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Abstract

Based on the intrinsic structure of a selfmapping T: S —> S of an arbitrary set S, called the
orbit-structure of 7", a new entropy is defined. The idea is to use the number of preimages of an
element x under the iterates of T to characterize the complexity of the transformation T and their
orbit graphs. The fundamental properties of the orbit entropy related to iteration, iterative roots and
iteration semigroups are studied. For continuous (differentiable) functions of R" to R", the chaos of
Li and Yorke is characterized by means of this entropy, mainly using the method of Straffin-
graphs.

1980 Mathematics subject classification (Amer. Math. Soc): 54 H 20, 28 D 20.

1. Introduction

The theory of discrete dynamical systems, often also termed iteration theory, has
gained much interest in the last years. Since Poincare [27] suggested studying
continuous dynamical systems by discretisation using the method of surface of
sections, a number of research workers in various scientific disciplines (Lorenz
[18], May [20], [21], Guckenheimer et al. [11], Beddington et al. [3], Henon [13],
Nagashima [26]) successfully used discrete models to investigate complicated
behaviour of systems.

The mathematical treatment of such simple models (Myrberg [24], [25],
Guckenheimer [12], Sarkovskii [29], Mira [22], Block [4], [5] and others) has shown
that the iterative sequences of functions and therefore the states of systems can
exhibit rather complicated behaviour.
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96 Uhland Burkart (2]

To characterize such systems, a number of entropy-notions is used, depending
upon whether the state space of a system is a measure space (entropy of measure
preserving transformations, Rokhlin [28]), a metric space (Kolmogorov's e-
entropy, Kolmogorov, Tihomirov [16]) or a topological space (topological ent-
ropy of continuous functions, Adler, Konheim, McAndrew [1]).

Since for general systems the structure of the state spaces is not always given, a
more general entropy, depending on the intrinsic structure of the transformation,
is needed. Moreover, it would be advantageous to characterize systems not by an
entropy but rather by an entropy function, thus taking into account local
differences of complexity in the states of a system.

Interactions of intrinsic structures of transformations with structures of the
underlying state spaces may then be investigated to get further insight into the
behaviour of a system (Graw [10]).

2. Definitions and preliminary results

Let us recall the notion of orbit (for a detailed discussion see Targonski [31]).

DEFINITION. Let T: S -» 5 be a transformation from an arbitrary set S on or
into itself. Two elements x, y e S are equivalent under T, x ~ Ty, if and only if
for some n, m e N, T"(x) = Tm{y), where T" means the «-th iterate of T, and
T°:= id.

The equivalence classes under ~ T are called orbits of T.
An orbit can be represented by a directed graph as follows. The elements of S

are represented as points of the plane and a point x e 5 is joined to a point
y e S if and only if y = T(x).

The orbit structure is an intrinsic structure of T. The complexity under iteration
of a transformation T is characterized by the complexity of the corresponding
orbit graphs.

The idea now is to use the number of preimages of an element of S to define a
new entropy. It is exactly this number of preimages that gives the structures of
orbits.

DEFINITION. Let 5 be an arbitrary set. Define card: P(S) -» N U {oo} by

I m if A has m elements,
card A := 1 if A = 0 ,

\ oo otherwise,
where A e P(S), and P(S) denotes the power set of S.

https://doi.org/10.1017/S1446788700026537 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026537


[31 Orbit entropy in noninvertible mappings 97

D E F I N I T I O N . Let T: S -> S be a selfmapping of S. The function Ji T: S - > K j u

{00} defined by JiT(x):= l imsup n ^ 0 0 ^ log card T'"(x) is called the upper orbit

entropy function of T, and the function hT: 5 - * I R o U { o o } defined by

hT(x):= liminfn_ooi log card T~"(x) is called the lower orbit entropy function of
T. If hT(x) = hT(x) for all x e ,4 c S, then hT{x):= hT{x) is called the orZ>/7
entropy function ol T on A.

REMARK. (1) A/!r(x) := hT(x) - hT(x) may be called the orbit entropy uncer-
tainty function.

(2) For traditional reasons we take log to the base 2.
(3) We write Ji(x) for hT(x) whenever the transformation in question is clear.
Before we give some simple properties of the entropy functions, we treat an

example.

EXAMPLE. Consider the Cebysev polynomials Tn: C -» C defined by

T0(z):=2,

Tn + 2 ( z ) : = z-Tn + l ( z ) - T n ( z ) .

The functions Tn have the following properties:
(1) Tn is a polynomial of degree n;
(2) for all » e N , 7;(R) c R, 7;([-2,2]) = [-2,2], Tn(2) = 2, Ta(-2) = (-1)" •

2;
(3) Tn\U, n > 2, has (n - 1) different local extrema xi where

Tn(x,) = 2 or Tn(x,) = -2;

(4) Tn°Tm= Tn.m, n, m e Mo, where " °" denotes composition of transforma-
tions.
Therefore we have, for n > 2,

(i) every z e C, z ? (-2,2} has exactly n different preimages under Tn, which
implies

h(z)=h(z) = h(z)= lim | log card T; k( z)

= lim 7- logn*

= log «,
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(ii) for z = 2 or z = -2, we have from (3) and (i), that z has at least M/2 - 1
different preimages. Hence

^ - 1) • nk~l < cardrn~*(z) < nk, which implies

n(z) = lim sup — log card Tn~
k(z)

* - « k

< lim sup — log w*

= log n,

h(z)= lim | log card 7; *(z)

= log n,

whence h(z) = log/i.
Since furthermore for n = 1, 7\(z) = z we find that/z(z) = lim^^^ i logl = 0

= log 1, and therefore we have, for all n e M, hT(,z) — log n, for all z e C.

REMARK. (1) From (4) we have specially for Cebysev polynomials that

hTn°TSZ)=hTnSZ) = tog" • m

= log n + log m

= hTn(z) + hTm(z).

(2) If one considers Tn on U rather than on C, one easily derives

hT{x) = log/i, x G [-2,2],

hTii(x) = 0, x<2:[-2,2].

We now give some simple properties of the entropy functions.

PROPOSITION 1. Let T be a selfmapping of an arbitrary set S and let every orbit of
T be of finite cardinality. Then h(x) = 0 for all x £ S.

PROPOSITION 2. Let T be an injection of a set S. Then h(x) = 0 /or all x e S.

PROPOSITION 3. Let T: S -» 5 and U: Y -> Y be orbit isomorphic, i.e. there
exists a bijection H: S -» Y such that H°T = U°H. Then hT(x) = hu(H(x))for
allx G SandhT(x) = hu(H(x))for allx e S.
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The proofs of Proposition 1 to 3 are trivial.

Let us now recall the notions of splinter and cycle.

D E F I N I T I O N . For T: S -> S, the set S(x):= {T"(x)\n G M U {0}} is called

the splinter or iterative sequence of x e S.

DEFINITION. A cycle of order k of a mapping T: S -* S is a fc-tuple of pairwise
different elements of S, x0,... ,xk_1, such that T(xt) = xi+1 (0 < / < A: - 1) and
T(xk_1) = x0.

PROPOSITION 4. For T: S —> S, the entropy functions h and h are increasing on
the splinters of T, that is h(x) < h(T(x)) and h(x) < h(T(x)).

PROOF. From T—(x) c T-(n + 1\T(x)) we have

l imsup- log card T~"(x) < Um sup - log card T~{n + 1)(T(x))
n-> oo n-»oo

= limsup —j-r log card T'(n+1)(T{x))
n~* oo

= limsup-log card r~"(T(jc))

which implies ^(x)
Similarly, h(x) ^ h(T(x)).

COROLLARY. h(x) and h(x) are constant on the cycles of T.

3. Orbit entropy and iteration

In this section we discuss the connection between the entropy of a transforma-
tion T and the entropy of the iterate Tk, the fractional iterate T1/k (if it exists)
and the continuous iterate T',t e Rg (if it exists).

THEOREM 1. Let T: S -* S and Tk,k &N,be the k-th iterate of T.
(a) JiTk{x) < k • nT{x), hTt(x) < k • hT(x) for all x e S.
(b) IfhT(x) = hT{x) = hT(x), then hTk(x) exists and hTt(x) = k • hT(x) for

allx G S.
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PROOF, (a) From \ log card (Tk)-"(x) = i log card T-"k(x) = k
• Trhf log card T~nk{x) we have

hTk(x) = limsup — logcard(rAr)~"(x)
n —»oo

= k • limsup — log card T~nk(x)
«^oo " ' k

< k • lim sup — log card T"(x)
n—>oo

= k-hT(x).

Similarly we get hTk(x) =$ k • hT(x).
(b) From TiT{x) = hT(x) = hT(x) we have

limsup- log card T'"(x) = lim - log card T'"{x)

= lim -!—- log card T"k(x)
n—* oo n ' K

and hence

hTk(x) = k • hT(x),

hTk(x) = k • hT(x),

hTk(x) = k • hT(x) = hTk(x) = hTk(x).

THEOREM 2. Let T: S -» 5 and assume G:= T1/k, the k-th iterative root of T,
exists for some H M .

(a)Ac(jc)> j;hT(x)andhG(x)< \ • hT{x)for allx e S.
(b) IfhT(x) andhc(x) exist for an x e S, then hG(x) = \hT{x).
(c) / / T is a surjection and hT(x) exists for an x e S, then hG(x) exists and

hc(x)= \hT(x).

PROOF, (a) From Gk(x) = T(x) we have card G~"k(x) = card T~"(x).
Therefore

k • Tic{x) = k limsup — log card G~"{x)
n-»oo

^ k limsup log card G~"k(x)
n->oo " ' k

= limsup — log card T~"(x)
n—> oo

and hence JtG(x) > \JiT(x). Similarly hc(x) < {hT(x).
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(b) From the assumptions we derive

k • hc(x) = k lim — log card G'"(x)

= lim - ^ log card G~"k(x)

= lim - log card T~"(x)
n-»oo W

= hT(x).

(c) Since Tis a surjection, so is G and therefore

card T~"(x) < card G""*(JC)

<caidG-"*-'(jc) (/» = 1,...,*)

<cardG-*(n+1)(x) (» e N).

From the monotonicity of the log-function we then conclude

7— logcardr-"(x) < - — log card G"*"(JC)
k • n + p k • n + p

log card G~k n~p{x)
k • n + p

1
"" k • n + p

1
logcardr- ( n + 1 ) (x) (n

k • n + p

Taking the liminfn_00 and limsupn_00 of these inequahties we get

1 1
—hT(x) < liminf — log card G p\x), p = l,...,k,
K n —* oo K ' ft r p

and hence \hT{x) < hc(x) and

limsup-; log card G"*""/>(x) < — JiT(x), p = \,...,k,

-rhT(x) < hc(x) < hG(x) < -rhT{x).

REMARK. These results are just what one would expect: Tk is a rougher
description of a system since one looks at it at greater " time"-intervals. The
entropy, interpreted as a measure of certainty of a state of the system, is therefore
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greater. Tl^k gives a more accurate description of a system and accordingly the
entropy is smaller.

The next result is stated as a lemma since we mainly use it for the proof of the
next theorem, but nevertheless it is interesting in itself.

LEMMA. Let T: S -* S and U: S -» S be commuting surjections, that is T°U(x)
= U ° T(x) for all x e S,and let V(x):= T°U(x). Then

hT(x) ^ hy(x), hT(x) ^Jiv(x),

PROOF. Since t/and T commute, it follows by induction that

y = (U°T)" = U"°T" = T"°U"

and therefore

cardF""(x) = card T-"{U-"{x)) = card U-"(T-"(x)).

From the surjectivity we then derive

cardf/-"(x)<cardF-"(x) , card T ^ J C ) < cardK-"(x).

By the monotonicity of the log-function we finish the proof by taking the
lim inf „ ̂  x and lim supn _ x.

THEOREM 3. Let T: S -» S be a surjection andhr(x) < oo. Furthermore let Tbe
imbeddable into an iterative semigroup, that is there exists a family of mappings T':
S - > S , ; e R ; , such that T° = id, T1 = T and Ts+I = Ts ° V = T' ° Ts for all t,
s e UQ. Then hr(x) exists for all t £ R j andhT,(x) = t • hT(x).

PROOF. One easily observes that T' is a surjection for all f e R J, since T is a
surjection. From Theorem 1 and Theorem 2, hr(x) exists for all r e Q, and
hr(x) = r • hT(x).

Consider now a fixed / 6 R J . Let (/•„) be a monotone increasing sequence
converging to t, rn e Q Q . Then

T'(x) = Tr-°T'-r"(x).

Now Tr" and T' ~r" commute by assumption, and from the lemma we have
hTrn{x) = rn • hT(x) < hr(x) < Jtr(x), and

lim hTra(x) = lim rn • hT(x) = t • hT(x) < hT,(x) < Jir{x).
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Let now (sn) be a monotone decreasing sequence converging to /, i B e Q j .

Similarly we conclude from T' ° T*"~' = Ts- that

lim hTsn(x) = lim sn • hT(x) = t • hT(x) > Jir{x) > hT,{x).
n —* oo n—* oo

Therefore t • hT(x) < hT,(x) < JiT,(x) ^ t • hT(x).

4. Orbit entropy and chaos

Since the paper of Li and Yorke [17] where they suggested the notion of
"chaos" to describe the irregular behaviour of the splinters of a continuous
self mapping of R, a number of authors have dealt with this notion and gener-
alized it to continuous (respectively differentiable) selfmappings of R", giving
sufficient conditions for chaos to appear (Diamond [9], Kloeden [15], Marotto
[19]). For the definitions of chaos and further notions that will appear throughout
this section we refer to the appendix. Since chaos appears in different ways it is
natural to ask whether it can be characterized quantitatively. We shall see that the
lower orbit entropy function provides a possibility to do this.

First we construct for a given mapping T: R " -» R " certain directed graphs, the
Straffin-graphs (Straffin [30], Burkart [8]). Let At and Aj be two nonvoid subsets
of W. We say that At and Aj are related by T if and only if T(At) 3 Aj or
T(Aj) 3 At. Let now Al,...,Ak c R"be nonvoid sets, where each set Ai is related
to at least one other set Aj, 1 < / < A:, 1 < j < k. We then consider the sets
Av...,Ak as vertices of a graph and draw a directed edge from At to Aj if and
only if T(At) D Aj. If Aj is covered by T(At) more than once, that is if there exist
disjoint subsets At, , 1 < m < p, of A{ with T(At ) D A}, we draw/? edges from At

to Aj. Note that the number p may not be exactly determined. The resulting graph
we call a Straffin-graph (S-graph) of T related to Ax,... ,Ak.

A q-cycle in a S-graph is a walk from a vertex Ai along the edges of the graph
back to Ajinq steps.

THEOREM 4. Let T: R" -» R" be continuous with a q-cycle Al,...,Aq in a
S-graph. Let furthermore mt denote the number of edges from At to Aj+1, i =
1, . . . ,q — 1, and mq the number of edges from Aq to Av If E f^m, > q, then
hT(x) > 0 for all x e A,, andhT(x) > ^Ef=1log m,.

PROOF. Let x e At. Since T\ Uf^iAi is surjective and h is increasing on the
splinter of x, and furthermore Ef.j/w, > q, we can assume without loss of
generality that x is not a periodic point of T (otherwise we consider a nonperiodic
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predecessor of x). Now
i

caidT-i(x) > Y\mi

by the disjointness of the Aik, 1 < k < mt, and therefore
<?

card T-ip(x) > El^f-
i = i

Since T\ Uf.j/l, is surjective we get log card T~r(x) > logU^im*, where 5 e N
is maximal such that q • s < r. Hence

5 log card T-r(x) > ^log Ylm] = ̂ - i log f l w,.
r r )=i r /=i

Let now e > 0 be arbitrary. Then for a certain ro(e) 6 Mwe have

Q- s > 1
r (1 + e)

for all r > r0, where 5 is maximal such that q • s < r. Hence

1 1 9

4 • liminf - log card T~r(x) > 7- r log Y\ mt
r-.oo r (.1 + e) 1 = 1

" 1 = 1

Since Ef=1m, > r̂, there exists a least one w, withw, > 2. Therefore A(x) > 0.

THEOREM 5. Let T: U" -» R" fee continuous and let there exist an S-graph of T
that contains at least two cycles Ax,... ,Aq and Bu... ,Bp with A{ = Bjfor apair i, j
and at least one Bu that is disjoint from all At, i = \,...,q. Then h{x) > 0 for all
x e Uf.i^,- U U*.iBj, andh(x) > \/q • p.

PROOF. Without loss of generaUty we may again assume that an arbitrary point
x G At is nonperiodic (otherwise we consider a predecessor of x). From the
assumptions of the theorem it follows that x has at least two different predeces-
sors under Tpq. From the surjectivity of T\ Uf.1Ai U U^-By we conclude that
card T~m{x) > 2k, where i e M i s maximal such that/7 • q • k < m. By a reason-
ing similar to the proof of Theorem 4 we now find that

p • q liminf— log card T~m(x) > rl°g2 for all e > 0,
m-*oo m (1 + e)

and therefore h(x)^ yr^. From the monotonicity of h on the splinters of T it
follows that this result holds for all x e Df^lAi U Wj=1Bj.
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REMARK. If one knows the structure of the S-graph more precisely one can
derive better results. For example, the famous 3-periodic continuous functions of
an interval of / c R that are studied by Li-Yorke [17] allow for S-graphs that
consist of a two-cycle and a loop (Straffin [30]). Therefore h(x) ^ 1/2 from
Theorem 5. From the special structure of this S-graph it is, however, easy to see
that card T~m(x) > vm for x^ At U A2, where vm = vm_1 + vm_2,

 v\ = 1> V2 = 2-
We therefore have the Fibonacci numbers for an estimation:

= log1 +-^5 = 0.69424

COROLLARY. Let T: R -» R be continuous and chaotic. Then there exists a
nonvoidset A c R with hT(x) > 0 for allx e A.

PROOF. Since T is chaotic, there exists a point of period not a power of two.
Therefore an S-graph fulfilling the assumptions of Theorem 5 can be constructed
(Burkart [7]).

We now study the case of chaos in R", that is, the sufficient conditions for
chaos given by Kloeden [15] and Marotto [19].

THEOREM 6. Let T: R" -> R" be continuous and let A c W and B <zU" be
nonvoid compact sets such that there exist nx,n2 e N for which

(a) A c T(A),
(b) Be A,
(c)T">(B)nA = 0,

Thenh(x) > l / ^ + n2)forallx e A.

PROOF. From (d) and (b) we have T"l+"2(B) => A z> B. Since B is compact
there exists a nonvoid compact set D c B c A such that T"1 + "2(D) = A by the
continuity of T"l + "2. From (c) we then conclude that

(i) r " ' (D) nA = 0.

Consider now the S-graph of T that is given by the sets A, T(D), T2(D),...,
T"1 + "2(D) = A. The graph consists of a cycle of length nl + n2 and a loop in A
by (a). From (1) we conclude that the conditions of Theorem 5 are fulfilled, and
thereforeh(x) > ! / («! + n2) for all* e A U U,"lt"2

https://doi.org/10.1017/S1446788700026537 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026537


106 Uhland Burkart [12]

REMARK. The chaos-conditions of Kloeden are somewhat stronger than the
conditions (a)-(d) (see appendix). It is therefore reasonable to propose that the
class of transformations T: U" -* R" with positive entropy functions is greater
than the class of chaotic functions. A proof of this assumption unfortunately is
still missing, with the exception of the case n = 1. For this case an example has
been given by Burkart [7].

THEOREM 7. Let T: W -* U" be differentiable and let there exist a snap-back
repeller for T. Then there exists a nonvoid, compact set A c R" with h(x) > 0 for
allx <= A.

PROOF. Let z be the snap-back repeller. This means (Marotto [19]) that there
exist s > 0 j e Us(z) and v e N such that Tk{y) £ Us(z) for 1 < k < v, and
Tv{y) = z. Moreover, T is expansive on Us(z). Since y e Us(z), there exists an
e > 0 such thaty e Us_e(z). Let A := t/s_E(z). Then A is nonvoid and compact.
Now we take my, 1 < m1 < v, such that Tmi(y) <£ Us(z), whence Tmi(y) <£ A.
Since rm> is continuous, we can choose Us(y) such that for B := Us(y) we have
that B is nonvoid, compact, B <z A and Tm'(B)nA = 0 . Now Tv(y) = z,
whence Tm(y) = z for m > v, since z is a fixed point of T. Note that Tm is
expansive on Us(z), since T is expansive, and therefore we can choose m2 e N,
Tmi(B) D A. Finally, we have T(A) D A from the expansitivity of T on ,4 c
Us{z). Hence the conditions of Theorem 5 are fulfilled.

5. Discussion

The proposed notion of orbit entropy functions has been shown to make sense
since these functions fulfill the conditions that one likes to have for an entropy.
Furthermore this type of entropy can be used to estimate quantitatively the
amount of chaos that appears in the description of some systems. If, for example,
one considers the transformation T: [0,1] -» [0,1], T(x)'-= r • x(l — x) that is
often considered as a model for biological populations depending on the parame-
ter r, one can easily discuss the S-graphs of T that are changing their form under
variation of r. With increasing r (0 < r < A), more and more complicated
splinters appear (Guckenheimer et al. [11]), entering into a chaos situation for a
critical r. The structure of the chaos changes by further increase of r and results in
an increase of the orbit entropy functions (Burkart [7]). The same behaviour can
be observed in higher dimensional models (Guckenheimer et al. [11], Marotto
[19]), and the entropy functions behave accordingly. It has to be stated, however,
that up to now we have only obtained estimations for the entropy, and there is a
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lot of work to be done: for example to find classes of transformations for which
the entropy functions exist and can be derived. Unfortunately not very much is
known about the orbit structures of functions (see Targonski [31]).

Let us conclude with some remarks on the connection between topological
entropy and orbit entropy. Clearly the notions are different since topological
entropy makes sense for homeomorphisms, whereas our entropy is zero for
bijections. But let us consider the class H of piecewise strictly mono tonic
continuous selfmappings of an interval / c R. For T e H, let sT denote the
topological entropy and let cn be the number of extrema of T" in /. Then
sT = limn_00 i log cn < oo, as Misiurewicz and Szlenk [23] have proven. On the
other hand we clearly have card T~"(x) < cn for all x e / and therefore hT(x)
^JiT(x) < sT for all x e /. If, moreover, T maps every interval where T is
either strictly increasing or strictly decreasing onto the whole of /, we find
hT(x) = JiT(x) = sT for all x e /. As a consequence we get an easy proof of a
theorem of Adler and McAndrew [2] that states that sT^ = log n, where the Tn are
the CebySev polynomials on [-2,2] (see our example).

The main advantage of our entropy, at least in our opinion, seems to be that we
treat entropy functions.

Kloeden [14] has shown that one can construct functions that are chaotic on an
arbitrarily small interval and show absolutely regular behaviour elsewhere, even
perhaps the identity outside these small intervals. Now Bowen and Franks [6]
prove that these functions have positive topological entropy, depending on the
appearance of periodic points (see definition of chaoticity in the appendix).
Therefore topological entropy only indicates that there is chaos but gives no
measure at all on how "serious" this has to be taken. An entropy function clearly
overcomes this disadvantage since it states at which "places" chaos actually
appears.

The connection between our entropy and topological entropy in other classes
than H, as well as the connection to other mentioned entropies, is unknown and
may initiate further work.

Appendix

In this appendix we give, for the convenience of the reader, a few definitions
and results related to "chaos" that are directly connected to our theorems.

DEFINITION. A mapping T: S -* S has a k-periodic point x e S if the points x,
T(x),..., Tk~\x) are a A:-cycle under T.

https://doi.org/10.1017/S1446788700026537 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026537


108 Uhland Burkart [14]

DEFINITION (Li-Yorke [17], Kloeden [15]). A continuous mapping T: R" -* R"
is called chaotic if

(1) there exists an JV O GM such that T has periodic points of all periods
p > N0,p e N;

(2) there exists an uncountable set S c R " containing no periodic points such
that

(a) T(S) c S,
(b) for all x, y e S, x * y,
(cOlimsup^Jir-CO - T"(y)\\ > 0,
(B) liminf H^\\Tn(x) - T"(y)\\ = 0,
(c) for all x e S and all periodic points <? e R",

x ) - T"{q)\\> 0.

DEFINITION. A mapping T: U" -» U" is expanding on a set 4̂ c R" if there
exists a constant X > 1 such that A||JC — _y|| < imx) - 7XJOII f°r a u »̂ y e ^>

DEFINITION. An m-ball is a closed ball of finite radius in U m.

DEFINITION (Marotto [19]). Let T: U" -» R" with T(z) = z for a z e R". Then
z is an expansive fixed point of T if there exists a neighborhood Ur(z) such that 7"
is differentiable in Ur(z), and all eigenvalues of DT(x) exceed 1 in absolute value
for all x <= Ur(z).

DEFINITION (Marotto [19]). A point z e R " is called a snap-back repeller of a
mapping T: W -> R"if

(a) z is an expansive fixed point of T in a neighborhood Ur(z),

(b) there exists y e C/r(z), y ^ z, such that r m ( ^ ) = z for an m e Î J, and

det(Drm(>0) * 0.

THEOREM (Li-Yorke [17]). Let T: U -» R fee continuous and have a ^-periodic
point. Then T is chaotic.

THEOREM (Kloeden [15]). Let T: M" -> M" be a continuous mapping and suppose
that there exist nonempty compact sets A and B and integers 1 < m < n and nv

n 2 > 1 such that
(1) A is homeomorphic to an m-ball,
(2) T(A) D A,
(3) T is expanding on A,
(4) B c A,
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(5)T"i(B)nA = 0 ,
(6)T">+n*(B)Z) A,
(7) T"'+"2 is one-to-one on B.

Then A is chaotic.

THEOREM (Marotto [19]). If T: U" -> U" has a snap-back repeller, then T is
chaotic.
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