariance property (25) and scaling property (26) simplify things when
considering the distribution of R and in particular the distribution of V .

For any number s, d × d matrix O, and set A ⊆ R
d , define sA = {sa : a ∈ A}, A + q ′ =

{a + q ′ : a ∈ A}, and OA = {Oa : a ∈ A}. To stress the dependence of (�, q, q ′), write
R = R(�, q, q ′) and V = V (�, q, q ′). Let R(�, l) and V (�, l) denote the cases of R
and V when q ′ = o and q = u, where the first coordinate of u is l > 0 and the remaining
coordinates are 0. Furthermore, let ‘∼’ mean ‘is distributed as’. Then, if q − q ′ = Ou and O
is an orthonormal matrix,

R(�, q, q ′) ∼ OR(�, l) + q ′, V (�, q, q ′) ∼ V (�, l), (25)

since O�(� − q ′) ∼ �, where O� is the transpose of O. Therefore, without any loss of
generality, we can assume that q ′ = o and q = u.

Moreover, writing � = �ρ for the Poisson process on R
d with intensity ρ > 0, we can

make the coupling �ρ = ρ−1/d�1. Then

R(�ρ, l) = lR(�ρld , 1) = ρ−1/dR(�1, ρ
1/d l)

and
V (�ρ, l) = ldV (�ρld , 1) = ρ−1V (�1, ρ

1/d l), (26)

so, for the volume of the privacy region, it boils down to considering the distribution of either
V (�ρ, 1) for ρ > 0 (the case with l = 1) or V (�1, l) for l > 0 (the case with ρ = 1).

3.4. Numerical results

In this section we discuss some numerical results for p(x) and E(V ).
Recall that p(x) is the probability that x belongs to the inferred privacy region. Clearly,

p(q) = 1 since q ∈ R. For x 
= q and fixed l, both p(x) and E(V ) approach 0 as ρ tends to ∞.
This follows by combining (13)–(15) and (16)–(17), and it is in accordance with the fact that,
as ρ → ∞, then ‖Z − q‖ → 0 almost surely, and so R tends to the empty set. It is interesting
to study how p(x) varies as a function of x when d = 2. In Figure 3 we plot the contours of
p(x) when ρ = 1 and l = 1. Observe that contours with high p(x) are located close to the
point q = (1, 0). Contours with low p(x) appear as circle-like shapes, with centre q ′ = (0, 0)

and in pairs, with radii below 1.0 and above 1.0, respectively. Figure 4 shows the contours of
p(x) when ρ = 10 and l = 1. This function resembles that of Figure 3, except that the region
with high p(x) is shrinked significantly.

Two methods are employed to evaluate E(V ) when d = 2. Again, we take q ′ = (0, 0)

and q = (l, 0). The first method is Monte Carlo, which executes 10 000 instances of the
conventional radial simulation algorithm from [6] for generating a stationary Poisson process
until the termination time M is determined. For each simulation, we estimate the area of V

by using a 100 × 100 square grid over the domain [−RM, RM ]2 which contains R. The
value of E(V ) is then estimated by the average area obtained from all simulations. The
second method is numerical integration, using the following setting when l = 1 and ρ =
1, 2, 5, 10, 20, 50, 100.

• The integral in (17) is computed using a 100 × 100 square grid in the region [−(t + l),

(t + l)]2. All possible points y such that the indicator function in (17) is equal to 1 must
be located inside such a region.
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Figure 3: Contours of p(x), when ρ = 1, l = 1, and d = 2.
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Figure 4: Contours of p(x), when ρ = 10, l = 1, and d = 2.

• The integral in p(x) = ∫
p(x | z)f (z) dz is computed using a 100 × 100 square grid in

the region [−3l, 3l]2. In fact, p(x) is effectively 0 outside this region and seemingly only
limited value is lost even though the full space R

2 is not used as the domain for numeric
integration.

• For ρ = 1, 2, 5, 10, 20, 50, the integral in E(V ) = ∫
p(x) dx is computed using a 100 ×

100 square grid in the region [−3l, 3l]2. As above, only limited value is lost when
[−3l, 3l]2 is used as the bounding region. For ρ = 100, after first using the same
method and comparing with the Monte Carlo estimate, we found it appropriate to use
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Figure 5: Evaluation of E(V ).

polar coordinates (θ, r) for x and a 100 × 100 square grid for (θ, r) in the domain
[0, 2π) × [0.75, 1.25). Outside this domain p(x) is almost 0.

Figure 5(a) shows E(V ) as a function of ρ when l = 1 and d = 2. Observe that the value
obtained by numerical integration is close to the corresponding value obtained by Monte Carlo.
For ρ = 100, the difference between the values obtained by numerical integration and Monte
Carlo becomes more visible (the estimates of E(V ) when (ρ, l) = (100, 1), obtained using a
square grid for respective x and polar coordinates for x, are respectively 0.0160 and 0.0182
as compared to the Monte Carlo estimate 0.0176). Figure 5(a) suggests that E(V ) is a strictly
decreasing convex function of ρ.

In Figure 5(b) we plot E(V ) as a function of l when ρ = 1 and d = 2. This plot is just
obtained from the results in Figure 5(a) using (26), i.e. the fact that V (�1, l) ∼ ldV (�ld , 1).
Note that E(V ) appears to be an increasing concave function of l.
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