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The Geodesic X-ray Transform

In this chapter we begin the study of the geodesic X-ray transform on a
compact non-trapping manifold with strictly convex boundary. We prove L2

and Sobolev mapping properties, and discuss a reduction that allows us to
convert statements about the X-ray transform to statements about transport
equations on SM involving the geodesic vector field. We then prove a
fundamental energy identity, known as the Pestov identity, for functions on
SM . As the main result in this chapter, we prove injectivity of the geodesic
X-ray transform I0 on simple two-dimensional manifolds by using the Pestov
identity. We also give an initial stability estimate for the geodesic X-ray
transform (improved stability estimates will be given later). Results in higher
dimensions are discussed at the end of the chapter.

4.1 The Geodesic X-ray Transform

We have already encountered the geodesic X-ray transform acting on functions
f ∈ C∞(M) in Definition 3.1.5. The same definition applies more generally
to functions in C∞(SM).

Definition 4.1.1 Let (M,g) be a compact non-trapping manifold with strictly
convex boundary. The geodesic X-ray transform is the operator

I : C∞(SM) → C∞(∂+SM),

given by

If (x,v) :=
∫ τ(x,v)

0
f (ϕt (x,v)) dt, (x,v) ∈ ∂+SM .

The geodesic X-ray transform on C∞(M) is denoted by

I0 : C∞(M) → C∞(∂+SM), I0f = I (#0f ),
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108 The Geodesic X-ray Transform

where #0 : C∞(M) → C∞(SM) is the natural inclusion, i.e. #0f (x,v) = f (x)

is the pullback of functions by the projection map π : SM → M .

Recall from Lemma 3.2.6 that τ |∂+SM ∈ C∞(∂+SM), so indeed I maps
C∞(SM) to C∞(∂+SM). We next study the mapping properties of I on L2-
based spaces. Recall that

L2(SM) = L2(SM, d!2n−1),

L2(∂+SM) = L2(∂+SM, d!2n−2).

If p ∈ C∞(∂+SM) is non-negative, we also consider the weighted space
L2

p(∂+SM) consisting of L2-functions on ∂+SM with respect to the measure

p d!2n−2.

Proposition 4.1.2 (L2 boundedness) I extends to a bounded operator

I : L2(SM) → L2(∂+SM).

Proof Since p := μ/τ̃ is in C∞(∂SM) and it is strictly positive by Lemma
3.2.8, it suffices to prove the lemma using the measure p d!2n−2 in the target
space. Take f ∈ C∞(SM) and write, using Cauchy–Schwarz,

‖If ‖2
L2

p(∂+SM)
=

∫
∂+SM

∣∣∣∣∣
∫ τ(x,v)

0
f (ϕt (x,v)) dt

∣∣∣∣∣
2

p d!2n−2

≤
∫
∂+SM

(∫ τ(x,v)

0
|f (ϕt (x,v))|2 dt

)
τp d!2n−2

=
∫
∂+SM

(∫ τ(x,v)

0
|f (ϕt (x,v))|2 dt

)
μd!2n−2

=
∫
SM

|f |2 d!2n−1 = ‖f ‖2
L2(SM)

,

where in the last line we have used Santaló’s formula from Proposition 3.6.6.

The geodesic X-ray transform is also bounded between Sobolev spaces. The
proof of the next result is given in Section 4.5.

Proposition 4.1.3 (Sobolev boundedness) For any k ≥ 0, the operator I

extends to a bounded operator

I : Hk(SM) → Hk(∂+SM).

We also have I (H 1(SM)) ⊂ H 1
0 (∂+SM).
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4.1 The Geodesic X-ray Transform 109

In the literature, one often sees the statement that I extends to a bounded
operator

I : L2(SM) → L2
μ(∂+SM), (4.1)

where μ(x,v) = 〈ν(x),v〉. Since |μ| ≤ 1, this is a special case of Proposition
4.1.2. However, the L2

μ space is a useful setting for studying I since the adjoint
I ∗ of the operator (4.1) is readily computed by Santaló’s formula. Moreover, as
we will see in Chapter 8, on simple manifolds the normal operator I ∗

0 I0 (where
I0 is I restricted to functions on M) is an elliptic pseudodifferential operator
of order −1 just like in the case of the Radon transform in the plane.

We conclude this section by computing the adjoint of the operator (4.1).

Lemma 4.1.4 (The adjoints I ∗ and I ∗
0 ) The adjoint of I : L2(SM) →

L2
μ(∂+SM) is the bounded operator

I ∗ : L2
μ(∂+SM) → L2(SM),

given for h ∈ C∞(∂+SM) by I ∗h = h�, where

h�(x,v) := h(ϕ−τ(x,−v)(x,v)).

The adjoint of I0 : L2(M) → L2
μ(∂+SM) is given by

I ∗
0 h(x) =

∫
SxM

h�(x,v) dSx(v).

Proof Consider f ∈ C∞(SM) and h ∈ C∞(∂+SM), and write

(If ,h)L2
μ(∂+SM) =

∫
∂+SM

(If )hμ d!2n−2

=
∫
∂+SM

(∫ τ(x,v)

0
f (ϕt (x,v))h(x,v) dt

)
μd!2n−2.

We can write the above expression as

(If ,h)L2
μ(∂+SM) =

∫
∂+SM

(∫ τ(x,v)

0
f (ϕt (x,v))h�(ϕt (x,v)) dt

)
μd!2n−2.

Using Santaló’s formula we derive

(If ,h)L2
μ(∂+SM) =

∫
SM

f h� d!2n−1 = (f ,h�)L2(SM),

and hence I ∗h = h�.
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110 The Geodesic X-ray Transform

Choosing f = f (x) gives

(I0f,h)L2
μ(∂+SM) =

∫
M

f (x)

[∫
SxM

h� dSx

]
dV n

=
(
f,

∫
SxM

h� dSx

)
L2(M)

.

This gives the required formula for I ∗
0 .

Exercise 4.1.5 Let #0 : C∞(M) → C∞(SM) be the map given by #0f =
f ◦ π , where π : SM → M is the canonical projection. Show that the adjoint
#∗

0 is given by

(#∗
0h)(x) =

∫
SxM

h(x,v) dSx(v).

4.2 Transport Equations

We will next show that it is possible to reduce statements about the geodesic
X-ray transform to statements about transport equations on SM involving the
geodesic vector field X. We first define two important notions that have already
appeared before in Chapter 3.

Definition 4.2.1 (The functions uf and h�) Let (M,g) be a compact non-
trapping manifold with strictly convex boundary. Given any f ∈ C∞(SM),
define

uf (x,v) :=
∫ τ(x,v)

0
f (ϕt (x,v)) dt, (x,v) ∈ SM .

For any h ∈ C∞(∂+SM) define

h�(x,v) := h(ϕ−τ(x,−v)(x,v)), (x,v) ∈ SM .

It follows that uf solves the transport equation Xuf = −f and If is
given by the boundary value of uf on ∂+SM . Moreover, h� is constant along
geodesics. In other words h� is an invariant function (or first integral) with
respect to the geodesic flow, i.e. Xh� = 0.

Lemma 4.2.2 (Properties of uf and h�)

(a) For any f ∈ C∞(SM), one has uf ∈ C(SM)∩C∞(SM \ ∂0SM) and uf

is the unique solution of the equation

Xuf = −f in SM, uf |∂−SM = 0.

Moreover, uf |∂+SM = If .
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4.2 Transport Equations 111

(b) For any h ∈ C∞(∂+SM), one has h� ∈ C(SM) ∩ C∞(SM \ ∂0SM) and
h� is the unique solution of the equation

Xh� = 0 in SM, h�|∂+SM = h.

Moreover, h�|∂−SM = h ◦ α|∂+SM .

Proof The regularity properties of uf and h� follow from the regularity
properties of τ given in Lemma 3.2.3. We note that for (x,v) ∈ SM int,

Xuf (x,v) = d

ds

∫ τ(ϕs(x,v))

0
f (ϕt (ϕs(x,v))) dt

∣∣∣
s=0

= d

ds

∫ τ(x,v)−s

0
f (ϕt+s(x,v)) dt

∣∣∣
s=0

= −f (ϕτ(x,v)(x,v)) +
∫ τ(x,v)

0

d

dt
f (ϕt (x,v)) dt

= −f (x,v).

Clearly Xh� = 0. The statements about the boundary values of uf and h�

follow from the definitions of I and α and the fact that τ |∂−SM = 0.

We note that uf is, in general, not smooth on SM . For instance, if f = 1
then uf = τ and we know from Example 3.2.1 that τ is not smooth on SM .
However, if f is a function whose geodesic X-ray transform vanishes, then
the following result shows that uf ∈ C∞(SM) and the somewhat annoying
issue with non-smoothness disappears. The result follows from the precise
regularity properties of the exit time proved in Lemma 3.2.9. We defer its proof
to Chapter 5, where regularity results for transport equations will be studied in
more detail.

Proposition 4.2.3 (Regularity when If = 0) Let (M,g) be a compact non-
trapping manifold with strictly convex boundary. If f ∈ C∞(SM) satisfies
If = 0, then uf ∈ C∞(SM).

The next result characterizes functions in the kernel of the geodesic X-ray
transform in terms of solutions to the transport equation Xu = f .

Proposition 4.2.4 Let f ∈ C∞(SM). The following conditions are equivalent.

(a) If = 0.
(b) There is u ∈ C∞(SM) such that u|∂SM = 0 and Xu = −f .

Proof Suppose that If = 0. Proposition 4.2.3 guarantees that u = uf ∈
C∞(SM), and Lemma 4.2.2 gives that Xu = −f .
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112 The Geodesic X-ray Transform

Conversely, given u ∈ C∞(SM) with Xu = −f , if we integrate along the
geodesic flow we obtain for (x,v) ∈ ∂+SM that

u ◦ α(x,v) − u(x,v) = −
∫ τ(x,v)

0
f (ϕt (x,v)) dt = −If (x,v).

Hence if u|∂SM = 0, the above equality implies If = 0.

4.3 Pestov Identity

In this section we consider the Pestov identity in two dimensions. This is the
basic energy identity that has been used since the work of Muhometov (1977)
in studying injectivity of ray transforms in the absence of real-analyticity
or special symmetries. Pestov-type identities were also used in Pestov and
Sharafutdinov (1987) to prove solenoidal injectivity of the geodesic X-ray
transform for tensors of any order on simple manifolds with negative sectional
curvature. These identities have often appeared in a somewhat ad hoc way.
Here, following Paternain et al. (2013), we give a point of view that makes the
derivation of the Pestov identity more transparent.

The easiest way to motivate the Pestov identity is to consider the injectivity
of the ray transform on functions. As in Section 4.1 we let I0 : C∞(M) →
C∞(∂+SM) be defined by I0 := I ◦ #0, where #0 is the pullback of functions
from M to SM .

The first step is to recast the injectivity problem for I0 as a uniqueness
question for the partial differential operator P on SM, where

P := VX.

This involves a standard reduction to the transport equation as we have done
already in Proposition 4.2.4.

Proposition 4.3.1 Let (M,g) be a compact oriented non-trapping surface with
strictly convex boundary. The following statements are equivalent.

(a) The ray transform I0 : C∞(M) → C∞(∂+SM) is injective.
(b) Any smooth solution of Xu = −f in SM with u|∂SM = 0 and f ∈

C∞(M) is identically zero.
(c) Any smooth solution of Pu = 0 in SM with u|∂SM = 0 is identically zero.

Proof (a) �⇒ (b): Assume that I0 is injective, and let u ∈ C∞(SM) solve
Xu = −f in SM where u|∂SM = 0 and f ∈ C∞(M). By Proposition 4.2.4
one has 0 = If = I0f . Hence f = 0 by injectivity of I0, which shows that
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4.3 Pestov Identity 113

Xu = 0. Thus u is constant along geodesics, and the condition u|∂SM = 0
gives that u ≡ 0.

(b) �⇒ (c): Let u ∈ C∞(SM) solve Pu = 0 in SM with u|∂SM = 0.
Since the kernel of V consists of functions on SM only depending on x, this
implies that Xu = −f in SM for some f ∈ C∞(M). By the statement in (b)
we have u ≡ 0.

(c) �⇒ (a): Assume that the only smooth solution of Pu = 0 in SM

that vanishes on ∂SM is zero. Let f ∈ C∞(M) be a function with I0f = 0.
Proposition 4.2.4 gives a function u ∈ C∞(SM) such that Xu = −f and
u|∂SM = 0. Since f only depends on x we have Vf = 0, and consequently
Pu = 0 in SM and u|∂SM = 0. It follows that u = 0 and also f = −Xu = 0.

We now focus on proving uniqueness for solutions of Pu = 0 in SM

satisfying u|∂SM = 0. For this it is convenient to express P in terms of its
self-adjoint and skew-adjoint parts in the L2(SM) inner product as

P = A + iB, A := P + P ∗

2
, B := P − P ∗

2i
.

Here the formal adjoint P ∗ of P is given by

P ∗ := XV .

The commutator formula [X,V ] = X⊥ in Lemma 3.5.5 shows that

A = VX + XV

2
, B = − 1

2i
X⊥.

Now, if u ∈ C∞(SM) with u|∂SM = 0, we may use the integration by parts
formulas in Proposition 3.5.12 (note that the boundary terms vanish since
u|∂SM = 0) to obtain that

‖Pu‖2 = ((A + iB)u,(A + iB)u)

= ‖Au‖2 + ‖Bu‖2 + i(Bu,Au) − i(Au,Bu) (4.2)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u,u).

This computation suggests to study the commutator i[A,B]. We note that the
argument just presented is typical in the proof of L2 Carleman estimates, see
e.g. Lerner (2019).

By the definition of A and B it easily follows that i[A,B] = 1
2 [P ∗,P ]. By

the commutation formulas for X, X⊥, and V in Lemma 3.5.5, this commutator
may be expressed as
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114 The Geodesic X-ray Transform

[P ∗,P ] = XVVX − VXXV = VXVX + X⊥VX − VXVX − VXX⊥
= VX⊥X − X2 − VXX⊥ = V [X⊥,X] − X2 = −X2 + VKV .

(4.3)

Consequently,

([P ∗,P ]u,u) = ‖Xu‖2 − (KV u,V u).

If the curvature K is non-positive, then [P ∗,P ] is positive semidefinite. More
generally, one can try to use the other positive terms in (4.2). Note that

‖Au‖2 + ‖Bu‖2 = 1

2

(‖Pu‖2 + ‖P ∗u‖2).
The identity (4.2) may then be expressed as

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗,P ]u,u).

We have now proved a version of the Pestov identity that is suited for our
purposes. The main point in this proof was that the Pestov identity boils down
to a standard L2 estimate based on separating the self-adjoint and skew-adjoint
parts of P and on computing one commutator, [P ∗,P ].

Proposition 4.3.2 (Pestov identity) If (M,g) is a compact oriented surface
with smooth boundary, then

‖VXu‖2 = ‖XVu‖2 − (KV u,V u) + ‖Xu‖2

for any u ∈ C∞(SM) with u|∂SM = 0.

4.4 Injectivity of the Geodesic X-ray Transform

We now establish the injectivity of the geodesic X-ray transform I0 on simple
surfaces.

Theorem 4.4.1 Let (M,g) be a simple surface. Then I0 is injective.

In fact the proof gives a more general result, showing injectivity of I acting
on functions of the form f (x,v) = f0(x) + αj (x)v

j modulo a natural kernel.
In particular, this implies solenoidal injectivity of the geodesic X-ray transform
on 1-tensors (see Section 6.4).

Theorem 4.4.2 Let (M,g) be a simple surface, and let f (x,v) = f0(x) +
α|x(v) where f0 ∈ C∞(M) and α is a smooth 1-form on M . If If = 0, then
f0 = 0 and α = dp for some p ∈ C∞(M) with p|∂M = 0.
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4.4 Injectivity of the Geodesic X-ray Transform 115

Using Proposition 4.3.1, the injectivity of I0 is equivalent with the property
that the only smooth solution of VXu = 0 in SM with u|∂SM = 0 is u ≡ 0.
In the special case where the Gaussian curvature is non-positive, this follows
immediately from the Pestov identity.

Proof of Theorem 4.4.1 in the case K ≤ 0 If VXu = 0 in SM with u|∂SM =
0, Proposition 4.3.2 implies that

‖XVu‖2 − (KV u,V u) + ‖Xu‖2 = 0.

Since K ≤ 0, all terms on the left are non-negative and hence they all have
to be zero. In particular, ‖Xu‖2 = 0, so Xu = 0 in SM showing that u is
constant along geodesics. Using the boundary condition u|∂SM = 0, we obtain
that u ≡ 0.

In order to prove Theorem 4.4.1 in general, we show:

Proposition 4.4.3 Let (M,g) be a simple surface. Then given ψ ∈ C∞(SM)

with ψ |∂SM = 0, we have

‖Xψ‖2 − (Kψ,ψ) ≥ 0,

with equality if and only if ψ = 0.

Proof It is enough to prove this when ψ is real valued. Using Santaló’s
formula, we may write

‖Xψ‖2 − (Kψ,ψ) =
∫
SM

((Xψ)2 − Kψ2) d!3

=
∫
∂+SM

∫ τ(x,v)

0
(ψ̇(t)2 − K(γx,v(t))ψ

2(t))μ d!2 dt,

(4.4)

where ψ(t) = ψx,v(t) := ψ(ϕt (x,v)). We wish to relate the t-integral to the
index form on γx,v (see Definition 3.7.14). In fact, if we define a normal vector
field Y (t) along γx,v by

Y (t) = Yx,v(t) := ψ(t)γ̇x,v(t)
⊥,

then Y ∈ H 1
0 (γx,v) since ψ(0) = ψ(τ(x,v)) = 0. Using that Dt γ̇x,v(t)

⊥ = 0
(see (3.19)), we have

Iγx,v (Y,Y ) =
∫ τ(x,v)

0

[
ψ̇(t)2 − K(γx,v(t))ψ

2(t)
]
dt .

https://doi.org/10.1017/9781009039901.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.007
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Thus we may rewrite (4.4) as

‖Xψ‖2 − (Kψ,ψ) =
∫
∂+SM

Iγx,v (Yx,v,Yx,v)μ d!2.

The no conjugate points condition implies that Iγx,v is positive definite on
H 1

0 (γx,v) (see Proposition 3.7.15). Since μ ≥ 0 it follows that ‖Xψ‖2 −
(Kψ,ψ) ≥ 0. If equality holds then Yx,v ≡ 0 for each (x,v) ∈ ∂+SM , which
gives that ψ ≡ 0.

Alternative proof of Proposition 4.4.3 By (4.4), it is enough to prove that for
any fixed (x,v) ∈ ∂+SM \ ∂0SM, one has∫ τ(x,v)

0
(ψ̇(t)2 − K(γx,v(t))ψ

2(t)) dt ≥ 0,

with equality if and only if ψ = 0, where ψ(t) = ψx,v(t) := ψ(ϕt (x,v)).
Observe that ψ(0) = ψ(τ(x,v)) = 0. Since (M,g) has no conjugate points,
the unique solution y to the Jacobi equation ÿ+K(γx,v(t))y = 0 with y(0) = 0
and ẏ(0) = 1 does not vanish for t ∈ (0,τ ] (otherwise one would have a Jacobi
field vanishing at two points by Lemma 3.7.7). Hence we may define a function
q by writing

ψ(t) = q(t)y(t), for t ∈ (0,τ ].

Since ψ(0) = y(0) = 0 and ẏ(0) = 1, we have ψ(t) = th(t), y(t) = tr(t)

where h and r are smooth and r(0) = 1. It follows that q(t) = h(t)/r(t)

extends smoothly to t = 0. Using the Jacobi equation we compute

(ψ̈ + Kψ)ψ = q
d

dt

(
q̇y2).

Integrating by parts and using that y(0) = q(τ) = 0 (since ψ(τ) = 0 and
y(τ) �= 0), we derive∫ τ

0
(ψ̇2 − Kψ2) dt = −

∫ τ

0
q

d

dt

(
q̇y2) dt = −[

qq̇y2]τ
0 +

∫ τ

0
q̇2y2 dt

=
∫ τ

0
q̇2y2 dt ≥ 0.

Equality in the last line holds if and only if q is constant. Since q(τ) = 0, it
follows that equality holds if and only if ψ ≡ 0.

We can now combine these results to prove the injectivity of I0.

Proof of Theorem 4.4.1 By Proposition 4.3.1 it suffices to show a vanishing
result for VXu = 0 with u|∂SM = 0. Proposition 4.3.2 gives

‖XVu‖2 − (KV u,V u) + ‖Xu‖2 = 0,
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4.5 Stability Estimate in Non-positive Curvature 117

and combining this with Proposition 4.4.3 (note that V u|∂SM = 0), we derive
V u = Xu = 0 and hence u = 0 as desired.

The same method also yields the more general Theorem 4.4.2.

Proof of Theorem 4.4.2 Let f (x,v) = f0(x) + α|x(v) satisfy If = 0, and let
u := uf so that Xu = −f and u|∂SM = 0. By Proposition 4.2.3 one has
u ∈ C∞(SM). We wish to use the Pestov identity and for this we need to
compute VXu. In this case VXu is not identically zero, but it turns out that
using the special form of f the term ‖VXu‖2 can be absorbed in the term
‖Xu‖2 in the other side of the Pestov identity.

In the special coordinates in Lemma 3.5.6, one has

Vf = ∂θ (f0(x) + e−λ(x)(α1(x) cos θ + α2(x) sin θ))

= e−λ(−α1 sin θ + α2 cos θ).

Then, using (3.9) and computing simple trigonometric integrals, we have

‖VXu‖2 = ‖Vf ‖2 =
∫
M

∫ 2π

0
|−α1 sin θ + α2 cos θ |2 dθ dx

= π

∫
M

(|α1(x)|2 + |α2(x)|2) dx.

On the other hand,

‖Xu‖2 = ‖f ‖2 =
∫
M

∫ 2π

0
|eλf0 + α1 cos θ + α2 sin θ |2 dθ dx

= 2π
∫
M

|f0(x)|2 dV 2 + π

∫
M

(|α1(x)|2 + |α2(x)|2) dx.

Inserting the above expressions in the Pestov identity in Proposition 4.3.2,
we obtain that

‖XVu‖2 − (KV u,V u) + 2π‖f0‖2
L2(M)

= 0.

Since ‖XVu‖2 − (KV u,V u) ≥ 0 by Proposition 4.4.3, we must have f0 = 0
and also ‖XVu‖2 − (KV u,V u) = 0. Using the equality part of Proposition
4.4.3 gives V u = 0. This implies that u(x,v) = u(x). Writing p(x) :=
−u(x) ∈ C∞(M) we have p|∂M = 0, and for any (x,v) ∈ SM one has

α|x(v) = f (x,v) = −Xu(x,v) = dp|x(v).

4.5 Stability Estimate in Non-positive Curvature

In this section we show how the Pestov identity can be used to derive a
basic stability estimate for I0 when the Gaussian curvature is non-positive,
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i.e. K ≤ 0. This estimate will be generalized in Section 4.6, and in Chapter 7
we give another improvement and extend the estimate to include tensors.

Theorem 4.5.1 (Stability estimate for K ≤ 0) Let (M,g) be a compact non-
trapping surface with strictly convex boundary and K ≤ 0. Then

‖f ‖L2(M) ≤ 1√
4π

‖I0f ‖H 1(∂+SM),

for any f ∈ C∞(M).

The H 1(∂+SM) norm appearing in the statement is precisely defined via a
suitable vector field T as follows.

Definition 4.5.2 (Tangential vector field) Let (M,g) be a compact oriented
surface with smooth boundary. We define the tangential vector field T on ∂SM

acting on w ∈ C∞(∂SM) by

Tw(x,v) = d

dt
w(x(t),v(t))

∣∣∣
t=0

,

where x : (−ε,ε) → ∂M is any smooth curve with x(0) = x and ẋ(0) =
ν(x)⊥, and v(t) is the parallel transport of v along x(t) so that v(0) = v.

Definition 4.5.3 (H 1 norms on ∂SM and ∂+SM) We define the H 1(∂SM)

norm of w via

‖w‖2
H 1(∂SM)

:= ‖w‖2
L2(∂SM)

+ ‖Tw‖2
L2(∂SM)

+ ‖Vw‖2
L2(∂SM)

.

Similarly, if w ∈ C∞(∂+SM) we define its H 1(∂+SM) norm as

‖w‖2
H 1(∂+SM)

:= ‖w‖2
L2(∂+SM)

+ ‖Tw‖2
L2(∂+SM)

+ ‖Vw‖2
L2(∂+SM)

.

We state a few important facts about the vector field T . Recall the notation
μ = 〈ν,v〉 on ∂SM .

Lemma 4.5.4 (Properties of T ) One has

T = (V μ)X + μX⊥
∣∣
∂SM

.

In the splitting (3.12), T is given by

T = (ν⊥,0).

The vector fields T and V form an orthonormal frame of T (∂SM) with respect
to the Sasaki metric. This frame is commuting in the sense that [T ,V ] = 0,
and T and V are skew-adjoint in the L2(∂SM) inner product.

Proof Let (M,g) be contained in a closed manifold (N,g). Fix (x0,v0) ∈ ∂SM

and choose Riemannian normal coordinates x = (x1,x2) near x0 in (N,g).
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Let θ be the angle between v and ∂/∂x1. This gives coordinates (x,θ) near
(x0,v0). Note that these coordinates are not the same as the special coordinates
in Lemma 3.5.6.

In the (x,θ) coordinates the curve (x(t),v(t)) corresponds to (x(t),θ(t)),
and one has

Tw|(x0,v0) = ∂x1w(ν⊥)1 + ∂x2w(ν⊥)2 + (∂θw)θ̇(0).

Note that tan θ(t) = v2(t)

v1(t)
. Differentiating in t gives

(1 + tan2 θ)θ̇ = v̇2v1 − v2v̇1

(v1)2
.

Since v(t) is parallel and the Christoffel symbols vanish at x0, one has v̇j (0) =
0. This implies that θ̇ (0) = 0 and thus

Tw|(x0,v0) = ∂x1w(ν⊥)1 + ∂x2w(ν⊥)2.

Writing ∇xw = (∂x1w,∂x2w), this can be rewritten in Euclidean notation as

Tw|(x0,v0) = ν⊥ · ∇xw.

On the other hand, in the (x,θ) coordinates above one has

Xw|(x0,v0) = v0 · ∇xw,

X⊥w|(x0,v0) = (v0)⊥ · ∇xw.

It is easy to check using the special coordinates in Lemma 3.5.6 that Vμ =
V (〈ν,v〉) = 〈ν,v⊥〉 = 〈ν⊥,v〉. Since μ = 〈ν,v〉 = 〈ν⊥,v⊥〉, we have

(V μ)Xw + μX⊥w|(x0,v0) = (ν⊥ · v0)v0 · ∇xw + (ν⊥ · (v0)⊥)(v0)⊥ · ∇xw

= ν⊥ · ∇xw.

This proves that T = (V μ)X + μX⊥ since both sides are invariantly defined.
The formula T = (ν⊥,0) in the splitting (3.12) also follows. Since V =

(0,v⊥) in this splitting, it follows from the definition (3.14) of the Sasaki
metric that T and V are orthonormal. The fact that [T ,V ] = 0 follows from
the commutator formulas in Lemma 3.5.5 and the fact that V 2μ = −μ.
Finally, since T and V give an orthonormal commuting frame on ∂SM they
are divergence free: for T this follows from

div(T ) = 〈∇T T ,T 〉 + 〈∇V T ,V 〉 = 1

2
T
(|T |2) + 1

2
T
(|V |2) = 0,

since |T | = |V | = 1 and ∇V T − ∇T V = [V,T ] = 0. Hence T and V are
skew-adjoint.
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The proof of Theorem 4.5.1 is also based on the Pestov identity, however
instead of the condition I0f = 0 (so u|∂SM = 0) we will use that u|∂+SM =
I0f . Thus we need to prove a version of the Pestov identity for functions that
may not vanish on ∂SM . There will be a boundary term involving the vector
field T .

Proposition 4.5.5 (Pestov identity with boundary terms) Let (M,g) be
a compact two-dimensional manifold with smooth boundary. Given any
u ∈ C∞(SM), one has

‖VXu‖2 = ‖XVu‖2 − (KV u,V u) + ‖Xu‖2 + (T u,V u)∂SM .

Proof We begin with the expression ‖VXu‖2−‖XVu‖2 and integrate by parts
using Proposition 3.5.12 (note that integrating by parts with respect to V does
not give any boundary terms). This yields

‖VXu‖2 − ‖XVu‖2 = (VXu,VXu) − (XV u,XV u)

= −(V VXu,Xu) + (XXV u,V u) + (XV u,μV u)∂SM

= ((XV VX − VXXV )u,u)

+ (XV u,μV u)∂SM + (V VXu,μu)∂SM .

From (4.3) we have XVVX − VXXV = VKV − X2. Integrating by parts
again, we see that

‖VXu‖2 − ‖XVu‖2 = ‖Xu‖2 − (KV u,V u) + (Xu,μu)∂SM

+ (XV u,μV u)∂SM + (V VXu,μu)∂SM .

We continue to integrate by parts with respect to V in the boundary terms.
Thus

(V VXu,μu)∂SM = −(VXu,(V μ)u)∂SM − (VXu,μV u)∂SM

= (Xu,(V 2μ)u)∂SM + (Xu,(V μ)V u)∂SM

− (VXu,μV u)∂SM .

Combining this with the other boundary terms and using the identities
[X,V ] = X⊥ and V 2μ = −μ, we obtain that

‖VXu‖2 − ‖XVu‖2 = ‖Xu‖2 − (KV u,V u) + ((V μ)Xu + μX⊥u,V u)∂SM .

Thus the boundary term is (T u,V u)∂SM as required.

We are now going to prove some additional regularity properties of the
function τ . As in Lemma 3.1.10, consider a function ρ ∈ C∞(N) in a closed
extension N of M such that ρ(x) = d(x,∂M) in a neighbourhood of ∂M in

https://doi.org/10.1017/9781009039901.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.007


4.5 Stability Estimate in Non-positive Curvature 121

M and such that ρ ≥ 0 in M and ∂M = ρ−1(0). Clearly ∇ρ(x) = ν(x) for
x ∈ ∂M . Using ρ, we extend ν to the interior of M as ν(x) = ∇ρ(x) for
x ∈ M .

As before we let μ(x,v) := 〈v,ν(x)〉 for (x,v) ∈ SM , and

T := (V μ)X + μX⊥.

Note that T is now defined on all SM and agrees with the vector field T

in Definition 4.5.2 on ∂SM . In fact T and V are tangent to every ∂SMε =
{(x,v) ∈ SM : x ∈ ρ−1(ε)}, where Mε = ρ−1([ε,∞)).

Exercise 4.5.6 Prove that [V,T ] = 0 in SM .

Lemma 4.5.7 The functions T τ and V τ are bounded on SM \ ∂0SM .

Proof We set h(x,v,t) := ρ(γx,v(t)) for (x,v) ∈ SM \ ∂0SM and use the
identity X⊥ = [X,V ] to compute

T (h(x,v,0)) = T (ρ) = (V μ)Xρ + μX⊥ρ = (V μ)Xρ − μV (Xρ) = 0,

since Xρ(x,v) = μ(x,v). Therefore, there exists a smooth function a(x,v,t)

such that

T (h(x,v,t)) = ta(x,v,t).

Next we apply T to the equality h(x,v,τ (x,v)) = 0 to get

T (h(x,v,t))|t=τ(x,v) + ∂h

∂t
(x,v,τ (x,v))T τ = 0.

If we write (y,w) = (γx,v(τ (x,v)),γ̇x,v(τ (x,v))), then the identity above can
be rewritten as

τ(x,v)a(x,v,τ (x,v)) + μ(y,w)T τ = 0.

If (x,v) ∈ SM \ ∂0SM , then μ(y,w) < 0 and we may write

T τ = −τ(x,v)a(x,v,τ (x,v))

μ(y,w)
,

and since

0 ≤ τ(x,v)

−μ(y,w)
≤ τ(y, − w)

μ(y, − w)
,

it follows that T τ is bounded by Lemma 3.2.8. Since V (ρ) = 0, the proof for
V τ is entirely analogous.

The following corollary is immediate.
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Corollary 4.5.8 Let (M,g) be a compact non-trapping surface with strictly
convex boundary. Given f ∈ C∞(SM), the function

uf (x,v) =
∫ τ(x,v)

0
f (ϕt (x,v)) dt

has T uf and V uf bounded in SM \ ∂0SM .

We can now prove Proposition 4.1.3:

Proof of Proposition 4.1.3 We only prove the case k = 1 and refer to (Shara-
futdinov, 1994, Theorem 4.2.1) for the general case in any dimension n ≥ 2.
Recall the formula

uf (x,v) =
∫ τ(x,v)

0
f (ϕt (x,v)) dt .

Then If = uf |∂+SM , and we have proved in Proposition 4.1.2 that
‖If ‖L2(∂+SM) ≤ C‖f ‖L2(SM). From Definition 3.5.3, we have

V uf (x,v) = f (ϕτ(x,v)(x,v))V τ(x,v) +
∫ τ(x,v)

0
df (Zt (x,v)) dt,

where Zt(x,v) = d
ds

ϕt (ρs(x,v))|s=0. By Lemma 4.5.7 we have

|V uf | ≤ C

[
|f (ϕτ )| +

∫ τ

0
|df |ϕt | dt

]
.

As in Proposition 4.1.2, the L2(∂+SM) norm of the second term is ≤
C‖f ‖H 1(SM). For the first term, we use that ϕτ |∂+SM = α|∂+SM . Then Lemma
3.3.5 and the trace theorem on SM imply that

‖f (ϕτ )‖L2(∂+SM) ≤ C‖f ‖L2(∂SM) ≤ C‖f ‖H 1(SM).

Thus ‖V (If )‖L2(∂+SM) ≤ C‖f ‖H 1(SM). A similar argument works for T (If ),

showing that I : H 1(SM) → H 1(∂+SM) is bounded.
Finally, note that If vanishes on the boundary of ∂+SM whenever

f ∈ C∞(SM). Thus I (C∞(SM)) ⊂ H 1
0 (∂+SM), which implies that

I (H 1(SM)) ⊂ H 1
0 (∂+SM) by density.

Proof of Theorem 4.5.1 We wish to use the Pestov identity from Proposition
4.5.5 for uf . Since this identity was derived for smooth functions and uf fails
to be smooth at the glancing region ∂0SM , we apply the identity in SMε (as
defined above) and to the function u = uf |SMε for ε small. Since K ≤ 0,
Xuf = −f , and Vf = 0, we derive

‖f ‖2
L2(SMε)

≤ −(T uf ,V uf )∂SMε .
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Letting ε → 0 and using Corollary 4.5.8, we deduce (cf. Exercise 4.5.9)

‖f ‖2
L2(SM)

≤ −(
T uf ,V uf

)
∂SM

. (4.5)

Since uf |∂−SM = 0 and I0f = uf |∂+SM ∈ H 1
0 (∂+SM), we deduce

‖f ‖2
L2(SM)

≤ −(T I0f,V I0f )∂+SM ≤ 1

2

(‖T I0f ‖2+‖V I0f ‖2) ≤ 1

2
‖I0f ‖2

H 1,

and the theorem is proved.

Exercise 4.5.9 Consider the vector field N := μX − V (μ)X⊥ and let Ft be
its flow. Show that for ε small enough Fε : ∂SM → ∂SMε. Write F ∗

ε d!
2
ε =

qεd!
2, where qε is smooth and q0 = 1 since F0 is the identity. Show that(

T uf ,V uf
)
∂SMε

= (
qε
(
T uf ◦ Fε

)
,V uf ◦ Fε

)
∂SM

.

Use Corollary 4.5.8 and the dominated convergence theorem to conclude that
as ε → 0 (

qε
(
T uf ◦ Fε

)
,V uf ◦ Fε

)
∂SM

→ (
T uf ,V uf

)
∂SM

.

Exercise 4.5.10 Let (M,g) be a non-trapping surface with strictly convex
boundary and let f ∈ C∞(SM). Using the Pestov identity with boundary
term and Corollary 4.5.8, show that XVuf ∈ L2(SM). Using X⊥ = [X,V ],
conclude that X⊥uf ∈ L2(SM) and thus uf ∈ H 1(SM).

4.6 Stability Estimate in the Simple Case

In this section we show how to upgrade the stability estimate in Theorem 4.5.1
from the case of non-positive curvature to the case of simple surfaces. A glance
at the Pestov identity with boundary terms in Proposition 4.5.5 reveals that we
need to find a better way to manage the ‘index form’ like-term ‖XVu‖2 −
(KV u,V u). We shall do this by using solutions to the Riccati equation; these
exist for simple surfaces as we show next.

Proposition 4.6.1 Let (M,g) be a simple surface. There exists a smooth
function a : SM → R such that

Xa + a2 + K = 0.

Proof Consider M0 a slightly larger simple surface such that its interior
contains M (see Proposition 3.8.7), and let τ0 denote the exit time function
for M0. We define a vector field at (x,v) ∈ SM as follows:

e(x,v) := dϕτ0(x,−v)(V (ϕ−τ0(x,−v))),
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Figure 4.1 The vector field e and the function a = tan θ .

where ϕt is, as usual, the geodesic flow, see Figure 4.1. Since τ0|SM is smooth,
the vector field e is also smooth. As discussed in Section 3.7.2, the geodesic
flow preserves the contact plane spanned by X⊥ and V and thus there are
smooth functions y,z : SM → R such that

e = −yX⊥ + zV .

It was proved in Section 3.7.2 that t 
→ y(ϕt (x,v)) solves a Jacobi equation.
We can see this also as follows: note first that

e(ϕt (x,v)) = dϕt (e(x,v)),

and therefore [e,X] = 0. This implies

0 = [−yX⊥ + zV ,X],

and expanding the brackets using Lemma 3.5.5 we obtain

−(Xz + Ky)V + (Xy − z)X⊥ = 0.

Hence Xz = −Ky and Xy = z. In particular, X2y+Ky = 0 and y|∂+SM0 = 0.
Since M0 has no conjugate points, y �= 0 everywhere in SM and we may

define a := z/y. It follows that Xa = −K − a2 in SM as desired.

Exercise 4.6.2 Using the vector field

d(x,v) := dϕ−τ0(x,v)(V (ϕτ0(x,v))),

https://doi.org/10.1017/9781009039901.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.007


4.6 Stability Estimate in the Simple Case 125

show that one can construct a smooth function b such that Xb + b2 + K = 0
and a − b �= 0 everywhere, where a is the solution constructed in the proof
above.

Using the solution a to the Riccati equation given by Proposition 4.6.1, we
will show:

Lemma 4.6.3 Let (M,g) be a simple surface. For any ψ ∈ C∞(SM) we have

‖Xψ‖2 − (Kψ,ψ) = ‖Xψ − aψ‖2 − (μaψ,ψ)∂SM .

Proof It is enough to consider real-valued ψ . Using that a satisfies Xa + a2 +
K = 0, we easily check that

(Xψ − aψ)2 = (Xψ)2 − Kψ2 − X(aψ2).

Integrating over SM and using Proposition 3.5.12 to derive∫
SM

X(aψ2) d!3 = −(μaψ,ψ)∂SM,

the lemma follows.

We now show:

Theorem 4.6.4 (Stability estimate for simple surfaces) Let (M,g) be a simple
surface. Then

‖f ‖L2(M) ≤ C‖I0f ‖H 1(∂+SM)

for any f ∈ C∞(M), where C is a constant that only depends on (M,g).

Proof As in the proof of Theorem 4.5.1, the starting point is the Pestov identity
with boundary terms given in Proposition 4.5.5. We apply it on Mε (as defined
in Section 4.5) and to the function u = uf |SMε for ε small. Since Xuf = −f

and Vf = 0, we derive

‖f ‖2
L2(SMε)

= −∥∥XVuf
∥∥2
L2(SMε)

+ (
KVuf ,V uf

)
SMε

− (
T uf ,V uf

)
∂SMε

.

Applying Lemma 4.6.3 for ψ = V uf |SMε , we obtain

‖f ‖2
L2(SMε)

≤ −(
T uf ,V uf

)
∂SMε

+ (
μaV uf ,V uf

)
∂SMε

,

where μ is defined on SM using the extension of ν explained in Section 4.5
(for small ε it is the inward normal to Mε). We can clearly find a constant
C > 0 depending only on (M,g) such that(

μaV uf ,V uf
)
∂SMε

≤ C‖V uf ‖2
L2(∂SMε)

.
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If we let ε → 0 and use Corollary 4.5.8, we obtain

‖f ‖2
L2(SM)

≤ −(
T uf ,V uf

)
∂SM

+ C
∥∥V uf

∥∥2
L2(∂SM)

.

Since uf |∂−SM = 0 and I0f = uf |∂+SM ∈ H 1
0 (∂+SM), we deduce that there

is a constant C such that

‖f ‖2
L2(SM)

≤ C‖I0f ‖2
H 1(∂+SM)

,

and the theorem is proved.

Exercise 4.6.5 Use the fact that uf
− is smooth for f even (cf. Theorem 5.1.2)

to give a proof of the stability estimate of Theorem 4.6.4 that does not require
the approximation argument with SMε.

4.7 The Higher Dimensional Case

Although the results in Sections 4.3–4.6 have been stated in dimension two,
they remain valid in any dimension n ≥ 2. In this section we will give the
corresponding higher dimensional results. The proofs are virtually the same
as in the two-dimensional case, but the Pestov identity will take a slightly
different form. We will follow the presentation in Paternain et al. (2015a),
which contains further details.

Let (M,g) be a compact oriented n-dimensional manifold with n ≥ 2. When
n = 2 the analysis on the unit sphere bundle SM was based on the vector fields
X, X⊥, and V . The geodesic vector field X is well defined in any dimension
(see (3.5)). We wish to find higher dimensional counterparts of X⊥ and V .

Recall the splitting T SM = RX⊕H⊕V in Section 3.6, where the horizontal
and vertical bundles H(x,v) and V(x,v) are canonically identified with elements
in {v}⊥ ⊂ TxM . Then for any u ∈ C∞(SM) we can split the gradient ∇SMu

with respect to the Sasaki metric G as

∇SMu = ((Xu)X,
h
∇u,

v
∇u).

The horizontal gradient
h
∇ and vertical gradient

v
∇ are operators

h
∇,

v
∇ : C∞(SM) → Z,

where Z := {Z ∈ C∞(SM,TM) : Z(x,v) ∈ TxM and Z(x,v) ⊥ v}.
We define an L2 inner product on Z via

(Z,Z′)L2(SM) =
∫
SM

〈Z(x,v),Z′(x,v)〉 d!2n−1.
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The horizontal divergence
h

div and vertical divergence
v

div are defined as the

formal L2 adjoints of −
h
∇ and −

v
∇, respectively. They are operators

h
div,

v
div : Z → C∞(SM).

We also need to define the action of X on Z as

XZ(x,v) := Dt(Z(ϕt (x,v)))|t=0,

where Dt denotes the covariant derivative on M .

The operators
h
∇ and

v
∇ are the required higher dimensional analogues of

X⊥ and V , as indicated by the following example:

Example 4.7.1 When n = 2, one has Z = {z(x,v)v⊥ : z ∈ C∞(SM)}. It is
easy to check (see Paternain et al. (2015a, Appendix B)) that

h
∇u(x,v) = −(X⊥u)v⊥,

v
∇u(x,v) = (V u)v⊥,

and

h
div(z(x,v)v⊥) = −X⊥z,

v
div(z(x,v)v⊥) = V z.

The following result is the analogue of the basic commutator formulas in
Lemma 3.5.5. Below, R(x,v) : {v}⊥ → {v}⊥ is the operator determined by the
Riemann curvature tensor R via R(x,v)w = Rx(w,v)v.

Lemma 4.7.2 (Commutator formulas) The following commutator formulas
hold on C∞(SM):

[X,
v
∇] = −

h
∇,

[X,
h
∇] = R

v
∇,

h
div

v
∇ −

v
div

h
∇ = (n − 1)X.

Taking adjoints, we also have the following commutator formulas on Z:

[X,
v

div] = −
h

div,

[X,
h

div] =
v

divR.

https://doi.org/10.1017/9781009039901.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009039901.007


128 The Geodesic X-ray Transform

We also have integration by parts formulas (cf. Proposition 3.5.12):

Proposition 4.7.3 (Integration by parts) Let u,w ∈ C∞(SM) and Z ∈ Z .
Then

(Xu,w)SM = −(u,Xw)SM − (〈v,ν〉u,w)∂SM,

(
h
∇u,Z)SM = −(u,

h
divZ)SM − (u,〈Z,ν〉)∂SM,

(
v
∇u,Z)SM = −(u,

v
divZ)SM .

The formulas above imply the higher dimensional version of the Pestov
identity. The proof is the same as for n = 2, and we can also include boundary
terms (see e.g. Ilmavirta and Paternain (2020)).

Proposition 4.7.4 (Pestov identity with boundary term) Let (M,g) be a
compact manifold with smooth boundary. If u ∈ C∞(SM), then

‖
v
∇Xu‖2 = ‖X

v
∇u‖2 − (R

v
∇u,

v
∇u) + (n − 1)‖Xu‖2 + (T u,

v
∇u)∂SM,

where T u := μ
h
∇u − Xu

v
∇μ.

Remark 4.7.5 The identity in Proposition 4.7.4 is an ‘integrated’ form of the
Pestov identity. In previous works, also ‘pointwise’ or ‘differential’ versions of
this identity appear. In fact, using the commutator formulas it is easy to prove
the pointwise Pestov identity

|
v
∇Xu|2 − |X

v
∇u|2 + 〈R

v
∇u,

v
∇u〉 − (n − 1)|Xu|2

= X

[
〈
h
∇u,

v
∇u〉

]
−

h
div

[
(Xu)

v
∇u

]
+

v
div

[
(Xu)

h
∇u

]
for any u ∈ C∞(SM). Proposition 4.7.4 could be obtained by integrating this
identity over SM .

The injectivity of the X-ray transform I0 on simple manifolds follows from

the Pestov identity if we can prove that ‖X
v
∇u‖2 − (R

v
∇u,

v
∇u) ≥ 0 when

u|∂SM = 0. This follows by using Santaló’s formula and the index form as in
Proposition 4.4.3. Moreover, we have the more precise counterpart of Lemma
4.6.3, which also includes boundary terms:

Lemma 4.7.6 Let (M,g) be a simple manifold. There is a smooth map U on
SM so that U(x,v) is a symmetric linear operator {v}⊥ → {v}⊥ solving the
Riccati equation

XU + U2 + R = 0 in SM .
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For any Z ∈ Z we have

‖XZ‖2 − (RZ,Z) = ‖XZ − UZ‖2 − (μUZ,Z)∂SM .

The proof of this lemma is very similar to the proof of Paternain et al.
(2015a, Proposition 7.1). The term XU in the Riccati equation is defined using
the Leibniz rule, that is, by demanding that X(UZ) = (XU)Z + UXZ. The
solution to the Riccati equation (cf. Paternain (1999, Chapter 2)) is obtained
by enlarging (M,g) slightly and flowing the (Lagrangian) vertical subspace by
the geodesic flow exactly as in the proof of Proposition 4.6.1.

We now state the injectivity result for I0, and the more general injectivity
result involving functions and 1-forms as in Theorem 4.4.2.

Theorem 4.7.7 (Injectivity of I0) Let (M,g) be a simple manifold, and let
f (x,v) = f0(x) + α|x(v) where f0 ∈ C∞(M) and α is a smooth 1-form on
M . If If = 0, then f0 = 0 and α = dp for some p ∈ C∞(M) with p|∂M = 0.
In particular, I0 is injective on C∞(M).

Following the argument in Section 4.6, we also obtain a stability result for
I0 in any dimension.

Theorem 4.7.8 (Stability estimate for simple manifolds) Let (M,g) be a
simple manifold. Then

‖f ‖L2(M) ≤ C‖I0f ‖H 1(∂+SM)

for any f ∈ C∞(M), where C is a constant that only depends on (M,g).
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