WELL DISTRIBUTED SEQUENCES

F. R. KEOGH, B. LAWTON, AND G. M. PETERSEN

1. Introduction. In this note we discuss some properties of well distributed sequences. We take $0 \le a < b \le 1$ and let I(x) denote the characteristic function of the interval [a, b], so that

$$I(x) = \begin{cases} 1 \text{ if } x \in [a, b] \\ 0 \text{ otherwise.} \end{cases}$$

For convenience, we suppose that our sequences (s_n) satisfy $0 \le s_n \le 1$ for every positive integer *n*. A sequence (s_n) is said to be well distributed if

(1)
$$\lim_{p\to\infty}\frac{1}{p}\sum_{k=n+1}^{n+p}I(s_k) = b - a$$

holds uniformly in n, for every interval [a, b]. This may be regarded as a more stringent test of the regularity of distribution of a sequence (s_n) than the classical uniform distribution condition, where

(2)
$$\lim_{p\to\infty}\frac{1}{p}\sum_{k=1}^p I(s_k) = b - a$$

for every [a, b]. By a well-known theorem of Weyl (1), the condition (2) may be expressed alternatively as

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n} e(hs_k) = 0, \qquad h = 1, 2, \ldots,$$

where e(t) denotes $e^{2\pi i t}$. A similar condition for well distributed sequences has been given by Petersen (4). Thus, (s_n) is well distributed if, and only if,

(3)
$$\lim_{p\to\infty} \frac{1}{p} \sum_{k=n+1}^{n+p} e(hs_k) = 0, \qquad (h = 1, 2, \ldots)$$

uniformly in *n*, and this is the basis for our proof of Theorem 1. Throughout, we shall use $\{\theta\}$ to denote $\theta - [\theta]$, where $[\theta]$ is the largest integer $\leq \theta$.

2. THEOREM 1. If (s_k) is well distributed and $s_k - t_k \rightarrow 0$ as $k \rightarrow \infty$, then (t_k) is well distributed.

(With routine changes, the word "well" may be replaced both times by "uniformly".)

Proof. We will suppose that

Received February 28, 1958.

(4)
$$\frac{1}{p} \sum_{k=n+1}^{n+p} e(hs_k) \to 0, \qquad h = 1, 2, \ldots,$$

uniformly in *n*, as $p \to \infty$ and that $s_k - t_k \to 0$ as $k \to \infty$. Then, by (3), it suffices to prove that

(5)
$$\frac{1}{p} \sum_{k=n+1}^{n+p} e(ht_k) \to 0, \qquad h = 1, 2, \ldots,$$

uniformly in n, as $p \to \infty$.

Let $\epsilon > 0$. By our supposition that $s_k - t_k \to 0$ as $k \to \infty$, there is an $m_0 > 0$ such that

(6)
$$|e(h(t_m - s_m)) - 1| < \epsilon \text{ for all } m > m_0, \qquad h = 1, 2, \ldots$$

Here, m_0 may depend on h but is independent of n. Also, by our hypothesis concerning (4), there is a p_0 independent of n such that

(7)
$$\left|\frac{1}{p}\sum_{k=n+1}^{n+p}e(hs_k)\right| < \epsilon \quad \text{for all} \quad p > p_0, \qquad h = 1, 2, \dots$$

We apply these inequalities to the following identity:

(8)
$$\frac{1}{p}\sum_{k=n+1}^{n+p}e(ht_k) = \frac{1}{p}\sum_{k=n+1}^{n+p}e(hs_k) + \frac{1}{p}\sum_{k=n+1}^{n+p}e(hs_k)(e(h(t_k - s_k)) - 1)$$

and estimate the absolute values of the sums on the right. For the first, we simply use (7). For the second, it is convenient to consider two cases according as $n \ge m_0$ or $n < m_0$. If $n \ge m_0$, we use (6) and obtain the trivial estimate $p^{-1}(p\epsilon) = \epsilon$, valid for all integers $p \ge 1$. But if $n < m_0$, we express it in two parts:

$$\frac{1}{p}\sum_{k=n+1}^{n+p} = \frac{1}{p}\sum_{k=n+1}^{m_0} + \frac{1}{p}\sum_{k=m_0+1}^{n+p}$$

Then, by applying (6) to the second term on the right, we get

(9)
$$\frac{1}{p} \left| \sum_{k=n+1}^{n+p} \right| < \frac{2m_0}{p} + \frac{1}{p} (p\epsilon),$$

since the summand is at most 2 in absolute value. Thus for $p > p_0' = 2m_0\epsilon^{-1}$, the terms on the right of (9) cannot exceed 2ϵ . Combining the two cases we see that, for all $p > \max(p_0, p_0')$,

$$\left|\frac{1}{p}\sum_{k=n+1}^{n+p}e(ht_k)\right| < \epsilon + 2\epsilon = 3\epsilon,$$

by (8). This completes the proof.

3. THEOREM 2. If (s_k) is a countable everywhere dense sequence in the interval (0, 1), then (s_k) can be enumerated in such a way as to be well distributed.

Proof. It is known that $\{k\theta\}$, where θ is irrational, is well distributed. Since (s_k) is everywhere dense, we can select a subsequence (s_k') so that

$$|s_k'-\{k\theta\}|<\frac{1}{k}.$$

The terms of (s_k') may exhaust those of (s_k) in which case our statement follows from the previous theorem. But if this is not the case, we omit the terms s_{r^3}' and this gives us a countable set of spaces to fill anew and we fill them with the set made up from those s_k not used and the s_k' omitted. This change will not affect any interval since if $r_k = 0$ for $k \neq r^3$ and $r_{r^3} = 1$, then

$$\lim_{p\to\infty}\frac{1}{p}\sum_{k=n+1}^{n+p}r_k=0$$

uniformly in n (see Lorentz (2)). Hence in either case we have a well distributed sequence.

THEOREM 3. For every irrational θ , there exists a sequence (n_k) such that

$$\frac{n_k}{n_{k-1}} > \lambda > 1$$

and $\{n_k\theta\}$ is well distributed.

Proof. Since $\{n\theta\}$ is well distributed and everywhere dense we can choose a sequence (n_k) with $n_k/n_{k-1} > \lambda > 1$ such that $|\{n_k\theta\} - \{k\theta\}| < 1/k$. Theorem 1 then gives the result immediately.

4. Any real number θ can be represented uniquely in the form

$$c_0 + \sum_{i=2}^{\infty} \frac{c_i}{a_1 a_2 \dots a_i}$$

where a_i and c_i are integers with $a_i > 1$ for all i and $0 \le c_i \le a_i - 1$, see (3).

THEOREM 4. If $a_i \ge a_{i-1} + 1$ for every *i*,

$$\left\{ \left(\prod_{i=1}^{k} a_{i} \right) \theta \right\}, \qquad k = 1, 2, \ldots,$$

is well distributed if, and only if,

$$\left(\frac{c_k}{a_k}\right)$$

is well distributed.

Proof. We have

$$\left\{ \left(\prod_{i=1}^{k} a_{i} \right) \theta \right\} = \frac{c_{k+1}}{a_{k+1}} + \frac{c_{k+2}}{a_{k+1}a_{k+2}} + \ldots = \frac{c_{k+1}}{a_{k+1}} + R_{k+1}.$$

Since

$$\lim_{k\to\infty}R_{k+1}=0,$$

our statement follows from Theorem 1.

For every such sequence (a_i) , we can evidently construct a θ such that

$$\left\{ \left(\prod_{i=1}^k a_i \right) \theta \right\}$$

is well distributed by choosing c_k so that

$$\lim_{k\to\infty}\left|\frac{c_k}{a_k}-\{k\sqrt{2}\}\right|=0.$$

Similar remarks apply to uniform distribution. We have $\{n!\theta\}$ uniformly distributed for almost all θ (5, Satz 21). Hence, if

$$heta = \sum_{n=1}^{\infty} \frac{a_n}{n!}$$
 ,

 (a_n/n) is uniformly distributed for almost all θ .

In the special case when $a_i = r$ for all *i*, we have our numbers expressed to the base *r*. For any *r*, a number θ is said to be a *normal* number if and only if the sequence $\{\theta\}, \{r\theta\}, \{r^2\theta\}, \ldots$, is uniformly distributed. By a theorem of Hardy-Littlewood **(1**, Ch. IX, §28**)** it is known that almost all θ are normal. For a result in the opposite direction, we have

THEOREM 5. If p, q are positive integers, the sequence

$$\left\{ \left(\frac{p}{q}\right)^k \theta \right\}, \qquad \qquad k = 1, 2, \dots$$

is not well distributed for any θ .

Proof. We may suppose that the sequence is uniformly distributed since otherwise, there is nothing to prove. Then, given N however large, we can find an m = m(N) such that

$$\left\{\frac{p^m}{q^m}\theta\right\} < \frac{\pi}{4p^N q^N}.$$

Then

$$\sum_{k=1}^{m+N} e\left(q^N \frac{\underline{p}^k}{q^k} \theta\right) = \sum_{k=1}^N e\left(q^N \frac{\underline{p}^k}{q^k} \frac{\underline{p}^m}{q^m} \theta\right) = \sum_{k=1}^N e\left(q^{N-k} p^k \left\{\frac{\underline{p}^m}{q^m} \theta\right\}\right)$$

where

 $0 < p^k q^{N-k} \left\{ \frac{p^m}{q^m} \theta \right\} < \frac{\pi p^k q^{N-k}}{4 p^N q^N} < \frac{\pi}{4}$

for all $k \leq N$.

Hence

$$\sum_{k=m+1}^{m+N} e\left(q^N \frac{p^k}{q^k} \theta\right) \bigg| > \sum_{k=1}^N \cos \frac{\pi}{4} = N/\sqrt{2},$$

and the result follows from our criterion (3).

References

- 1. J. F. Koksma, *Diophantische Approximationen*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. IV (Berlin, 1936).
- 2. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
- 3. I. Niven, Irrational numbers, Carus Monographs, no. 11 (1956), 164 pp.
- G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. (Oxford), 7 (1956), 188-191.
- 5. H. Weyl, Ueber die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916), 313-352.

University College of Swansea University of London University of New Mexico