AN ORDERED SUPRABARRELLED SPACE

J. C. FERRANDO and M. LÓPEZ-PELLICER

(Received 3 August 1989)

Communicated by J. H. Rubinstein

Abstract

A locally convex space E is said to be ordered suprabarrelled if given any increasing sequence of subspaces of E covering E there is one of them which is suprabarrelled. In this paper we show that the space $m_{0}(X, \Sigma)$, where X is any set and Σ is a σ-algebra on X, is ordered suprabarrelled, given an affirmative answer to a previously raised question. We also include two applications of this result to the theory of vector measures.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 46 A 07; secondary 28 C 99.
Keywords and phrases: barrelled space, suprabarrelled space.

We denote by Σ a σ-algebra on a set X and for every A of Σ we set $e(A)$ to denote the characteristic function of A. Let $m_{0}(X, \Sigma)$ be the linear space over the field K of the real or complex numbers generated by $\{e(A): A \in \Sigma\}$ endowed with the topology defined by the norm $\|x\|=\sup \{|x(t)|, t \in X\}$. Given a member A of Σ, we denote by $m_{0}(A, \Sigma)$ the subspace of $m_{0}(X, \Sigma)$ generated by the functions $e(B)$ with $B \in \Sigma$ and $B \subset A$, and given a continuous linear form u over $m_{0}(X, \Sigma), u(A)$ stands for the restriction of u to $m_{0}(A, \Sigma)$ and $\|u(A)\|$ denotes the norm of $u(A)$. On the other hand, we set Γ to denote the family of all the finite dimensional subspaces of $m_{0}(X, \Sigma)$. If X coincides with the set \mathbb{N} of the positive integers and Σ denotes the σ-algebra 2^{N} of all the subsets of X, we write l_{0}^{∞} instead of $m_{0}\left(\mathbb{N}, 2^{N}\right)$. In the sequel, by "space" we mean "locally convex Hausdorff space over the field of the real or complex numbers." A space E is Baire-like

[^0][7] if given an increasing sequence of closed absolutely convex sets covering E there is one of them which is a neighbourhood of the origin. We call E suprabarrelled [9] if given an increasing sequence of subspaces of E covering E, one of them is Baire-like; and E is called ordered suprabarrelled [4] if given any increasing sequence of subspaces of E covering E there is one of them which is suprabarrelled. It is known that every barrelled dense subspace of a Baire-like space is Baire-like.

In [8], Valdivia shows that $m_{0}(X, \Sigma)$ is suprabarrelled and in [4] we asked if l_{0}^{∞} was an ordered suprabarrelled space. In fact, a positive answer to this question was already claimed in [6], but without giving any explicit proof. In this paper we actually show that the space $m_{0}(X, \Sigma)$ is ordered suprabarrelled. Our methods are in part based on those given in [8]. We have also included two applications of this result to the theory of vector measures.

Lemma 1. Let E be a linear subspace of $m_{0}(X, \Sigma)$ and let A be an element of Σ such that $m_{0}(A, \Sigma) \not \subset E+F$ for every $F \in \Gamma$. If $\{P, Q\}$ is a partition of A, with $P, Q \in \Sigma$, then either $m_{0}(P, \Sigma) \not \subset E+F$ for every $F \in \Gamma$ or $m_{0}(Q, \Sigma) \not \subset E+F$ for every $F \in \Gamma$.

Proof. If $m_{0}(P, \Sigma) \not \subset E+F$ for every $F \in \Gamma$, then we are done. If this is not the case, then there exists an $F_{1} \in \Gamma$ such that $m_{0}(P, \Sigma)$ is contained in $E+F_{1}$. This proves that $m_{0}(Q, \Sigma) \not \subset E+F$ for every $F \in \Gamma$ since if there exists an $F_{2} \in \Gamma$ such that $m_{0}(Q, \Sigma)$ is contained in $E+F_{2}$ and, a fortiori, in $E+F_{1}+F_{2}$, then given that $m_{0}(A, \Sigma)$ is the direct sum of $m_{0}(P, \Sigma)$ and $m_{0}(Q, \Sigma)$ it follows that $E+F_{1}+F_{2}$ does no contain $m_{0}(P, \Sigma)$, a contradiction.

Lemma 2. For any positive integer $p>1$, elements $x_{1}, x_{2}, \ldots, x_{r}$ of $m_{0}(X, \Sigma)$ and a linear subspace E of $m_{0}(X, \Sigma)$, if $A \in \Sigma$ is such that $m_{0}(A, \Sigma) \not \subset E+F$ for every $F \in \Gamma$, then there are p elements Q_{1}, Q_{2}, \ldots, Q_{p} of Σ, which are a partition of A, such that $e\left(Q_{i}\right) \notin\left\langle E \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\rangle$ for $i=1,2, \ldots, p$.

Proof. If $m_{0}(A, \Sigma) \not \subset E+F$ for every $F \in \Gamma$, there is a P_{1} of Σ contained in A such that $e\left(P_{1}\right) \notin\left\langle E \cup\left\{e(A), x_{1}, \ldots, x_{r}\right\}\right\rangle$ and therefore $e\left(A-P_{1}\right) \notin\left\langle E \cup\left\{e(A), x_{1}, \ldots, x_{r}\right\}\right\rangle$ as well. Since $\left\{P_{1}, A-P_{1}\right\}$ is a partition of A, applying Lemma 1 we have that either $m_{0}\left(P_{1}, \Sigma\right) \not \subset E+F$ for every $F \in \Gamma$ or $m_{0}\left(A-P_{1}, \Sigma\right) \not \subset E+F$ for every $F \in \Gamma$. In the first case we set $Q_{1}:=A-P_{1}$ and $B_{1}:=P_{1}$, and in the second $Q_{1}:=P_{1}$ and $B_{1}:=A-P_{1}$. So we have

$$
e\left(Q_{1}\right), e\left(B_{1}\right) \notin\left\langle E \cup\left\{x_{1}, \ldots, x_{r}\right\}\right\rangle
$$

and

$$
m_{0}\left(B_{1}, \Sigma\right) \not \subset E+F \quad \text { for every } F \in \Gamma .
$$

Replacing A by B_{1} in the former argument we obtain a partition of B_{1} in two elements $\left\{Q_{2}, B_{2}\right\}$ of Σ, such that

$$
e\left(Q_{2}\right), e\left(B_{2}\right) \notin\left\langle E \cup\left\{x_{1}, \ldots, x_{r}\right\}\right\rangle
$$

and

$$
m_{0}\left(B_{2}, \Sigma\right) \not \subset E+F \quad \text { for every } F \in \Gamma
$$

Continuing in this way, we obtain a partition of B_{p-2} in two elements $\left\{Q_{p-1}, B_{p-1}\right\}$ of Σ, such that

$$
e\left(Q_{p-1}\right), e\left(B_{p-1}\right) \notin\left\langle E \cup\left\{x_{1}, \ldots, x_{r}\right\}\right\rangle
$$

We set finally $Q_{p}:=B_{p-1}$.
For the next result we suppose as given a family $\left\{E_{n m}, n, m=1,2, \ldots\right\}$ of linear subspaces of $m_{0}(X, \Sigma)$, an element A which belongs to Σ, vectors $x_{1}, x_{2}, \ldots, x_{r}$ of $m_{0}(X, \Sigma), p$ positive integers $n(1)<n(2)<\cdots<n(p)$ and, for each $i \in\{1,2, \ldots, p\}, q(i)$ positive integers $m(i, 1)<m(i, 2)<$ $\cdots<m(i, q(i))$.

Lemma 3. Suppose first that $m_{0}(A, \Sigma) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when (n, m) takes the values $(n(i), m(i, j))$ with $i=1,2, \ldots, p$ and $j=1,2, \ldots, q(i)$. We also suppose that for each $i \in\{1,2, \ldots, p\}$ there are an infinity of positive integers $m>m(i, q(i))$ such that $m_{0}(A, \Sigma) \not \subset$ $E_{n(i) m}+F$ for every $F \in \Gamma$. Finally we suppose there are an infinity of positive integers $n>n(p)$ such that for each one of them, there are an infinity of natural values of m with $m_{0}(A, \Sigma) \not \subset E_{n m}+F$ for every $F \in \Gamma$. Under these conditions there exist $q(1)+q(2)+\cdots+q(p)$ pairwise disjoint elements $\left\{M_{i j}, i=1,2, \ldots, p, j=1,2, \ldots, q(i)\right\}$ of Σ contained in A such that

$$
e\left(M_{i j}\right) \notin\left\langle E_{n(i) m(i, j)} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\rangle
$$

for $i=1,2, \ldots, p$ and $j=1,2, \ldots, q(i)$. In addition we have that

$$
m_{0}\left(A-\bigcup\left\{M_{i j}, i=1,2, \ldots, p, j=1,2, \ldots, q(i)\right\}, \Sigma\right) \not \subset E_{n m}+F
$$

for every $F \in \Gamma$ when $(n, m)=(n(i), m(i, j)), i=1,2, \ldots, p$ and $j=1,2, \ldots, q(i)$, fixed i for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs $(n(i), m)$ of natural numbers with $m>m(i, q(i)), i=$ $1,2, \ldots, p$ and for every $F \in \Gamma$ when n takes infinitely many natural values greater than $n(p)$ and, for each one of those values of n, the second coordinate m takes in turn an infinity of natural values.

Proof. As $m_{0}(A, \Sigma) \not \subset E_{n(1) m(1,1)}+F$ for every $F \in \Gamma$, setting $s:=$ $q(1)+q(2)+\cdots+q(p)$ we apply Lemma 2 to find a partition of A in $p+s+2$ elements $\left\{Q_{1}, Q_{2}, \ldots, Q_{p+s+2}\right\}$ of Σ such that

$$
\begin{equation*}
e\left(Q_{i}\right) \notin\left\langle E_{n(1) m(1,1)} \cup\left\{x_{1}, \ldots, x_{r}\right\}\right\rangle \tag{1}
\end{equation*}
$$

for $i=1,2, \ldots, p+s+2$. On the other hand, as a consequence of Lemma 1 , there is some $i(1) \in\{1,2, \ldots, p+s+2\}$ such that $m_{0}\left(Q_{i(1)}, \Sigma\right) \not \subset$ $E_{n(1) m}+F$ for every $F \in \Gamma$ when m takes an infinity of values greater than $m(1, q(1))$. Similarly, there is some $i(2) \in\{1,2, \ldots, p+s+2\}$ with $m_{0}\left(Q_{i(2)}, \Sigma\right) \not \subset E_{n(2) m}+F$ for every $F \in \Gamma$ when m takes an infinity of values greater than $m(2, q(2))$. We continue in this way until we find some $i(p) \in\{1,2, \ldots, p+s+2\}$ such that $m_{0}\left(Q_{i(p)}, \Sigma\right) \not \subset E_{n(p) m}+F$ for every $F \in \Gamma$ when m takes an infinity of values greater than $m(p, q(p))$. Now, if n^{\prime} is the first natural number greater than $n(p)$ such that $m_{0}(A, \Sigma) \not \subset$ $E_{n^{\prime} m}+F$ for every $F \in \Gamma$ when m takes an infinity of values, again because of Lemma 1 there exists some $j \in\{1,2, \ldots, p+s+2\}$ with $m_{0}\left(Q_{j}, \Sigma\right) \not \subset$ $E_{n^{\prime} m}+F$ for every $F \in \Gamma$ when m takes an infinity more of values. Since there are infinitely many values of $n>n(p)$ having the property above, applying repeatedly Lemma 1 we obtain that there exists some $i(p+1) \in$ $\{1,2, \ldots, p+s+2\}$ such that $m_{0}\left(Q_{i(p+1)}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when n takes an infinity of values greater than $n(p)$ and, given each one of those values of n, the second coordinate of the pair (n, m) takes in turn an infinity of natural number values. Thus, if we set $Q_{0}:=\bigcup\left\{Q_{i(k)}, k=\right.$ $1,2, \ldots, p+1\}$, we have proved that $m_{0}\left(Q_{0}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when, for fixed $i,(n, m)$ is equal to an infinity of pairs $(n(i), m)$ with $m>m(i, q(i)), i=1,2, \ldots, p$, and for every $F \in \Gamma$ when n takes an infinity of values greater than $n(p)$ and, for each one of those values of n, m takes infinitely many values.

Reindexing the remainders Q_{i} we have that $\left\{Q_{0}, Q_{1}, \ldots, Q_{s+1}\right\}$ is a partition of A and so, using Lemma 1 again, we have that there is some $r(1) \in\{0,1,2, \ldots, s+1\}$ such that $m_{0}\left(Q_{r(1)}, \Sigma\right) \not \subset E_{n(1) m(1,1)}+F$ for every $F \in \Gamma$, some $r(2) \in\{0,1,2, \ldots, s+1\}$ such that $m_{0}\left(Q_{r(2)}, \Sigma\right) \not \subset$ $E_{n(1) m(1,2)}+F$ for every $F \in \Gamma, \ldots$, and some $r(s) \in\{0,1, \ldots, s+1\}$ with $m_{0}\left(Q_{r(s)}, \Sigma\right) \not \subset E_{n(p) m(p, q(p))}$ for every $F \in \Gamma$.

Clearly, there are two elements of the set $\{0,1,2 \ldots, s+1\}$ which are not contained in the set $\{r(1), r(2), \ldots, r(s)\}$ and at least one of them, say h, is different from 0 . Since $m_{0}\left(Q_{r(1)} \cup Q_{r(2)} \cup \cdots \cup Q_{r(s)}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ and every $(n, m)=(n(i), m(i, j))$ with $i=1,2, \ldots, p$. and $j=1,2, \ldots, q(i)$, we conclude that $m_{0}\left(A-Q_{h}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when (n, m) coincides with each one of all the aforementioned pairs. Furthermore, since $h \neq 0$, then Q_{0} is contained in $A-Q_{h}$ and hence
$m_{0}\left(A-Q_{h}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when (n, m) coincides with all the pairs considered before the index rearrangement.

We put now $M_{11}:=Q_{h}$ and so by relation (1),

$$
e\left(M_{11}\right) \notin\left\langle E_{n(1) m(1,1)} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\rangle
$$

and $m_{0}\left(A-M_{11}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when $(n, m)=(n(i), m(i, j))$ with $i=1,2, \ldots, p$ and $j=1,2, \ldots, q(i)$, for each $i \in\{1,2, \ldots, p\}$ for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs $(n(i), m)$ with $m>m(i, q(i))$, and for every $F \in \Gamma$ when n takes infinitely many values greater than $n(p)$ and, for each one of them, m takes an infinity of values.

We repeat again the previous argument taking $A-M_{11}$ instead of A. In fact, since $m_{0}\left(A-M_{11}, \Sigma\right) \not \subset E_{n(1) m(1,2)}+F$ for every $F \in \Gamma$, we can use Lemma 2 to obtain a partition of $A-M_{11}$ in $p+s+2$ elements of Σ whose characteristic functions are not contained in $\left\langle E_{n(1) m(1,2)} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\rangle$. Using repeatedly Lemma 1 , we can choose some element of this partition, which we denote by M_{12}, such that

$$
e\left(M_{12}\right) \notin\left\langle E_{n(1) m(1,2)} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\rangle
$$

and moreover $m_{0}\left(A-M_{11} \cup M_{12}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when $(n, m)=(n(i), m(i, j))$ for $i=1,2, \ldots, p$ and $j=1,2, \ldots, q(i)$, for $i \in\{1,2, \ldots, p\}$ for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs $(n(i), m)$ with $m>m(i, q(i))$, and for every $F \in \Gamma$ when n takes an infinity of values greater than $n(p)$ and, for each one of them, m takes an infinity of values. We continue in this way until we find a last $M_{n(p) n(p, q(p))} \in \Sigma$ which establishes the lemma.

Lemma 4. Let $\left\{E_{n m}, n, m=1,2, \ldots\right\}$ be a sequence of linear subspaces of $m_{0}(X, E)$ with $m_{0}(X, E) \neq E_{n m}+F$ for every $F \in \Gamma$ and for $n, m=1,2 \ldots$. Then, there exists a sequence $\left\{M_{i j k}, i, j, k=1,2, \ldots\right\}$ of pairwise disjoint members of Σ, a strictly increasing sequence $\{(n(i), i=$ $1,2, \ldots\}$ of positive integers and, for each $i \in \mathbb{N}$, a strictly increasing sequence $\{m(i, j), j=1,2 \ldots\}$ of positive integers, such that

$$
e\left(M_{i j k}\right) \notin\left\langle E_{n(i) m(i, j)} \cup\left\{e\left(M_{r s t}\right), r, s, t \in \mathbb{N}, r+s+t<i+j+k\right\}\right\rangle
$$

for $i, j, k=1,2, \ldots$.
Proof. Let $n(1)=m(1,1)=1$. We are supposing that $m_{0}(X, \Sigma) \not \subset$ $E_{n(1) m(1,1)}+F$ for every $F \in \Gamma, m_{0}(X, \Sigma) \not \subset E_{n(1) m}+F$ for every $F \in \Gamma$ when $m>m(1,1)$ and, given each $n>n(1), m_{0}(X, \Sigma) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when m takes any value of \mathbb{N}. Then, by Lemma 3, there
exists some M_{111} in Σ with $e\left(M_{111}\right) \notin E_{n(1) m(1,1)}$ and furthermore we have that $m_{0}\left(X-M_{111}, \Sigma\right) \not \subset E_{n m}+F$ for every $F \in \Gamma$ when $(n, m)=$ ($n(1), m(1,1)$), for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs (n, m) with $n=n(1)$ and $m>m(1,1)$ and for every $F \in \Gamma$ when n takes an infinity of values greater than $n(1)$ and, for each one of them, m takes infinitely many values. Let $n(2)$ be the first of those values of n, let $m(1,2)$ be the first of the infinity of values of m greater than $m(1,1)$ such that $m_{0}\left(X-M_{111}, \Sigma\right) \not \subset E_{n(1) m}+F$ for every F, and let finally $m(2,1)$ be the first of the infinity of natural values of m such that $m_{0}\left(X-M_{111}, \Sigma\right) \not \subset E_{n(2) m}+F$ for every $F \in \Gamma$.

Taking $X-M_{111}$ instead of A in Lemma 3, $x_{1}=e\left(M_{111}\right), p=2, q(1)=$ 2 and $q(2)=1$, we have $q(1)+q(2)=3$ pairwise disjoint members $\left\{M_{112}, M_{121}, M_{211}\right\}$ of Σ, each one of them contained in $X-M_{111}$, such that $e\left(M_{112}\right) \notin\left\langle E_{n(1) m(1,1)} \cup\left\{e\left(M_{111}\right)\right\}\right\rangle, e\left(M_{121}\right) \notin\left\langle E_{n(1) m(1,2)} \cup\left\{e\left(M_{111}\right)\right\}\right\rangle$, $e\left(M_{211}\right) \notin\left\langle E_{n(2) m(2,1)} \cup\left\{e\left(M_{111}\right)\right\}\right\rangle$ and

$$
m_{0}\left(X-\bigcup\left\{M_{r s t}, r, s, t \in \mathbb{N}, r+s+t \leq 4\right\}, \Sigma\right) \not \subset E_{n m}+F
$$

for every $F \in \Gamma$ when $(n, m)=(n(i), m(i, j))$ with $i=1,2$ and $j \leq q(i)$, for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs ($n(1), m$) with $m>m(1,2)$, for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs ($n(2), m)$ with $m>m(2,1)$, and for every $F \in \Gamma$ when n takes an infinity of values greater than $n(2)$ and, for each one of them, m takes infinitely many values. We proceed now by recurrence, supposing we have obtained p positive integers $n(1)<n(2)<\cdots<n(p), p-i+1$ positive integers $m(1,1)<m(i, 2)<\cdots<m(i, p-i+1)$ for $i=1,2, \ldots, p$ and a family $\left\{M_{i j k}, i+j+k \leq p+2\right\}$ of pairwise disjoint elements of Σ such that

$$
e\left(M_{i j}\right) \notin\left\langle E_{n(i) m(i, j)} \bigcup\left\{e\left(M_{r s t}\right), r+s+t<i+j+k\right\}\right\rangle
$$

for every $(i, j, k) \in \mathbb{N}^{3}$ with $i+j+k \leq p+2$. Moreover,

$$
\begin{equation*}
m_{0}\left(X-\bigcup\left\{M_{i j k}, i+j+k \leq p+2\right\}, \Sigma\right) \not \subset E_{n m}+F \tag{2}
\end{equation*}
$$

for every $F \in \Gamma$ when $(n, m)=(n(i), m(i, j))$ with $i=1,2, \ldots, p$ and $j=1,2, \ldots, p-i+1$, for each $i \in\{1,2, \ldots, p\}$ for every $F \in \Gamma$ when (n, m) coincides with an infinity of pairs $(n(i), m)$ with $m>i \eta(i, p-i+1)$, and for every $F \in \Gamma$ when n takes an infinity of values greater than $n(p)$ and, given each one of them, m takes an infinity of values. Now let $n(p+1)$ be the first of those values of $n>n(p)$ and let $m(p+1,1)$ be the first of the corresponding values of m of that pair. We take for each $i \in\{1,2, \ldots, p\}$ as $m(i, p-i+2)$ the first value of m which satisfies relation (2) with $n=n(i)$. We apply Lemma 3 with $X-\bigcup\left\{M_{i j k}, i+j+k \leq p+2\right\}$ instead
of $A, p+1$ instead of $p, x_{1}=e\left(M_{111}\right), x_{2}=e\left(M_{112}\right), \ldots, x_{r}=e\left(M_{p 11}\right)$, with $r=\sum_{i=1}^{p} i(i+1) / 2$, and $q(i)=p-i+2, i=1,2, \ldots, p+1$. This ensures the existence of $q(1)+q(2)+\cdots+q(p+1)=(p+1)(p+2) / 2$ pairwise disjoint elements of the σ-algebra Σ contained in the set

$$
X-\bigcup\left\{M_{i j k}, i+j+k \leq p+2\right\}
$$

and indexed by the solutions in \mathbb{N} of the equation $i+j+k=p+3$, which satisfy the requested conditions.

Theorem 1. $m_{0}(X, \Sigma)$ is ordered suprabarrelled.
Proof. We shall prove that given any increasing sequence of subspaces of $m_{0}(X, \Sigma)$ covering $m_{0}(X, \Sigma)$ there is one of them which is suprabarrelled.

Suppose this is not true. There exists an increasing sequence $\left\{F_{n}, n=\right.$ $1,2, \ldots\}$ of subspaces of $m_{0}(X, \Sigma)$ covering $m_{0}(X, \Sigma)$ such that for every positive integer n there is an increasing sequence $\left\{F_{n m}, m=1,2, \ldots\right\}$ of non Baire-like subspaces of F_{n} covering F_{n}. Hence, in each $F_{n m}, n, m=$ $1,2, \ldots$ there is some increasing sequence $\left\{S_{n m r}, r=1,2, \ldots\right\}$ of closed absolutely convex sets covering $F_{n m}$ such that no $S_{n m r}, r=1,2, \ldots$, is a neighbourhood of the origin in $F_{n m}$. Let $R_{n m r}$ be the closure of $S_{n m r}$ in $m_{0}(X, \Sigma)$ for $n, m, r=1,2, \ldots$ and put $E_{n m}:=\bigcup\left\{R_{n m r}, r=1,2, \ldots\right\}$.

The barrelledness of $m_{0}(X, \Sigma)$ implies that $m_{0}(X, \Sigma) \neq E_{n m}+F$ for every $F \in \Gamma$ and for every pair (n, m) of positive integers, since otherwise there would exist some $E_{p q}$ of finite codimension which would be Baire-like and therefore some $R_{p q r}$ would be a neighbourhood of the origin in $E_{p q}$, a contradiction.

By Lemma 4, there exist a sequence $\left\{M_{i j k}, i, j, k=1,2, \ldots\right\}$ of pairwise disjoint members of Σ, a strictly increasing sequence $\{n(i), i=$ $1,2, \ldots\}$ of positive integers and, for each $i \in \mathbb{N}$, an increasing sequence $\{m(i, j), j=1,2, \ldots\}$ of positive integers, such that

$$
e\left(M_{i j k}\right) \notin\left\langle E_{n(i) m(i, j)} \cup\left\{e\left(M_{r s t}\right), r+s+t<i+j+k\right\}\right\rangle
$$

for $i, j, k=1,2, \ldots$.
In this way, with $T_{i j k}:=R_{n(i) m(i, j) k}$, it is clear that

$$
e\left(M_{i j k}\right) \notin 3\left(T_{i j k}+\delta(i+j+k) \Gamma\left\{e\left(M_{r s t}\right), r+s+t<i+j+k\right\}\right)
$$

where

$$
\begin{aligned}
\delta(i+j+k+) & \geq \operatorname{card}\left\{e\left(M_{r s t}\right), r+s+t<i+j+k\right\} \\
& =\sum\left\{\binom{p}{2}, 2 \leq p \leq i+j+k-2\right\}
\end{aligned}
$$

By the Hahn-Banach theorem, for each set (i, j, k) of natural numbers, there is some continuous linear form $u_{i j k}$ on $m_{0}(X, \Sigma)$ such that

$$
\begin{align*}
\mid\left\langle e\left(M_{i j k}\right), u_{i j k}\right\rangle>3, \quad \sum\left\{\left|\left\langle e\left(M_{r s t}\right), u_{i j k}\right\rangle\right|, r+s+t<i+j+k\right\} \leq 1 \tag{3}\\
\text { and }\left|\left\langle z, u_{i j k}\right\rangle\right| \leq 1
\end{align*}
$$

for every $z \in T_{i j k}$
If we endow \mathbb{N}^{3} with the diagonal ordering $\left(\left(i_{1}, i_{2}, i_{3}\right)<\left(j_{1}, j_{2}, j_{3}\right)\right.$ if either $i_{1}+i_{2}+i_{3}<j_{1}+i_{2}+i_{3}$ or if $i_{1}+i_{2}+i_{3}=j_{1}+j_{2}+j_{3}$ and there is some index $1 \leq r \leq 3$ such that $i_{r}<j_{r}$ with $i_{k}=j_{k}$ for $1 \leq$ $k<r)$ and $\{\alpha(n), n=1,2, \ldots\}$ denotes the sequence of the ordered elements of \mathbb{N}^{3}, we are going to find by recurrence a decreasing sequence $\left\{N^{(\alpha(n))}, n=1,2, \ldots\right\}$ of subsets of \mathbb{N}^{3} such that given any pair (p, q) of positive integers, there are infinitely many elements in each $N^{(i j k)}$ whose two first coordinates are (p, q), and verifying the relations

$$
\begin{equation*}
\left\|u_{i j k}\left(\bigcup\left\{M_{r s t},(r, s, t) \in N^{(i j k)}\right\}\right)\right\|<12 \tag{4}
\end{equation*}
$$

for $i, j, k=1,2, \ldots$.
Let $G:=\bigcup\left\{M_{i j k}, i, j, k=1,2, \ldots\right\}$ and let m be a positive integer such that $\left\|u_{111}(G)\right\|<m$. We make a partition of \mathbb{N}^{3} in m parts $P_{r}, 1 \leq$ $r \leq m$, so that, in each one of them, given any pair (p, q) of positive integers, there are infinitely many elements whose two first components coincide with (p, q). Now it is easy to note [8] that

$$
\Sigma\left\{\left\|u_{111}\left(\bigcup\left\{M_{i j k},(i, j, k) \in P_{r}\right\}\right)\right\|, r=1,2, \ldots, m\right\} \leq\left\|u_{111}(G)\right\|<m
$$

and hence there is some $s, 1 \leq s \leq m$, such that

$$
\left\|u_{111}\left(\bigcup\left\{M_{i j k},(i, j, k) \in P_{s}\right\}\right)\right\|<1
$$

Then we set $N^{(111)}:=P_{s}$.
Suppose we have determined $N^{(i j k)}$ and that (r, s, t) is the element following (i, j, k) in the ordering of \mathbb{N}^{3}. If $q \in \mathbb{N}$ is such that $\left\|u_{r s t}(G)\right\|<q$ then we make a partition of the set $N^{(i j k)}$ in q parts $Q_{g}, 1 \leq g \leq q$, so that, in each one of them, given any pair (p, q) of \mathbb{N}^{2}, there are infinitely many elements whose two first components coincide with (p, q).

Given that

$$
\sum\left\{\left\|u_{r s t}\left(\bigcup\left\{M_{i j k},(i, j, k) \in Q_{g}\right\}\right)\right\|, g=1,2, \ldots, q\right\} \leq\left\|u_{r s t}(G)\right\|<q
$$

there is some h with $1 \leq h \leq q$, such that

$$
\left\|u_{r s t}\left(\bigcup\left\{M_{i j k},(i, j, k) \in Q_{h}\right\}\right)\right\|<1 .
$$

Then we set $N^{(r s t)}:=Q_{h}$.
Next we determine a sequence $S=\{(i(n), j(n), k(n)), n=1,2, \ldots\}$ in \mathbb{N}^{3} whose terms verify the following conditions.
(A) $(i(n+1), j(n+1), k(n+1)) \in N^{(i(n) j(n) k(n))}$.
(B) $i(n)+j(n)+k(n)<i(n+1)+j(n+1)+k(n+1)$.
(C) $\left\{T_{i(n) j(n) k(n)}, n=1,2, \ldots\right\}$ covers the whole space $m_{0}(X, \Sigma)$.

We start by setting $(i(1), j(1), k(1))=(1,1,1)$ and having determined the $n-1$ first terms we take $(i(n), j(n), k(n)) \in N^{(i(n-1) j(n-1) k(n-1))}$ such that ($i(n), j(n)$) is equal to the two first coordinates of the nth element, $\alpha(n)$, of \mathbb{N}^{3} and $k(n)$ is such that $i(n-1)+j(n-1)+k(n-1)<i(n)+$ $j(n)+k(n)$. This choice is always possible because of the properties of the sets $N^{(i j k)}$.

Setting $Q:=\bigcup\left\{M_{r s t},(r, s, t) \in S\right\}$, as a consequence of the property (C) of the sequence S, there is some $(i, j, k) \in S$ such that $e(Q) \in T_{i j k}$. Using then the last relation of (3), this implies that $\left|\left\langle e(Q), u_{i j k}\right\rangle\right| \leq 1$.

On the other hand, as S satisfies condition (B) we have that

$$
\begin{aligned}
\left\langle e(Q), u_{i j k}\right\rangle= & \left\langle e\left(M_{i j k}\right), u_{i j k}\right\rangle \\
& +\left\langle e\left(\bigcup\left\{M_{r s t}, r+s+t<i+j+k,(r, s, t) \in S\right\}\right), u_{i j k}\right\rangle \\
& +\left\langle\left(\bigcup\left\{M_{r s t}, r+s+t>i+j+k,(r, s, t) \in S\right\}\right), u_{i j k}\right\rangle .
\end{aligned}
$$

Therefore, using now property (A) of S, we have

$$
\begin{aligned}
& \left|\left\langle e(Q), u_{i j k}\right\rangle\right| \\
& \quad \geq\left|\left\langle e\left(M_{i j k}\right), u_{i j k}\right\rangle\right|-\sum\left\{\left|\left\langle e\left(M_{r s t}\right), u_{i j k}\right\rangle\right|, r+s+t<i+j+k\right\} \\
& \quad-\left\|e\left(\bigcup\left\{M_{r s t},(r, s, t) \in N^{(i j k)}\right\}\right)\right\| .
\end{aligned}
$$

From this, according to (3) and (4), it follows that $\left|\left\langle e(Q), u_{i j k}\right\rangle\right|>1$, a contradiction.

Definition. A double sequence $\left\{F_{i j}, i, j=1,2, \ldots\right\}$ of subspaces of a space F will be called doubly increasing if it satisfies the two following properties:
(1) for each $i \in \mathbb{N}$, the sequence $\left\{F_{i j}, j=1,2, \ldots\right\}$ is increasing;
(2) the sequence $\left\{\bigcup\left\{F_{i j}, j=1,2, \ldots\right\}, i=1,2, \ldots\right\}$ is increasing.

Proposition 1. Suppose that W is a doubly increasing sequence of subspaces of a space F covering F and let f be a linear mapping from $m_{0}(X, \Sigma)$ into F with closed graph. If each $L \in W$ has a locally convex topology τ_{L} stronger than the final one such that $L\left(\tau_{L}\right)$ is a Γ_{r}-space, then there is a $G \in W$ containing the range space of f such that f, considered as a mapping from $m_{0}(X, \Sigma)$ into $G\left(\tau_{G}\right)$, is continuous.

Proof. By the previous theorem there is some $G \in W$ such that $E:=$ $f^{-1}(G)$ is dense in $m_{0}(X, \Sigma)$ and barrelled. Now if g denotes the restriction of f on E and $x \in m_{0}(X, \Sigma)-E$, there exists a G-valued linear extension h of g over the subspace $L:=\langle\{x\} \cup E\rangle$ with closed graph. As E is dense and barrelled in $m_{0}(X, \Sigma)$, then L is barrelled. Now the closed graph theorem of [10] establishes the continuity of h. If $\left\{x_{n}, n=1,2, \ldots\right\}$ is a sequence of points of E which converges to x under the norm topology of the space $m_{0}(X, \Sigma)$, we have that $h\left(x_{n}\right) \rightarrow h(x)$ in G and, the graph of f being closed, that $f(x)=h(x) \in G$. Thus $x \in E$, a contradiction. This shows that f is G-valued. Furthermore, $f: m_{0}(X, \Sigma) \rightarrow G\left(\tau_{G}\right)$ is continuous.

Theorem 2. Let μ be a finitely additive measure on Σ with values in a space E and let H be a $\sigma\left(E^{\prime} E\right)$-total subset of E^{\prime}. Suppose that E contains a doubly increasing sequence W of subspaces of E covering E such that in each $L \in W$ there exists some locally convex topology τ_{L}, stronger than the final one, under which $L\left(\tau_{L}\right)$ is a Γ_{r}-space which does not contain a copy of l^{∞} If $u \circ \mu$ is a countably additive scalar measure for each $u \in H$, there exists $a G \in W$ such that μ is a G-valued countably additive vector measure.

Proof. Define $S: m_{0}(X, \Sigma) \rightarrow E$ such that $S(e(A))=\mu(A)$ for every $A \in \Sigma$ and let F denote the linear hull of H. If $\left\{z_{i}, i \in I, \geq\right\}$ is a net of points of $m_{0}(X, \Sigma)$ such that $z_{i} \rightarrow z$ in $m_{0}(X, \Sigma)$, then $\left\langle z_{i}, u \circ \mu\right\rangle \rightarrow$ $\langle z, u \circ \mu\rangle$ for every $u \in F$. In fact, $u \circ \mu$ is a bounded finitely additive scalar measure when $u \in H$ and it can be identified with an element of the dual space of $m_{0}(X, \Sigma)$. Thus, $\left\langle S\left(z_{i}\right), u\right\rangle \rightarrow\langle S(z), u\rangle$ for every $u \in F$. This shows that $S: m_{0}(X, \Sigma) \rightarrow E(\sigma(E, F))$ is continuous. So, S is a mapping from $m_{0}(X, \Sigma)$ into E with closed graph. By Proposition 1, there is some $G \in W$ such that $S: m_{0}(X, \Sigma) \rightarrow G\left(\tau_{G}\right)$ is continuous. Now, by [10, Corollary 1.14] there is a G-valued continuous linear extension T of S over the completion $m(X, \Sigma)$ of $m_{0}(X, \Sigma)$. As $G\left(\tau_{G}\right)$ contains no copy of l^{∞}, T is weakly compact [3]. From this fact, taking into account that $u \circ \mu$
is a countably additive scalar measure for every $u \in H$, is easy to show that $u \circ \mu$ is countably additive for every $u \in E^{\prime}$. Now the Orlicz-Pettis theorem for locally convex spaces [5, 9.4] applies.

Theorem 3. Let μ be a mapping from Σ into a space E and let H be a $\sigma\left(E^{\prime} E\right)$-total subset of E^{\prime}. Suppose that E has a doubly increasing sequence W of subspaces of E covering E such that in each $L \in W$ there exists some locally convex topology τ_{L}, stronger than the final one, under which $L\left(\tau_{L}\right)$ is a Γ_{r}-space. If $u \circ \mu$ is a bounded finitely additive scalar measure for each $u \in H$, then there is some $G \in W$ such that μ is a G-valued bounded vector measure.

Proof. The totality of H implies the finite additivity of μ. Now defining S as in the previous theorem, the boundedness of $u \circ \mu$ for each $u \in H$ guarantees that $S: m_{0}(X, \Sigma) \rightarrow E$ has closed graph. By the proposition above there is some G such that $S: m_{0}(X, \Sigma) \rightarrow G\left(\tau_{G}\right)$ is continuous. Therefore, $S(\{e(A), A \in \Sigma\})$ is a bounded subset of $G\left(\tau_{G}\right)$ and hence $\{\mu(A), A \in \Sigma\}$ is bounded in G.

Remark. Theorem 2 generalizes the implication (i) \Rightarrow (iii) of [1, Theorem 1.1] and Theorem 3 generalizes [2, Corollary I.3.3].

Note. After we sent this paper we have shown in [11], using different methods and giving different applications, that $m_{0}(X, \Sigma)$ has a stronger barrelledness property than that of being ordered suprabarrelled.

References

[1] J. Diestel and B. Faires, 'On vector measures', Trans. Amer. Math. Soc. 198 (1974), 253-271.
[2] J. Diestel and J. R. Uhl, Vector measures, Mathematical Surveys No. 15, Amer. Math. Soc., Providence, R.I., 1977.
[3] L. Drewnowski, 'An extension of a theorem of Rosenthal on operators acting from $l^{\infty}(\Gamma)$ ', Studia Math. 62 (1976), 209-215.
[4] J. C. Ferrando and M. López-Pellicer, 'On ordered suprabarrelled spaces', Arch. Math. 53 (1989), 405-410.
[5] P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Math. Studies 131, Amsterdam, New York, Oxford, 1987.
[6] B. Rodríguez-Salinas, 'Sobre la clase del espacio tonelado $l_{0}^{\infty}(\Sigma)$ ', Rev. Réal Acad. Ci. Madrid 74 Cuad. 50 (1980), 827-829.
[7] S. A. Saxon, 'Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology', Math. Ann. 197 (1972), 87-106.
[8] M. Valdivia, 'On certain Barrelled normed spaces', Ann. Inst. Fourier (Grenoble) 29 (1979), 39-56.
[9] M. Valdivia, On suprabarrelled spaces, Funct. Anal. Holomorphy and Approximation Theory, Rio de Janeiro 1978, Lecture Notes in Math., Springer-Verlag, 1981, pp. 572580.
[10] M. Valdivia, 'Sobre el teorema de la gráfica cerrada', Collect. Math. 22 (1971), 51-72.
[11] J. C. Ferrando and M. López-Pellicer, 'Strong barrelledness properties in $l_{0}^{\infty}(X, \mathscr{A})$ and bounded finite additive measures', Math. Ann. 287 (1990), 727-736.

Departmento de Matemática Aplicada (ETSIA) Universidad Politécnica de Valencia
Apartado 22012
46071-Valencia
Spain

[^0]: (C) 1991 Australian Mathematical Society 0263-6115/91 \$A2.00 +0.00

