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Abstract

We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with
Metropolis–Hastings updates, resulting in a conditional Metropolis–Hastings sampler
(CMH sampler). We develop conditions under which the CMH sampler will be
geometrically or uniformly ergodic. We illustrate our results by analysing a CMH sampler
used for drawing Bayesian inferences about the entire sample path of a diffusion process,
based only upon discrete observations.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are an extremely popular way of approxi-
mately sampling from complicated probability distributions (see, e.g. [1], [6], [29], and [42]).
In multivariate settings it is common to update the different components individually. If these
updates are all drawn from full-conditional distributions then this corresponds to the Gibbs
sampler. Conversely, if these updates are produced by drawing from a proposal distribution and
then either accepting or rejecting the proposed state, then this corresponds to the componentwise
Metropolis–Hastings algorithm (sometimes called the Metropolis–Hastings-within-Gibbs). We
consider the mixed case in which some components are updated as in the Gibbs sampler, while
other components are updated as in componentwise Metropolis–Hastings. Such chains arise
when full-conditional updates are feasible for some components but not for others, which is
true of the discretely observed diffusion example considered in Section 5.

For this mixed case, we shall prove various results about theoretical properties such as
geometric ergodicity. Geometric ergodicity is an important stability property for MCMC,
used, e.g. to establish central limit theorems [2], [11], [25] and to calculate asymptotically
valid Monte Carlo standard errors [5], [14]. While there has been much progress in proving
geometric ergodicity for many MCMC samplers (see, e.g. [7], [8], [9], [13], [17], [18], [24],
[27], [31], [33], [36], [37], [41]), doing so typically requires difficult theoretical analysis.
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Convergence of conditional Metropolis–Hastings samplers 423

For ease of exposition, we begin with the two-variable case and defer consideration of
extensions to more than two variables to Section 4. Let π be a probability distribution having
support X×Y, and let πX | Y and πY | X denote the associated conditional distributions. Suppose
that πY | X has a density fY | X, and that πX | Y has density a fX | Y . There are several potential
componentwise MCMC algorithms, each having π as its invariant distribution. If it is possible
to simulate from πX | Y and πY | X, then one can implement a deterministic-scan Gibbs sampler,
which we now describe. Suppose that the current state of the chain is (Xn, Yn) = (x, y). Then
the next state, (Xn+1, Yn+1), is obtained as follows.

Algorithm 1. (Iteration n + 1 of the deterministic-scan Gibbs sampler (DUGS).)

1. Draw Yn+1 ∼ πY | X(· | x), and call the observed value y′.

2. Draw Xn+1 ∼ πX | Y (· | y′).

However, sometimes one or both of these steps will be computationally infeasible, neces-
sitating the use of alternative algorithms. In particular, suppose that we continue to simulate
directly from πY | X, but use a Metropolis–Hastings algorithm for πX | Y with proposal density
q(x′ | x, y′). This results in a conditional Metropolis–Hastings sampler, which we now
describe. If the current state of the chain is (Xn, Yn) = (x, y) then the next state, (Xn+1, Yn+1),
is obtained as follows.

Algorithm 2. (Iteration n + 1 of the conditional Metropolis–Hastings (CMH) sampler.)

1. Draw Yn+1 ∼ πY | X(· | x), and call the observed value y′.

2. Draw V ∼ q(· | x, y′), and call the observed value v. Independently draw U ∼
Uniform(0, 1). Set Xn+1 = v if

U ≤ fX | Y (v | y′)q(x | v, y′)
fX | Y (x | y′)q(v | x, y′)

;

otherwise, set Xn+1 = Xn

As is well known, DUGS is a special case of the CMH sampler where the proposal is taken
to be the conditional, that is, q(x′ | x, y′) = fX | Y (x′ | y′) [29]. Thus, it is natural to suspect
that the convergence properties of DUGS and the CMH sampler may be related. On the other
hand, while geometric ergodicity of the Gibbs sampler has been extensively studied [17], [21],
[24], [31], the CMH sampler has received comparatively little attention [10].

If the proposal distribution for x′ does not depend on the previous value of x, i.e. if
q(x′ | x, y′) = q(x′ | y′), then in the CMH sampler the X values are updated as in an
independence sampler (see, e.g. [30] and [42]), conditional on the current value of Y . We
thus refer to this special case as a conditional independence sampler (CIS). It is known that an
independence sampler will be uniformly ergodic provided that the ratio of the target density
to the proposal density is bounded [16], [19], [33], [40]. Intuitively, this suggests that the
resulting CIS will have convergence properties similar to those of the corresponding DUGS;
we will explore this question herein.

This paper is organised as follows. In Section 2 we present preliminary material, including
a general Markov chain comparison theorem (Theorem 1). In Section 3 we derive various
convergence properties of the CMH sampler, including uniform ergodicity in terms of the
conditional weight function (Theorems 2 and 3) and uniform return probabilities (Theorem 4),
and geometric ergodicity via a comparison to DUGS (Theorem 5). In Section 4 we extend
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many of our results from the two-variable setting to higher dimensions. Finally, in Section 5
we apply our results to an algorithm for drawing Bayesian inferences about the entire sample
path of a diffusion process based only upon discrete observations.

Remark 1. The focus of our paper is on qualitative convergence properties such as uniform
and geometric ergodicity. However, a careful look at the proofs will show that many of our
results actually provide explicit quantitative bounds on spectral gaps or minorisation constants
for the algorithms that we consider.

2. Preliminaries

We begin with an account of essential preliminary material.

2.1. Background about Markov chains

Let P be a Markov transition kernel on a measurable space (Z, F ). Thus, P : Z × F →
[0, 1] such that, for each A ∈ F , P(·, A) is a measurable function, and, for each z ∈ Z,
P(z, ·) is a probability measure. If � = {Z0, Z1, . . .} is the Markov chain with transitions
governed by P then, for any positive integer n, the n-step Markov transition kernel is given by
P n(z, A) = Pr(Zn+j ∈ A | Zj = z), which is assumed to be the same for all times j .

Let ν be a measure on (Z, F ) and A ∈ F , and define

νP (A) =
∫

ν(dz)P (z, A)

so that P acts to the left on measures. Let π be an invariant probability measure for P , that is,
πP = π . Also, if f is a measurable function on Z, let

Pf (z) =
∫

f (y)P (z, dy)

and

π(f ) =
∫

f (z)π(dz).

Let ||P n(z, ·) − π(·)||TV = supA∈F |P n(z, A) − π(A)| be the usual total variation distance.
Then P is geometrically ergodic if there exists a real-valued function M(z) on Z and 0 < t < 1
such that, for π -almost every z ∈ Z,

||P n(z, ·) − π(·)||TV ≤ M(z)tn. (1)

Moreover, P is uniformly ergodic if (1) holds and supz M(z) < ∞.
Uniform ergodicity is equivalent to a so-called minorisation condition (see, e.g. [20] and

[29]). That is, P is uniformly ergodic if and only if there exists a positive integer m ≥ 1, a
constant ε > 0, and a probability measure Q on Z such that, for all z ∈ Z,

P m(z, A) ≥ εQ(A), A ∈ F , (2)

in which case we say that P is m-minorisable.
Establishing geometric ergodicity is most commonly done by establishing various Foster–

Lyapounov criteria [12], [20], [29], but these will play no role here. Instead we will focus on
another characterisation of geometric ergodicity that is appropriate for reversible Markov chains.
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Let L2(π) be the space of measurable functions that are square integrable with respect to the
invariant distribution, and let

L2
0,1(π) = {f ∈ L2(π) : π(f ) = 0 and π(f 2) = 1}.

For f, g ∈ L2(π), define the inner product as

(f, g) =
∫

Z
f (z)g(z)π(dz)

and ‖f ‖2 = (f, f ). The norm of the operator P (restricted to L2
0,1(π)) is

‖P ‖ = sup
f ∈L2

0,1(π)

‖Pf ‖.

If P is reversible with respect to π , that is, if

P(z, dz′)π(dz) = P(z′, dz)π(dz′), (3)

then P is self-adjoint so that (Ph1, h2) = (h1, Ph2). In this case,

‖P ‖ = sup
f ∈L2

0,1(π)

|(Pf, f )|. (4)

Let P0 denote the restriction of P to L2
0,1(π), and let σ(P0) be the spectrum of P0. The

spectral radius of P0 is
r(P0) = sup{|λ| : λ ∈ σ(P0)},

while the spectral gap of P is gap(P ) = 1 − r(P0). If P is reversible with respect to π and,
hence, self-adjoint, then σ(P0) ⊆ [−1, 1], and also r(P0) = ‖P ‖ (since we defined ‖P ‖ as
being with respect to L2

0,1(π) only). Finally, if P is reversible with respect to π then P is
geometrically ergodic if and only if gap(P ) > 0, or, equivalently, ‖P ‖ < 1 [25].

2.2. A comparison theorem

Our goal in this section is to develop and prove a simple but powerful comparison result,
similar in spirit to [3] and to Peskun orderings [22], [43], which we shall use in the sequel to
help establish uniform and geometric ergodicity of the CMH sampler.

Theorem 1. Suppose that P and Q are Markov kernels and that there exists δ > 0 such that

P(z, A) ≥ δQ(z, A), A ∈ F , z ∈ Z. (5)

(i) If P and Q have invariant distribution π and Q is uniformly ergodic, then so is P .

(ii) If P and Q are reversible with respect to π and Q is geometrically ergodic, then so is P .

Proof. (i) Note that (5) implies that, for all n,

P n(z, A) ≥ δnQn(z, A), A ∈ F , z ∈ Z.

Since Q is uniformly ergodic, by (2) there exists an integer m ≥ 1, ε > 0, and probability
measure ν such that

Qm(z, A) ≥ εν(A), A ∈ F , z ∈ Z.
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Putting these two observations together gives a minorisation condition for P , and, hence, yields
the claim in (2).

(ii) Let A ∈ F , and define

R(z, A) = P(z, A) − δQ(z, A)

1 − δ
.

Using (5) shows that R is a Markov kernel. Also,

P(z, A) = δQ(z, A) + (1 − δ)R(z, A).

Let P0, Q0, and R0 denote the restrictions of P , Q, and R, respectively, to L2
0,1(π). Since P

is reversible with respect to π , and ‖R‖ ≤ 1 so r(R0) ≤ 1, we have, by (4),

r(P0) = r
(
δQ0 + (1 − δ)R0

)
= sup

f ∈L2
0,1(π)

|δ(Q0f, f ) + (1 − δ)(R0f, f )|

≤ δ
[

sup
f ∈L2

0,1(π)

|(Q0f, f )|
]

+ (1 − δ)
[

sup
f ∈L2

0,1(π)

|(R0f, f )|
]

= δ r(Q0) + (1 − δ)r(R0)

≤ δ r(Q0) + (1 − δ).

Hence,

gap(P ) = 1 − r(P0) ≥ 1 − [δ r(Q0) + (1 − δ)] = δ[1 − r(Q0)] = δgap(Q).

Since Q is geometrically ergodic, gap(Q) > 0, and, hence, gap(P ) > 0. Therefore, P is
geometrically ergodic.

2.3. The Markov chain kernels

We formally define the Markov chain kernels for the various algorithms described in
Section 1. While we focus on the case of two variables here and in Section 3, in Section 4 we
consider extensions to more general settings.

Let (X, FX, μX) and (Y, FY , μY ) be two σ -finite measure spaces, and let (Z, F , μ) be
their product space. Let π be a probability distribution on (Z, F , μ) which has a density
f (x, y) with respect to μ. Then the marginal distributions πX and πY of π have densities given
by

fX(x) =
∫

Y
f (x, y)μY (dy) (6)

and similarly for fY (y). By redefining X and Y if necessary, we can (and do) assume that

fX(x) > 0 for all x ∈ X and fY (y) > 0 for all y ∈ Y. (7)

The corresponding conditional densities are then given by fX | Y (x | y) = f (x, y)/fY (y) and
fY | X(y | x) = f (x, y)/fX(x).

Define a Markov kernel for a Y update by

PGS:Y (x, A) =
∫

{y : (x,y)∈A}
fY | X(y | x)μY (dy),
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and similarly an X update is described by the Markov kernel

PGS:X(y, A) =
∫

{x : (x,y)∈A}
fX | Y (x | y)μX(dx).

We can define the Markov kernel for the DUGS by the composition of X and Y updates, i.e.
PDUGS = PGS:Y PGS:X which corresponds to doing first a Gibbs sampler Y -move and then a
Gibbs sampler X-move. That is, the DUGS Markov chain updates first Y and then X: schemat-
ically, (x, y) → (x, y′) → (x′, y′). If kDUGS(x′, y′ | x, y) = fY | X(y′ | x)fX | Y (x′ | y′) then
we can also write this as

PDUGS((x, y), A) =
∫

A

kDUGS(x′, y′ | x, y)μ(d(x′, y′)), A ∈ F .

Note that πPDUGS = π , i.e. π is a stationary distribution for PDUGS, although PDUGS is not
reversible with respect to π . Also, note that DUGS depends on the current state (x, y) only
through x. For DUGS, the following simple lemma is sometimes useful (and will be applied
in Section 5).

Proposition 1. If the Y -update of PDUGS is 1-minorisable, in the sense that there exists a ε > 0
and a probability measure ν such that PGS:Y (x, A) ≥ εν(A) for all x and A, then PDUGS is
1-minorisable.

Proof. The result follows from noting that

PDUGS((x, y), A × B) ≥ ε

∫
B

ν(dy′)PGS:X(y′, A),

which is a 1-minorisation of PDUGS as claimed.

Remark 2. We could have considered the alternative update order (x, y) → (x′, y) → (x′, y′),
resulting in the Markov kernel P ∗

DUGS = PGS:XPGS:Y , which will play a role in Section 3.2. Note
that, with essentially the same argument as in Proposition 1, if the X-update is 1-minorisable
then so is P ∗

DUGS.

A related algorithm, the random-scan Gibbs sampler (RSGS) with selection probability
p ∈ (0, 1) proceeds by either updating Y ∼ PGS:Y with probability p, or updating X ∼ PGS:X
with probability 1 − p. The RSGS has kernel

PRSGS = pPGS:Y + (1 − p)PGS:X,

i.e.
PRSGS((x, y), A) = pPGS:Y (x, A) + (1 − p)PGS:X(y, A).

It follows that PRSGS is reversible with respect to π . Furthermore, it is well known (see, e.g.
[10] and [25]) that if PDUGS is uniformly ergodic then so is PRSGS (as follows immediately
from (2), since we always have P 2n

RSGS(z, A) ≥ (p(1 − p))nP n
DUGS(z, A)). We also have the

following result.

Proposition 2. If PRSGS is geometrically ergodic for some selection probability p∗ then it is
geometrically ergodic for all selection probabilities p ∈ (0, 1).
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Proof. For p ∈ (0, 1), let PRSGS,p be the RSGS kernel using selection probability p, so that
if A ∈ F then

PRSGS,p((x, y), A) = pPGS:Y (x, A) + (1 − p)PGS:X(y, A).

It follows immediately that

PRSGS,p ≥
(

p

p∗ ∧ 1 − p

1 − p∗

)
PRSGS,p∗ .

Since PRSGS,p and PRSGS,p∗ are each reversible with respect to π , the claim follows from
Theorem 1.

Next, consider the deterministically updated CMH sampler which first updates Y with a
Gibbs update, and then updates X with a Metropolis–Hastings update: schematically, (x, y) →
(x, y′) → (x′, y′). In this case, the Y update follows precisely the same kernel PGS:Y as above.
To define the X update, let q(x′ | x, y′) be a proposal density, and set

α(x′, x, y′) =
[

1 ∧ fX | Y (x′ | y′)q(x | x′, y′)
fX | Y (x | y′)q(x′ | x, y′)

]

and

r(x, y′) = 1 −
∫

q(x′ | x, y′)α(x′, x, y′)μX(dx′).

Then the X update follows the Markov kernel defined by

PMH:X((x, y′), A) =
∫

{x′ : (x′,y′)∈A}
q(x′ | x, y′)α(x′, x, y′)μX(dx′) + r(x, y′)1{(x,y′)∈A}.

By construction, PMH:X is reversible with respect to π (though it only updates the x coordinate,
while leaving the y coordinate fixed).

In terms of these individual kernels, we can define the Markov kernel for the CMH sampler by
their composition, corresponding to doing first a Gibbs sampler Y -move and then a Metropolis–
Hastings X-move:

PCMH = PGS:Y PMH:X.

It then follows that πPCMH = π , but PCMH is not reversible with respect to π . It is also
important to note that, because of the update order we are using, PCMH depends on the current
state (x, y) only through x. Finally, if

kCMH(x′, y′ | x, y) = fY | X(y′ | x)q(x′ | x, y′)α(x′, x, y′)

then by construction we have

PCMH((x, y), A) ≥
∫

A

kCMH(x′, y′ | x, y)μ(d(x′, y′)), A ∈ F .

We will also consider the random-scan CMH (RCMH) sampler. For any fixed selection
probability p ∈ (0, 1), the RCMH sampler is the algorithm which selects the Y coordinate with
probability p, or selects the X coordinate with probability 1 − p, and then updates the selected
coordinate as in the CMH algorithm (i.e. from a full-conditional distribution for Y , or from a

https://doi.org/10.1239/aap/1401369701 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369701


Convergence of conditional Metropolis–Hastings samplers 429

conditional Metropolis–Hastings step for X), while leaving the other coordinate unchanged.
Hence, its kernel is given by

PRCMH = pPGS:Y + (1 − p)PMH:X.

Then PRCMH is reversible with respect to π . A similar argument to that given above relating
the uniform ergodicity of PDUGS to that of PRSGS shows that, if PCMH is uniformly ergodic
then so is PRCMH for any selection probabilities [10, Theorem 2].

If the proposal distribution for x′ does not depend on the previous value of x, i.e. if
q(x′ | x, y′) = q(x′ | y′), then the CMH algorithm becomes the CIS. In this case, we will
continue to use all the same notation as for the CMH sampler above, except omitting the
unnecessary x arguments.

2.4. Embedded X-chains

When studying geometric ergodicity, Theorem 1(ii) does not apply directly to PDUGS and
PCMH since they are not reversible with respect to π . However, each of these samplers does
produce marginal X-sequences which are reversible with respect to the marginal distribution
πX (with density as in (6)). Moreover, as we discuss below, if either of these X-sequences
is geometrically ergodic then so is the corresponding parent sampler. For this reason, it is
sometimes useful to study the marginal X-sequences embedded within these Markov chains.

Consider the DUGS Markov chain. Define

kX(x′ | x) =
∫

Y
fX | Y (x′ | y)fY | X(y | x)μY (dy),

and note that the marginal sequence {X0, X1, . . .} is a Markov chain having kernel

P X
DUGS(x, A) =

∫
A

kX(x′ | x)μX(dx′), A ∈ FX.

Now PDUGS has π as its invariant distribution while P X
DUGS has the marginal distribution πX

as its invariant distribution and, in fact, P X
DUGS is reversible with respect to πX. Moreover, it

is well known that PDUGS and P X
DUGS converge to their respective invariant distributions at the

same rate [17], [23], [28]. This has been routinely exploited in the analysis of two-variable
Gibbs samplers where P X

DUGS may be much easier to analyze than PDUGS.
Now consider the CMH algorithm, and let its resulting values be Y0, X0, Y1, X1, Y2, X2, . . ..

This sequence in turn provides a marginal sequence, X0, X1, . . . , which is itself a Markov chain
on X, since the PGS:Y update within the CMH algorithm depends only on the previous X value,
not on the previous Y value, and, hence, the future chain values depend only on the current
value of X, not the current value of Y . (This is a somewhat subtle point which would not be true
if the CMH algorithm were instead defined to update first X and then Y .) Thus, this marginal
X-sequence has its own Markov transition kernel on (X, FX), say P X

CMH(x, A), and if

hX(x′ | x) =
∫

Y
fY | X(y′ | x)q(x′ | x, y′)α(x′, x, y′)μY (dy′),

it follows by construction that

P X
CMH(x, A) ≥

∫
A

hX(x′ | x)μX(dx′), A ∈ FX.
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Note that PCMH and P X
CMH have invariant distributions π and πX, respectively. Now PCMH is

not reversible with respect to π , but we shall show that P X
CMH is reversible with respect to πX.

Indeed, first note that, by construction,

PMH:X((x, y), (dx′, y))πX | Y (dx | y) = PMH:X((x′, y), (dx, y))πX | Y (dx′ | y).

Now we compute

P X
CMH(x, dx′)πX(dx) = πX(dx)

∫
Y

PMH:X((x, y), (dx′, y))πY | X(dy | x)

=
∫

Y
PMH:X((x, y), (dx′, y))π(dx, dy)

=
∫

Y
PMH:X((x, y), (dx′, y))πX | Y (dx | y)πY (dy)

=
∫

Y
PMH:X((x′, y), (dx, y))πX | Y (dx′ | y)πY (dy)

=
∫

Y
PMH:X((x′, y), (dx, y))π(dx′, dy)

= πX(dx′)
∫

Y
PMH:X((x′, y), (dx, y))πY | X(dy | x′)

= P X
CMH(x′, dx)πX(dx′),

and conclude that P X
CMH is reversible with respect to πX.

It is straightforward to see that, in the language of [28], the embedded chain P X
CMH is

deinitialising for PCMH. This implies that if P X
CMH is geometrically (or uniformly) ergodic then

PCMH is geometrically (or uniformly) ergodic [28, Theorem 1]. In fact, it is not too hard to
show the converse [10] and conclude that P X

CMH is geometrically (or uniformly) ergodic if and
only if PCMH is geometrically (or uniformly) ergodic.

3. Ergodicity properties of the CMH sampler

Our goal in this section is to derive ergodicity properties of the CMH sampler in terms of
those of the corresponding Gibbs sampler. We focus on the case of two variables; this is done
mainly for ease of exposition, and we will see in Section 4 that many of the results carry over
to a more general setting.

3.1. Uniform ergodicity of the CMH sampler via the weight function

Analogous to previous studies of the usual full-dimensional independence sampler [16],
[19], [33], [40], we define the (conditional) weight function by

w(x′, x, y′) := fX | Y (x′ | y′)
q(x′ | x, y′)

, x′, x ∈ X, y′ ∈ Y.

(In the case of CIS, the weight function reduces to w(x′, y′) = fX | Y (x′ | y′)/q(x′ | y′).) We
shall see that these weight functions are key to understanding the ergodicity properties of the
CMH sampler. We begin with a simple lemma.
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Lemma 1. It holds that

kCMH(x′, y′ | x, y) = kDUGS(x′, y′ | x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

Proof. Note that

kCMH(x′, y′ | x, y) = fY | X(y′ | x)q(x′ | x, y′)α(x′, x, y′)

= fY | X(y′ | x)fX | Y (x′ | y′)
[

q(x′ | x, y′)
fX | Y (x′ | y′)

∧ q(x | x′, y′)
fX | Y (x | y′)

]

= kDUGS(x′, y′ | x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

Say that w is bounded if
sup

x′,x,y′
w(x′, x, y′) < ∞

and is X-bounded if there exists C : Y → (0, ∞) such that

sup
x′,x

w(x′, x, y′) ≤ C(y′), y′ ∈ Y.

We then have the following result.

Theorem 2. If w is bounded and PDUGS is uniformly ergodic, then PCMH is uniformly ergodic.

Proof. By Lemma 1 we have

kCMH(x′, y′ | x, y) = kDUGS(x′, y′ | x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

Since w is bounded, there exists a constant C < ∞ such that

kCMH(x′, y′ | x, y) ≥ 1

C
kDUGS(x′, y′ | x, y),

and, hence,

PCMH((x, y), A) ≥ 1

C
PDUGS((x, y), A), A ∈ F .

The result now follows from Theorem 1.

As noted above, uniform ergodicity of deterministic-scan algorithms immediately implies
uniform ergodicity of the corresponding random-scan algorithm, so we immediately obtain the
following result.

Corollary 1. If w is bounded and PDUGS is uniformly ergodic, then PRCMH is uniformly ergodic
for any selection probability p ∈ (0, 1).

The condition on w in Theorem 2 can be weakened if we strengthen the assumption on the
Gibbs sampler.

Theorem 3. Suppose that w is X-bounded, and that there exists a nonnegative function g on
Z, with μ{(x, y) : g(x, y) > 0} > 0, such that, for all x and y,

kDUGS(x′, y′ | x, y) ≥ g(x′, y′). (8)

Then PCMH is uniformly ergodic.
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Proof. By Lemma 1 we have

kCMH(x′, y′ | x, y) = kDUGS(x′, y′ | x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

That w is X-bounded implies that there exists a C : Y → (0, ∞) such that

kCMH(x′, y′ | x, y) ≥ 1

C(y′)
kDUGS(x′, y′ | x, y),

and, using (8), we obtain

kCMH(x′, y′ | x, y) ≥ g(x′, y′)
C(y′)

.

Letting

ε =
∫

X×Y

g(x, y)

C(y)
μ(d(x, y)) > 0 and h(x, y) = ε−1 g(x, y)

C(y)
,

we have

PCMH((x, y), A) ≥ ε

∫
A

h(u, v)μ(d(u, v)), A ∈ F .

That is, PCMH is 1-minorisable and, hence, is uniformly ergodic.

Remark 3. Note that condition (8) implies that PDUGS is 1-minorisable.

Once again, the corresponding random-scan result follows immediately.

Corollary 2. If w is X-bounded, and condition (8) holds, then PRCMH is uniformly ergodic for
any selection probability p ∈ (0, 1).

3.2. A counterexample

In this section we show that Theorem 3 might not hold if PDUGS is just 2-minorisable (as
opposed to 1-minorisable). We begin with a lemma about interchanging the update orders for
Gibbs samplers. Specifically, define the Markov kernel P ∗

DUGS to represent the Gibbs sampler
which updates first X and then Y : (x, y) → (x′, y) → (x′, y′). This kernel has transition
density

k∗
DUGS(x′, y′ | x, y) = fX | Y (x′ | y)fY | X(y′ | x′).

Lemma 2 below shows that we can convert a 1-minorisation for P ∗
DUGS into a 2-minorisation

for PDUGS.

Lemma 2. Suppose that there exists a nonnegative function g on Z, with μ{(x, y) : g(x, y) >

0} > 0, such that, for all x and y,

k∗
DUGS(x′, y′ | x, y) ≥ g(x′, y′).

Then there exists ε > 0, and a probability measure ν on Z, such that, for all x and y,

P 2
DUGS((x, y), A) ≥ εν(A), A ∈ F .
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Proof. We compute that

k2
DUGS(x′, y′ | x, y)

=
∫

X

∫
Y

kDUGS(x′, y′ | u, v)kDUGS(u, v | x, y)μY (dv)μX(du)

=
∫

X

∫
Y

fY | X(y′ | u)fX | Y (x′ | y′)fY | X(v | x)fX | Y (u | v)μY (dv)μX(du)

=
∫

X

∫
Y

fX | Y (x′ | y′)fY | X(v | x)[fX | Y (u | v)fY | X(y′ | u)]μY (dv)μX(du)

=
∫

X

∫
Y

fX | Y (x′ | y′)fY | X(v | x)k∗
DUGS(u, y′ | x, v)μY (dv)μX(du)

≥
∫

X

∫
Y

fX | Y (x′ | y′)fY | X(v | x)g(u, y′)μY (dv)μX(du)

=
∫

X
fX | Y (x′ | y′)g(u, y′)

[∫
Y

fY | X(v | x)μY (dv)

]
μX(du)

=
∫

X
fX | Y (x′ | y′)g(u, y′)μX(du)

=: h(x′, y′).

Note that our assumption on g, and assumption (7), ensures that μ{(x, y) : h(x, y) > 0} >

0. It follows that
∫

h(x′, y′)μ(d(x′, y′)) > 0. The result then follows by setting ε =∫
h(x′, y′)μ(d(x′, y′)) and ν(A) = ε−1

∫
A

h(x′, y′)μ(d(x′, y′)).

We now proceed to our counterexample.

Proposition 3. It is possible that PDUGS is uniformly ergodic and, in fact, 2-minorisable, and
furthermore w is X-bounded, but PCMH fails to be even geometrically ergodic.

Proof. Let π be the distribution on (0, ∞)2 with density function f (x, y) = 1
2 e−y1A(x, y),

where A is the union of the squares (m, m + 1] × (m − 1, m] for m = 1, 2, 3 . . . together with
the infinite rectangle (0, 1] × (0, ∞) (see Figure 1).

We consider the CIS version of the CMH sampler. Let q(x′ | y′) be the density of the
Normal(0, 1/y′) distribution. Then, for m − 1 < y ≤ m,

w(x, y) := fX | Y (x | y)

q(x | y)
= 1[0,1]∪(m,m+1](x)/2√

y/2πe−x2y/2
= 1

2

√
2π

y
ex2y/21[0,1]∪(m,m+1](x),

so

sup
x

w(x, y) = w(m + 1, y) = 1

2

√
2π

y
e(m+1)2y/2 < ∞,

i.e. w is X-bounded.
Next, let P ∗

DUGS be the Markov kernel corresponding to a Gibbs sampler in which we update
first X and then Y . Then P ∗

DUGS is 1-minorisable. This is easy to prove with an argument
similar to that used in the proof of Proposition 1. Specifically, if the X-update is 1-minorisable
then so is P ∗

DUGS. Note that if m − 1 < y ≤ m then

fX | Y (x′ | y) = 1
2 1[0,1]∪(m,m+1](x′) ≥ 1

2 1[0,1](x′).
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Figure 1: The region A used in the proof of Proposition 3.

Moreover, the right-hand side of the inequality holds for every value of y > 0 and, hence, we
have, for all y > 0,

fX | Y (x′ | y) ≥ 1
2 1[0,1](x′).

From this, it is easy to see that P ∗
DUGS is minorised by the measure 2−1 Uniform[0, 1]×Exp(1).

Hence, by Lemma 2, PDUGS is 2-minorisable and, hence, is uniformly ergodic.
Finally, we use a capacitance argument (see, e.g. [15] and [39]) to show that this PCMH

is not uniformly ergodic (in fact, not even geometrically ergodic). However, since P X
CMH is

reversible with respect to πX while PCMH is not reversible with respect to π , we shall work
with the former. (Recall that P X

CMH and PCMH have identical rates of convergence.) Before we
give the capacitance argument we need a few preliminary observations.

Let Rm = (m, m + 1] × (m − 1, m] for some fixed m ≥ 3, and suppose that (x, y) ∈ Rm.
Then Y -moves will never leave Rm. Furthermore, X-moves will only leave Rm if a proposed
value x′ ∈ [0, 1] is accepted; therefore,

α(x′, x, y) ≤ w(x′, y)

w(x, y)
= e(x′)2y/2

ex2y/2
≤ e(1)2m/2

em2(m−1)/2
= e(−m3+m2+m)/2 ≤ e−m3/4,

where the first inequality follows from the definition of α while the second follows since
m < x ≤ m + 1, m − 1 < y ≤ m, and 0 ≤ x′ ≤ 1, and the third inequality follows since
m ≥ 3. Hence, for x ∈ (m, m + 1], m ≥ 3,

P X
CMH(x, (m, m + 1]C) = P X

CMH(x, (0, 1]) ≤ e−m3/4.

Also, note that πX((m, m + 1]) = 2−1(e−(m−1) − e−m).
Let κ be the capacitance of P X

CMH. Then

κ := inf{S : 0<πX(S)≤1/2}
1

πX(S)

∫
S

P X
CMH(x, SC)πX(dx)

≤ inf
m≥3

1

πX((m, m + 1])
∫

(m,m+1]
P X

CMH(x, ((m, m + 1]C))πX(dx)

≤ inf
m≥3

2

e−(m−1) − e−m

∫
(m,m+1]

e−m3/4πX(dx)
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= inf
m≥3

2

e−(m−1) − e−m
e−m3/4 1

2
(e−(m−1) − e−m)

= inf
m≥3

e−m3/4

= 0.

Hence, P X
CMH has capacitance 0, and hence has no spectral gap (see [15] and [39]), and hence

fails to be geometrically ergodic [25]. Thus, PCMH also fails to be geometrically ergodic.

3.3. Uniform return probabilities

To this point we have assumed that w is either bounded or X-bounded. It is natural to wonder
if this is required for the uniform ergodicity of the CMH sampler. To examine this question
further, we present two examples involving the CIS version of the CMH sampler. In the first
example we show that in general PCIS can fail to be even geometrically ergodic. In the second
example we show that a slightly modified example is still uniformly ergodic even though w is
neither bounded nor X-bounded.

Example 1. Let π = Uniform([0, 1]2) so that fX | Y (x | y) = fX(x) = 1(0 ≤ x ≤ 1) and
fY | X(y | x) = fY (y) = 1(0 ≤ y ≤ 1). Consider CIS with proposal density q(x′ | y′) =
2x′. Then the marginal chain P X

CIS evolves independently of the Y values and corresponds
to a usual independence sampler. This independence sampler has fX(x)/q(x) = (2x)−1, so
supx∈[0,1] fX(x)/q(x) = ∞. It thus follows from standard independence sampler theory [16],
[19], [33], [40] that P X

CIS fails to be even geometrically ergodic. Hence, the joint chain PCIS
also fails to be geometrically ergodic.

Example 2. Again, let π = Uniform([0, 1]2), but now let q(x′ | y′) = 2{y′ − x′}, where {r}
is the fractional part of r (so {r} = r if 0 ≤ r < 1, and {r} = r + 1 if −1 ≤ r < 0). Then
w(x′, y′) = fX | Y (x′ | y′)/q(x′ | y′) = 1/(2{y′−x′}). Intuitively, thex′ proposals will usually
be accepted unless x is very close to y′. More precisely, let S(x) = {y ∈ [0, 1] : {y − x} ≥ 1

2 }.
If x ∈ [0, 1] and y′ ∈ S(x), then

w(x′, y′)
w(x, y′)

= {y′ − x}
{y′ − x′} ≥ 1/2

1
= 1

2
.

Hence, if we consider the marginal chain P X
CIS then its subkernel hX(x′ | x) satisfies

hX(x′ | x) =
∫

y′∈Y
q(x′ | y′)α(x′, x, y′)fY | X(y′ | x) dy′

≥
∫

y′∈S(x)

q(x′ | y′) min

(
1,

w(x′, y′)
w(x, y′)

)
fY | X(y′ | x) dy′

≥
∫

y′∈S(x)

(2{y′ − x′})
(

1

2

)
(1) dy′

=
∫

y′∈S(x)

{y′ − x′} dy′.

Now, S(x) is the union of two disjoint intervals (or perhaps just one interval, if x = 0) within
[0, 1], of total length 1

2 . Also, the mapping y′ �→ {y′−x′} is some rearrangement of the identity
mapping on [0, 1]. So, since

∫
y′∈S(x)

{y′ − x′} dy′ is an integral of some rearrangement of the
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identity over some set of total length 1
2 , we must have

∫
y′∈S(x)

{y′ − x′} dy′ ≥ ∫ 1/2
0 r dr = 1

8 .
Hence, hX(x′ | x) ≥ 1

8 . Thus, for A ∈ FX,

P X
CIS(x, A) ≥

∫
A

hX(x′ | x)μX(dx′) ≥ 1

8
μX(A).

So, P X
CIS is 1-minorisable; hence, P X

CIS is uniformly ergodic; therefore, PCIS is also uniformly
ergodic.

This last example suggests that even if w is not bounded or X-bounded, CIS will still be
uniformly ergodic if theY -move has a high probability of moving to a better subset. Generalising
from the example, we have the following result.

Theorem 4. Suppose that a CIS algorithm satisfies the following conditions:

(i) there is a subset J ∈ FY and a function g : X → [0, ∞) with μX{x : g(x) > 0} > 0
such that, for all x ∈ X and y ∈ J , we have q(x | y) ≥ g(x) and fX | Y (x | y) ≥ g(x);
and

(ii) the Y values have ‘uniform return probabilities’ in the sense that there exist 0 < c < ∞
and δ > 0 such that πY | X(S(x) | x) ≥ δ for all x ∈ X, where S(x) =
{y′ ∈ J : w(x, y′) ≤ c}.

Then the CIS algorithm is uniformly ergodic and, furthermore, P X
CIS is 1-minorisable.

Proof. We again consider the marginal chain P X
CIS, whose subkernel hX(x′ | x) now satisfies

hX(x′ | x) =
∫

y′∈Y
q(x′ | y′)α(x′, x, y′)fY | X(y′ | x)μY (dy′)

≥
∫

y′∈S(x)

q(x′ | y′) min

(
1,

w(x′, y′)
w(x, y′)

)
fY | X(y′ | x)μY (dy′)

≥
∫

y′∈S(x)

q(x′ | y′) min

(
1,

fX | Y (x′ | y′)
q(x′ | y′)

1

c

)
fY | X(y′ | x)μY (dy′)

≥
∫

y′∈S(x)

min

(
q(x′ | y′), fX | Y (x′ | y′)1

c

)
fY | X(y′ | x)μY (dy′)

≥
∫

y′∈S(x)

min

(
1,

1

c

)
g(x′)fY | X(y′ | x)μY (dy′)

≥ min

(
1,

1

c

)
g(x′)δ.

Hence, for A ∈ FX,

P X
CIS(x, A) ≥

∫
A

hX(x′ | x)μX(dx′) ≥
∫

A

min

(
1,

1

c

)
g(x′)δμX(dx′).

That is, P X
CIS is 1-minorisable. Hence, P X

CIS is uniformly ergodic. Therefore, PCIS is also
uniformly ergodic.
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3.4. Geometric ergodicity of the CMH chain

Our goal in this section is to study conditions under which the geometric ergodicity of the
DUGS chain implies the geometric ergodicity of the CMH chain. The key to our argument is
Theorem 1(ii), which we will use to compare the convergence rates of the reversible Markov
chains P X

CMH and P X
DUGS. The convergence rates of P X

CMH and P X
DUGS can then be connected

to those of PCMH and PDUGS as described in Section 2.4. Our main result is the following.

Theorem 5. If w is bounded and PDUGS is geometrically ergodic, then PCMH is geometrically
ergodic.

Proof. Let C = supx′,x,y′ w(x′, x, y′) < ∞. Then

hX(x′ | x) =
∫

Y
q(x′ | x, y)α(x′, x, y)fY | X(y | x)μY (dy)

=
∫

Y
fY | X(y | x)fX | Y (x′ | y)

[
q(x′ | x, y)

fX | Y (x′ | y)
∧ q(x | x′, y)

fX | Y (x | y)

]
μY (dy)

=
∫

Y
fY | X(y | x)fX | Y (x′ | y)

[
1

w(x′, x, y)
∧ 1

w(x, x′, y)

]
μY (dy)

≥ 1

C

∫
Y

fY | X(y | x)fX | Y (x′ | y)μY (dy)

= 1

C
kX(x′ | x).

It follows that if δ = 1/C then

P X
CMH(x, A) ≥ δP X

DUGS(x, A), x ∈ X, A ∈ FX.

Hence, by Theorem 1, if P X
DUGS is geometrically ergodic then so is P X

CMH. The result then
follows by recalling that P X

DUGS is geometrically ergodic if and only if PDUGS is geometrically
ergodic, and P X

CMH is geometrically ergodic if and only if PCMH is geometrically ergodic.

Example 3. Suppose that X and Y are bivariate normal with common mean 0, variances 2 and 1,
respectively, and covariance 1. Then the two conditional distributions are X | Y = y ∼ N(y, 1)

and Y | X = x ∼ N( 1
2x, 1

2 ). This Gibbs sampler is known [35], [38] to be geometrically
ergodic. Now consider a conditional independence sampler where we replace the Gibbs update
for X | Y = y with an independence sampler having proposal density

q(x | y) = 1
2 e−|x−y|.

Then it is easily seen that there exists a constant c > 0 such that q(x | y) ≥ cfX | Y (x | y).
Hence, Theorem 5 shows that the conditional independence sampler is geometrically ergodic.

Finally, we connect the geometric ergodicity of the RSGS with that of the random-scan
CMH sampler.

Theorem 6. If w is bounded and PRSGS is geometrically ergodic for some selection probability,
then PRCMH is geometrically ergodic for any selection probability.

https://doi.org/10.1239/aap/1401369701 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369701


438 G. L. JONES ET AL.

Proof. Let C = supx′,x,y′ w(x′, x, y′) < ∞. Then, similarly to Lemma 1,

PMH:X((x, y′), A) ≥
∫

{x′ : (x′,y′)∈A}
q(x′ | x, y′)α(x′, x, y′)μX(dx′)

=
∫

{x′ : (x′,y′)∈A}
q(x′ | x, y′)

[
1 ∧ fX | Y (x′ | y′)q(x | x′, y′)

fX | Y (x | y′)q(x′ | x, y′)

]
μX(dx′)

=
∫

{x′ : (x′,y′)∈A}
fX | Y (x′ | y′)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
μX(dx′)

≥ 1

C

∫
{x′ : (x′,y′)∈A}

fX | Y (x′ | y′)μX(dx′)

= 1

C
PGS:X((x, y′), A).

Hence,

PRCMH = pPGS:Y + (1 − p)PMH:X ≥ 1

C
[pPGS:Y + (1 − p)PGS:X] = 1

C
PRSGS.

Since both PRSGS and PRCMH are reversible with respect to π , the first claim now follows from
Theorem 1. That the result holds for any selection probability then follows from Proposition 2.

4. Extensions to additional variables

In this section we consider the extent to which our results extend beyond the two-variable
setting. Some of the above theorems (e.g. Theorem 5) make heavy use of the embedded X-chain
kernels P X

CMH, and such analysis appears to be specific to the case of two variables, one of which
is updated using a Gibbs update. However, many of our other results extend beyond the two-
variable setting without much additional difficulty aside from more general notation. Indeed,
these generalisations will allow as many coordinates as desired to be updated using Metropolis–
Hastings updates, so even in the two-variable case they generalise our previous theorems by
no longer requiring one of the variables to be updated using a Gibbs update. In this sense the
context of the results below is somewhat similar to that considered in [26], except that the results
below concern ‘global’ rather than local/random-walk-style conditional proposal distributions.

Let (Xi , Fi , μi) be a σ -finite measure space for i = 1, 2, . . . , d (d ≥ 2), and let (X, F , μ)

be the corresponding product space. Let π be a target probability distribution on (X, F , μ),
having density f with respect to μ. For x ∈ X and 1 ≤ i ≤ d, set x(i) = (x1, . . . , xi−1, xi+1,

. . . , xd), x[i] = (x1, . . . , xi), and x[i] = (xi, . . . , xd). Also, let x[0] and x[d+1] be null. As
we did in the two-variable case (recall (7)), we assume that the marginal densities satisfy
fXi

(xi) > 0 for all xi ∈ Xi . Let fi denote the corresponding conditional density of Xi | X(i).
Then the usual DUGS has kernel

PDUGS(x, A) =
∫

A

kDUGS(x′ | x)μ(dx′), A ∈ F ,

where
kDUGS(x′ | x) = f1(x

′
1 | x[2])f2(x

′
2 | x′[1], x[3]) · · · fd(x′

d | x′[d−1]).

Now consider the situation where some coordinates i are updated from the full-conditional
Gibbs update fi(x

′
i | x′[i−1], x[i+1]) as above, while other coordinates i are updated from a
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Metropolis–Hastings update with proposal density qi(x
′
i | x′[i−1], xi, x

[i+1]) and corresponding
acceptance probability

αi(x
′[i−1], xi, x

[i+1], x′
i ) = 1 ∧ fi(x

′
i | x′[i−1], x[i+1])qi(xi | x′[i−1], x′

i , x
[i+1])

fi(xi | x′[i−1], x[i+1])qi(x
′
i | x′[i−1], xi, x[i+1])

.

In fact, if qi(x
′
i | x′[i−1], xi, x

[i+1]) = fi(x
′
i | x′[i−1], x[i+1]) then αi(x

′[i−1], xi, x
[i+1],x′

i ) ≡ 1,
and this is equivalent to updating coordinate i using a full-conditional Gibbs update. So,
without loss of generality, we can assume that each coordinate i is updated according to a
Metropolis–Hastings update as above.

To continue, let gi(wi | z) = qi(wi | z[i−1], zi, z
[i+1])αi(z[i−1], zi, z

[i+1], wi). Thus, gi

represents the absolutely continuous subkernel corresponding to the Metropolis–Hastings
update of coordinate i and, in particular, gi is a lower bound on the full update kernel for
coordinate i. Of course, for those coordinates i which use a Gibbs update we have gi(wi | z) =
fi(wi | z[i−1], z[i+1]), the full-conditional density of coordinate i. Thus, if we let

kCMH(x′ | x) = g1(x
′
1 | x)g2(x

′
2 | x′

1, x
[2]) · · · gd(x′

d | x′[d−1], xd)

then

PCMH(x, A) ≥
∫

A

kCMH(x′ | x)μ(dx′), A ∈ F .

Correspondingly, for selection probabilities (p1, . . . , pd) ∈ R
d with each pi > 0 and∑d

i=1 pi = 1, the RSGS is the algorithm which chooses coordinate i with probability pi , and
then updates that coordinate from fi(x

′
i | x′[i−1], x[i+1]) while leaving the other coordinates

unchanged. The random-scan version of the CMH sampler, PRCMH, is defined analogously.
Note that if each gi is a Gibbs update, i.e. gi(x

′
i | x′[i−1], x[i]) = fi(x

′
i | x′[i−1], x[i+1]), then

PCMH is just the DUGS. That is, PDUGS is a special case of PCMH [29], so that, as in the previous
section, it is natural to seek to connect the convergence properties of the two Markov chains.

Define the (conditional) weight function by

wi(x
′[i−1], x′

i , xi, x
[i+1]) = fi(x

′
i | x′[i−1], x[i+1])

qi(x
′
i | x′[i−1], xi, x[i+1])

.

Say that wi is bounded if

sup
x′[i],x[i]

wi(x
′[i−1], x′

i , xi, x
[i+1]) < ∞

and is (Xi × · · · × Xd)-bounded if there exists C : X1 × · · · × Xi−1 → (0, ∞) such that

sup
x′
i ,x

[i]
wi(x

′[i−1], x′
i , xi, x

[i+1]) ≤ C(x′[i−1]).

Of course, for those coordinates i which use a full-conditional Gibbs update, we have

wi(x
′[i−1], x′

i , xi, x
[i+1]) ≡ 1.

We begin with a generalisation of Lemma 1.
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Lemma 3. It holds that

kCMH(x′ | x) = kDUGS(x′ | x)

d∏
i=1

[
1

wi(x
′[i−1], x′

i , xi, x[i+1])
∧ 1

wi(x
′[i−1], xi, x

′
i , x

[i+1])

]
.

Proof. Note that, for i = 1, . . . , d,

qi(x
′
i | x′[i−1], x[i])

[
1 ∧ fi(x

′
i | x′[i−1], x[i+1])qi(xi | x′[i−1], x′

i , x
[i+1])

fi(xi | x′[i−1], x[i+1])qi(x
′
i | x′[i−1], x[i])

]

= fi(x
′
i | x′[i−1], x[i+1])

[
1

wi(x
′[i−1], x′

i , xi, x[i+1])
∧ 1

wi(x
′[i−1], xi, x

′
i , x

[i+1])

]
.

In light of the above lemma, the proofs of the following two theorems are similar to the
proofs of Theorems 2 and 3. The corollaries follow as before.

Theorem 7. If each wi is bounded and PDUGS is uniformly ergodic, then PCMH is uniformly
ergodic.

Proof. By Lemma 3 we have

kCMH(x′ | x) = kDUGS(x′ | x)

d∏
i=1

[
1

wi(x
′[i−1], x′

i , xi, x[i+1])
∧ 1

wi(x
′[i−1], xi, x

′
i , x

[i+1])

]
.

Since each wi is bounded, there exist constants Ci, i = 1, . . . , d, such that

kCMH(x′ | x) ≥ kDUGS(x′ | x)

d∏
i=1

1

Ci

,

and, hence,

PCMH(x, A) ≥
[ d∏

i=1

1

Ci

]
PDUGS(x, A), A ∈ F .

The result now follows from Theorem 1.

Corollary 3. If each wi is bounded and PDUGS is uniformly ergodic, then PRCMH is uniformly
ergodic for any selection probabilities.

Theorem 8. If each wi is (Xi × · · · × Xd)-bounded, and there exists a nonnegative function
g on X, with μ{x ∈ X : g(x) > 0} > 0, such that

kDUGS(x′ | x) ≥ g(x′), x ∈ X, (9)

then PCMH is uniformly ergodic.

Proof. By Lemma 3 we have

kCMH(x′ | x) = kDUGS(x′ | x)

d∏
i=1

[
1

wi(x
′[i−1], x′

i , xi, x[i+1])
∧ 1

wi(x
′[i−1], xi, x

′
i , x

[i+1])

]
.
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Since each wi is (Xi × · · · × Xd)-bounded, there exist Ci such that

kCMH(x′ | x) ≥ kDUGS(x′ | x)

d∏
i=1

1

Ci(x
′[i−1])

.

Then, using (9), we have

kCMH(x′ | x) ≥ g(x′)
d∏

i=1

1

Ci(x
′[i−1])

.

Let

ε =
∫

X
g(x)

d∏
i=1

1

Ci(x[i−1])
μ(dx) and h(x′) = ε−1g(x′)

d∏
i=1

1

Ci(x
′[i−1])

.

Then, if A ∈ F ,

PCMH(x, A) ≥ ε

∫
A

h(x′)μ(dx′).

That is, PCMH is 1-minorisable and, hence, is uniformly ergodic.

Corollary 4. If each wi is (Xi × · · · × Xd)-bounded, and condition (9) holds, then PRCMH is
uniformly ergodic for any selection probabilities.

Furthermore, Proposition 2 extends easily to the general case.

Proposition 4. If PRSGS is geometrically ergodic for some selection probability then it is
geometrically ergodic for all selection probabilities.

Just as with Theorem 6, we can also give sufficient conditions for geometric ergodicity of
PRCMH in terms of the geometric ergodicity of PRSGS.

Theorem 9. If each wi is bounded and PRSGS is geometrically ergodic, then PRCMH is
geometrically ergodic for any selection probabilities.

5. Application to Bayesian inference for diffusions

An important problem, with applications to financial analysis and many other areas, involves
drawing inferences about the entire path of a diffusion process based only upon discrete
observations of that diffusion (see, e.g. [4] and [32]).

To fix ideas, consider a one-dimensional diffusion satisfying dXt = dBt + α(Xt ) dt for
0 ≤ t ≤ 1, where α : R → R is a C1 function. Suppose that we observe the values X0 and X1,
and wish to infer the entire remaining sample path {Xt }0<t<1.

To proceed, let Pθ be the law of the diffusion starting at X0, conditional on θ , and let W be
the law of Brownian motion starting at X0. Then, by Girsanov’s formula (see, e.g. [34]), the
density of Pθ with respect to W satisfies (writing X[0,1] for {Xt }0≤t≤1)

Gθ(X[0,1]) := dPθ

dW
(X[0,1]) = exp[A(X1) − A(X0) −

∫ 1

0
φθ (Xs) ds], (10)

where A(x) = ∫ x

0 α(u) du and φθ (x) = [α2(x) + α′(x)]/2.
Furthermore, if P̃ is the law of the diffusion conditional on the observed values of X0 and

X1, and W̃ is the law of Brownian motion conditional on the same observed values of X0 and
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X1 (i.e. of the corresponding Brownian bridge process), then dP̃/dW̃ is still proportional to the
same density G from (10).

Assume now that α(x) = ∑m
i=1 pi(x)θi = p�θ , where p1, p2, . . . , pm : R → R are known

C1 functions, and θ1, θ2, . . . , θm are unknown real-valued parameters to be estimated.
We consider a Bayesian analysis obtained by putting a prior θ ∼MVN(0, �0) on the vector

θ for some strictly positive-definite symmetric m×m covariance matrix �0. Then, conditional
on X0 and X1, and letting Xmiss = {Xs : 0 < s < 1} be the missing (unobserved) part of the
diffusion’s sample path, the joint posterior density of the pair (θ, Xmiss) is proportional to

e−θ��−1
0 θ/2Gθ(X[0,1]) = exp

[
−1

2

(
θ��−1

0 θ +
∫ 1

0

m∑
i=1

m∑
j=1

pi(Xs)pj (Xs)θiθj ds

+
∫ 1

0

m∑
i=1

p′
i (Xs)θi ds

)]
.

We can write this joint posterior density as being proportional to

exp
[− 1

2θ�V −1θ − r�θ
]
, (11)

in terms of the column vector r = 1
2

∫ 1
0 p′(Xs) ds, and the positive-definite symmetric matrix

V −1 = �−1
0 +

∫ 1

0
p(Xs)(p(Xs))

� ds.

Then, since

− 1
2 (θ + V r)�V −1(θ + V r) = − 1

2θ�V −1θ − r�θ − 1
2 r�V r

(using the facts that V � = V , and r�θ = θ�r is a scalar), (11) in turn implies that the
conditional distribution θ | Xmiss is given by

θ | Xmiss ∼ MVN(−V r, V ). (12)

Now, suppose that we wish to sample the pair (θ, Xmiss) from its posterior density (11). We
first consider using a DUGS, in which we alternately sample θ | Xmiss and then Xmiss | θ .

Lemma 4. Assume that the pi and p′
i functions are all bounded, i.e.

max
1≤i≤m

sup
x∈R

max(|pi(x)|, |p′
i (x)|) < ∞. (13)

Then DUGS for the pair (θ, Xmiss) is 1-minorisable.

Proof. In light of Proposition 1, it suffices to show that the θ updates, as carried out through
(12), are 1-minorisable.

Denote the density of MVN(μ, �) by f (θ; μ, �). We remark that this function is positive
and continuous on R

m×R
m×M (where M denotes the space of positive definitem×mmatrices).

Therefore, by the standard compactness argument, if A is any compact set in R
m × M then, for

all θ ∈ R
m,

inf
(μ,�)∈A

f (θ; μ, �) > 0,
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thus providing a minorisation measure. It remains therefore to show that, given all possible
diffusion trajectories, the mean (−V r) and variance (V ) in (12) are uniformly contained in
bounded regions, with the determinant of the variance bounded away from 0. Note that (13)
and the definition of V imply immediately that V is uniformly bounded, proving the first part.
Moreover, showing that det(V ) is uniformly bounded away from 0 is equivalent to a uniform
upper bound on det(V −1). However, this also follows trivially from (12). Thus, it follows that
the θ update is 1-minorisable.

The above lemma shows that DUGS for the pair (θ, Xmiss) is uniformly ergodic. However,
in practice, it is entirely infeasible to sample the entire path Xmiss from its correct conditional
distribution given θ . Thus, to sample the pair (θ, Xmiss) from the posterior density (11), we
instead consider using a CIS. Here θ plays the role of Y and Xmiss plays the role of X. We shall
alternately update θ from its full-conditional distribution conditional on the current value of
Xmiss (which is easy to implement in practice, since θ | Xmiss follows a Gaussian distribution),
and then update Xmiss using a conditional Metropolis–Hastings update step with proposal
distribution q(Xmiss | θ) given by the corresponding Brownian bridge, i.e. with q(Xmiss | θ) =
W̃ (which can be implemented in practice by, e.g. discretising the time interval [0, 1] and
then using Gaussian conditional distributions of the Brownian bridge). This algorithm is thus
feasible to implement in practice, thus raising the question of its ergodicity properties, which
we now consider.

This CIS algorithm has conditional weight functions given by

w(xmiss, θ) = fXmiss | θ (xmiss | θ)

q(xmiss | θ)
= dP̃

dW̃
(X[0,1]) = h(θ)Gθ(X[0,1]),

where we explicitly include the normalisation constant h(θ) which is everywhere positive and
finite. The key computation in our analysis is the following.

Lemma 5. For the above CIS algorithm, assuming that (13) holds, the weights are X-bounded,
i.e. supx w(x, θ) < ∞ for each fixed θ .

Proof. From (10), we can write

w(xmiss, θ) = h(θ)Gθ(X[0,1])

= h(θ) exp

[
A(X1) − A(X0) −

∫ 1

0
φθ (Xs) ds

]
≤ h(θ) exp[A(X1) − A(X0)] exp

[− inf
x

φθ

]
,

which shows that it suffices to argue that φθ (x) is bounded below as a function of θ . But

φθ = 1

2

[
θ�

(∫
p(Xs)(p(Xs))

� ds

)
θ +

(∫
(p′(Xs))

� ds

)
θ

]
.

Hence, by the boundedness of pi and p′
i from (13), it follows that φθ (x) is bounded below.

This gives the result.

We can now easily prove our main result of this section.

Theorem 10. Assuming that (13) holds, the above CIS algorithm on (Xmiss, θ), conditional on
the observed values X0 and X1, is uniformly ergodic.

Proof. This follows immediately from Theorem 3, in light of Lemmas 4 and 5.
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5.1. Generalisation to more data

In practice, fitting a diffusion model, we would almost certainly possess multiple data,
Xobs = (Xt0 , Xt1 , Xt2 , . . . , XtN ), observed at times t0, t1, t2, . . . , tN , leading in turn to missing
diffusion segments Xmiss,i = {Xt : ti−1 < t < ti} for 1 ≤ i ≤ N . For ease of notation, we
have avoided this more general setting in this section so far. However, we now give some brief
remarks to show that Theorem 10 easily generalises.

In this more general case (often called discretely observed data), the following algorithm
was implemented in, e.g. [32] to infer the Xmiss,i segments and θ . To fit with earlier notation,
we fix t0 = 0 and tN = 1.

1. Given Xobs and {Xmiss,i}1≤i≤N , simulate θ from its full conditional as given in (12).

2. Sequentially for i = 1, 2, . . . , N , propose an update of Xmiss,i conditional on Xobs and
θ from the Brownian bridge measure between Xti−1 and time ti−1, and Xti and time ti ,
and accept according to the usual Metropolis–Hastings accept/reject ratio.

The key here is that, conditional on θ , the {Xmiss,i}1≤i≤N segments are all conditionally
independent. As a result of this, using our multidimensional theorem extensions of Section 4,
we immediately obtain the following generalisation of Theorem 10.

Theorem 11. Assuming that (13) holds, the above CIS algorithm on (Xmiss, θ), conditional on
the observed values Xt1 , Xt2 , . . . , XtN , is uniformly ergodic.
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