WELL DISTRIBUTED SEQUENCES

F. R. KEOGH, B. LAWTON, and G. M. PETERSEN

1. Introduction. In this note we discuss some properties of well distributed sequences. We take $0 \leqslant a<b \leqslant 1$ and let $I(x)$ denote the characteristic function of the interval $[a, b]$, so that

$$
I(x)=\left\{\begin{array}{l}
1 \text { if } x \in[a, b] \\
0 \text { otherwise }
\end{array}\right.
$$

For convenience, we suppose that our sequences $\left(s_{n}\right)$ satisfy $0 \leqslant s_{n} \leqslant 1$ for every positive integer n. A sequence $\left(s_{n}\right)$ is said to be well distributed if

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=n+1}^{n+p} I\left(s_{k}\right)=b-a \tag{1}
\end{equation*}
$$

holds uniformly in n, for every interval $[a, b]$. This may be regarded as a more stringent test of the regularity of distribution of a sequence $\left(s_{n}\right)$ than the classical uniform distribution condition, where

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=1}^{p} I\left(s_{k}\right)=b-a \tag{2}
\end{equation*}
$$

for every $[a, b]$. By a well-known theorem of Weyl (1), the condition (2) may be expressed alternatively as

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} e\left(h s_{k}\right)=0, \quad h=1,2, \ldots
$$

where $e(t)$ denotes $e^{2 \pi i t}$. A similar condition for well distributed sequences has been given by Petersen (4). Thus, $\left(s_{n}\right)$ is well distributed if, and only if,

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h s_{k}\right)=0, \quad(h=1,2, \ldots) \tag{3}
\end{equation*}
$$

uniformly in n, and this is the basis for our proof of Theorem 1. Throughout, we shall use $\{\theta\}$ to denote $\theta-[\theta]$, where $[\theta]$ is the largest integer $\leqslant \theta$.
2. Theorem 1. If (s_{k}) is well distributed and $s_{k}-t_{k} \rightarrow 0$ as $k \rightarrow \infty$, then $\left(t_{k}\right)$ is well distributed.
(With routine changes, the word "well" may be replaced both times by "uniformly".)

Proof. We will suppose that

Received February 28, 1958.

$$
\begin{equation*}
\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h s_{k}\right) \rightarrow 0, \quad h=1,2, \ldots \tag{4}
\end{equation*}
$$

uniformly in n, as $p \rightarrow \infty$ and that $s_{k}-t_{k} \rightarrow 0$ as $k \rightarrow \infty$. Then, by (3), it suffices to prove that

$$
\begin{equation*}
\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h t_{k}\right) \rightarrow 0, \quad h=1,2, \ldots \tag{5}
\end{equation*}
$$

uniformly in n, as $p \rightarrow \infty$.
Let $\epsilon>0$. By our supposition that $s_{k}-t_{k} \rightarrow 0$ as $k \rightarrow \infty$, there is an $m_{0}>0$ such that

$$
\begin{equation*}
\left|e\left(h\left(t_{m}-s_{m}\right)\right)-1\right|<\epsilon \text { for all } m>m_{0}, \quad h=1,2, \ldots \tag{6}
\end{equation*}
$$

Here, m_{0} may depend on h but is independent of n. Also, by our hypothesis concerning (4), there is a p_{0} independent of n such that

$$
\begin{equation*}
\left|\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h s_{k}\right)\right|<\epsilon \text { for all } p>p_{0}, \quad h=1,2, \ldots \tag{7}
\end{equation*}
$$

We apply these inequalities to the following identity:

$$
\begin{equation*}
\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h t_{k}\right)=\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h s_{k}\right)+\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h s_{k}\right)\left(e\left(h\left(t_{k}-s_{k}\right)\right)-1\right) \tag{8}
\end{equation*}
$$

and estimate the absolute values of the sums on the right. For the first, we simply use (7). For the second, it is convenient to consider two cases according as $n \geqslant m_{0}$ or $n<m_{0}$. If $n \geqslant m_{0}$, we use (6) and obtain the trivial estimate $p^{-1}(p \epsilon)=\epsilon$, valid for all integers $p \geqslant 1$. But if $n<m_{0}$, we express it in two parts:

$$
\frac{1}{p} \sum_{k=n+1}^{n+p}=\frac{1}{p} \sum_{k=n+1}^{m_{0}}+\frac{1}{p} \sum_{k=m_{0}+1}^{n+p}
$$

Then, by applying (6) to the second term on the right, we get

$$
\begin{equation*}
\frac{1}{p}\left|\sum_{k=n+1}^{n+p}\right|<\frac{2 m_{0}}{p}+\frac{1}{p}(p \epsilon) \tag{9}
\end{equation*}
$$

since the summand is at most 2 in absolute value. Thus for $p>p_{0}{ }^{\prime}=2 m_{0} \epsilon^{-1}$, the terms on the right of (9) cannot exceed 2ϵ. Combining the two cases we see that, for all $p>\max \left(p_{0}, p_{0}{ }^{\prime}\right)$,

$$
\left|\frac{1}{p} \sum_{k=n+1}^{n+p} e\left(h t_{k}\right)\right|<\epsilon+2 \epsilon=3 \epsilon,
$$

by (8). This completes the proof.
3. Theorem 2. If $\left(s_{k}\right)$ is a countable everywhere dense sequence in the interval $(0,1)$, then $\left(s_{k}\right)$ can be enumerated in such a way as to be well distributed.
Proof. It is known that $\{k \theta\}$, where θ is irrational, is well distributed. Since $\left(s_{k}\right)$ is everywhere dense, we can select a subsequence $\left(s_{k}{ }^{\prime}\right)$ so that

$$
\left|s_{k}^{\prime}-\{k \theta\}\right|<\frac{1}{k}
$$

The terms of $\left(s_{k}{ }^{\prime}\right)$ may exhaust those of $\left(s_{k}\right)$ in which case our statement follows from the previous theorem. But if this is not the case, we omit the terms $s_{y^{3}}{ }^{3}$ and this gives us a countable set of spaces to fill anew and we fill them with the set made up from those s_{k} not used and the $s_{k}{ }^{\prime}$ omitted. This change will not affect any interval since if $r_{k}=0$ for $k \neq \nu^{3}$ and $r_{\nu}{ }^{3}=1$, then

$$
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{k=n+1}^{n+p} r_{k}=0
$$

uniformly in n (see Lorentz (2)). Hence in either case we have a well distributed sequence.

Theorem 3. For every irrational θ, there exists a sequence $\left(n_{k}\right)$ such that

$$
\frac{n_{k}}{n_{k-1}}>\lambda>1
$$

and $\left\{n_{k} \theta\right\}$ is well distributed.
Proof. Since $\{n \theta\}$ is well distributed and everywhere dense we can choose a sequence $\left(n_{k}\right)$ with $n_{k} / n_{k-1}>\lambda>1$ such that $\left|\left\{n_{k} \theta\right\}-\{k \theta\}\right|<1 / k$. Theorem 1 then gives the result immediately.
4. Any real number θ can be represented uniquely in the form

$$
c_{0}+\sum_{i=2}^{\infty} \frac{c_{i}}{a_{1} a_{2} \ldots a_{i}}
$$

where a_{i} and c_{i} are integers with $a_{i}>1$ for all i and $0 \leqslant c_{i} \leqslant a_{i}-1$, see (3).
Theorem 4. If $a_{i} \geqslant a_{i-1}+1$ for every i,

$$
\left\{\left(\prod_{i=1}^{k} a_{i}\right)_{\theta}\right\}, \quad k=1,2, \ldots
$$

is well distributed if, and only if,

$$
\left(\frac{c_{k}}{a_{k}}\right)
$$

is well distributed.
Proof. We have

$$
\left\{\left(\prod_{i=1}^{k} a_{i}\right)_{\theta}\right\}=\frac{c_{k+1}}{a_{k+1}}+\frac{c_{k+2}}{a_{k+1} a_{k+2}}+\ldots=\frac{c_{k+1}}{a_{k+1}}+R_{k+1} .
$$

Since

$$
\lim _{k \rightarrow \infty} R_{k+1}=0,
$$

our statement follows from Theorem 1.

For every such sequence $\left(a_{i}\right)$, we can evidently construct a θ such that

$$
\left\{\left(\prod_{i=1}^{k} a_{i}\right) \theta\right\}
$$

is well distributed by choosing c_{k} so that

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{a_{k}}-\{k \sqrt{ } 2\}\right|=0 .
$$

Similar remarks apply to uniform distribution. We have $\{n!\theta\}$ uniformly distributed for almost all θ (5, Satz 21). Hence, if

$$
\theta=\sum_{n=1}^{\infty} \frac{a_{n}}{n!},
$$

(a_{n} / n) is uniformly distributed for almost all θ.
In the special case when $a_{i}=r$ for all i, we have our numbers expressed to the base r. For any r, a number θ is said to be a normal number if and only if the sequence $\{\theta\},\{r \theta\},\left\{r^{2} \theta\right\}, \ldots$, is uniformly distributed. By a theorem of Hardy-Littlewood (1, Ch. IX, §28) it is known that almost all θ are normal. For a result in the opposite direction, we have

Theorem 5. If p, q are positive integers, the sequence

$$
\left\{\left(\frac{p}{q}\right)^{k} \theta\right\}, \quad k=1,2, \ldots
$$

is not well distributed for any θ.
Proof. We may suppose that the sequence is uniformly distributed since otherwise, there is nothing to prove. Then, given N however large, we can find an $m=m(N)$ such that

$$
\left\{\frac{p^{m}}{q^{m}} \theta\right\}<\frac{\pi}{4 p^{N} q^{N}} .
$$

Then

$$
\sum_{k=m+1}^{m+N} e\left(q^{N} \frac{p^{k}}{q^{k}} \theta\right)=\sum_{k=1}^{N} e\left(q^{N} \frac{p^{k}}{q^{k}} \frac{p^{m}}{q^{m}} \theta\right)=\sum_{k=1}^{N} e\left(q^{N-k} p^{k}\left\{\frac{p^{m}}{q^{m}} \theta\right\}\right)
$$

where

$$
0<p^{k} q^{N-k}\left\{\frac{p^{m}}{q^{m}} \theta\right\}<\frac{\pi p^{k} q^{N-k}}{4 p^{N} q^{N}}<\frac{\pi}{4} \quad \text { for all } k \leqslant N
$$

Hence

$$
\left|\sum_{k=m+1}^{m+N} e\left(q^{N} \frac{p^{k}}{q^{k}} \theta\right)\right|>\sum_{k=1}^{N} \cos \frac{\pi}{4}=N / \sqrt{ } 2
$$

and the result follows from our criterion (3).

References

1. J. F. Koksma, Diophantische Approximationen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. IV (Berlin, 1936).
2. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
3. I. Niven, Irrational numbers, Carus Monographs, no. 11 (1956), 164 pp.
4. G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. (Oxford), 7 (1956), 188-191.
5. H. Weyl, Ueber die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916), 313-352.

University College of Swansea
University of London
University of New Mexico

