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ON BESSEL AND GRUSS INEQUALITIES
FOR ORTHORNORMAL FAMILIES IN INNER PRODUCT SPACES

S.S. DRAGOMIR

A new reverse of Bessel’s inequality for orthornormal families in real or complex
inner product spaces is obtained. Applications for some Griiss type results are also
provided.

1. INTRODUCTION

In the recent paper [2], the following refinement of the Griiss inequality has been
proved:

THEOREM 1. Let (H,(-,-)) be an inner product space over K (K = R,C) and
e€ H, |le|| =1. If $,®,,[" are real or complex numbers and x,y are vectors in H such
that either

(1.1) Re{(®e —z,z — ¢e) > 0 and Re{T'e —y,y —ve) >0

or, equivalently,

¢+ ¥y+T
2 2

hold, then we have the following refinement of the Griiss inequality

1 1
(1.2) |- 55| <512 -dl, [v—T5—e| <50 -

(1'3) |(x,y) - <z’e)(61 y)'
< 18— 6110 - 7] - [Re(@e — 2,7 — 4e)] " [Re(e ~ v,y - e)]

1
<718 -4lIr -1,

The constant 1/4 is best possible in both inequalities.

Note that the inequality between the first and last term in (1.3) was first established
in {1].

A generalisation of the above result for finite families of orthornormal vectors has
been pointed out in [3].
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THEOREM 2. Let {e;}ics be a family of orthornormal vectors in H, F a finite
part of I, ¢;,®;, v, [ e K(K=R,C),i€ Fandz,y€ H. If

(1.4) Re<z Die; — 1,7 — Z¢¢6i> 20,

i€F i€F
Re<z Tie; —y,y— Y 7.-61'> >0,
icF i€F
or, equivalently,
. it |1 12
s) o~ 2 e] < 2 (Tm-ar)
iEF ieF
i+ 'y. 1 12
- e <3 (X))
i€EF iEF
hold, then we have the inequalities
(16) (.’L‘, y) - Z(mrei)(eivy)
H3
1/2 1/2
<3(Tre-a ) (Zire- )
i€F iEF
1/2 . 1/2
- [Re<z Qe —z,T— Y ¢.~e,~>] [Re<z Tiei —y,y — Z%a)]
i€F icF i€F i€F
1/2 1/2
2 '
4(Z|‘I’ ¢:|) (ZIF:“’M) :
ieF i€EF

The constant 1/4 is best possible.
REMARK 1. We note that the inequality between the first term and the last term for
real inner products under the assumption (1.4) has been proved by Ujevié¢ in [4].

The following corollary provides a reverse for the well known Bessel’s inequality in
real or complex inner product spaces (see also [3]).

COROLLARY 1. With the above assumptions for {e;}ic1, F, ¢;, ®; and z, one has
the inequalities

(1.7) 0 < Jlzl* - Y [(z, e’
ieF
ZI@ ¢,| - Re<Z<I> € — T, — Z¢,e,>
1€F ieF ieF
Z |®; — il
1EF’

with 1/4 as the best possible constant in both inequalities.
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The main aim of this paper is to point out a different reverse for the Bessel and
Griiss inequalities stated above. Some related results are also outlined.

2. A REVERSE OF BESSEL'S INEQUALITY
The following lemma holds.

LEMMA 1. Let {e;},; be a family of orthornormal vectors in H, F a finite part
of I, \;eK,ie F,r>0andz e H. If

(2.1) T — Z el <,
i€F
then we have the inequality
2 2
(2.2) 0< el =D |z e <r? =Y |\ — (z e
ieF i€F

Proor: Consider

2
Il = x—ZA,-e,- =<.’E—ZA,‘€,‘,.’L‘—Z)\]'€]'>
i€EF teF JEF
=zl = Y A(me) = Y Nlme) + 3 > Adjen e5)
L iEF ieF i€F jeF
=|lz|® = Y Mlz,e) = )Nz, e) + Al
i€F ieF ieF

and

L= |\- (z,e)| = Y= (ze)) (K - (z,e)

iEF icF

= Z[l’\ilz + |z, 6i)|2 - Ai(z, &) — )\i(x,ei)]
i€F

=S TINP Y [ ~ D Nize) = 3 Az ).
ieF icF i€F i€F

If we subtract I; from I, we deduce an identity that is interesting in its own right

2
(23) T — Z/\,-ei o ZlA, - (z,ei)|2 = ”1‘”2 ot Z‘(l‘, e,-)|2,

ieF i€F i€F
from which we easily deduce (2.2). 0

The following reverse of Bessel’s inequality holds.

THEOREM 3. Let {e;}ic; be a family of orthornormal vectors in H, F a finite
part of I, ¢;, ®;, i € I real or complex numbers. Assume a x € H. If either
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(i) Re<z bie; —z,2 - Y ¢,<e,-> > 0; or, equivalently,

iEF iEF

@ e S ool < (S-ar) /2
i€F i€F
holds, then the following reverse of Bessel’s inequality
2
(2.4) 0< flalf” = D _[(z,e)]
ieF
; + D;
<3 1o - g —Z-‘”————( e
zeF
< 1 Z |®; — ¢i*,
i€F
is valid.

The constant 1/4 is best possible in both inequalities.

PROOF: Firstly, we observe that for y,a, A € H, the following are equivalent

(2.5) Re(4 -3,y —a) >0
and

a+ A 1 :
(26) lv- 5= <504 -al.

Now, for a = Y ¢ie;, A =Y ®;e;, we have
i€F i€F

1/2
4ol = 3 (@~ 4e (||Z‘I’ — e ||)

~ (T o= ol ) " (= |<1>,-—¢i|2)1/2,

i€F i€F

giving, for y = z, the desired equivalence.
Now, if we apply Lemma 1 for A; = (¢; + ®;)/2 and

(ZI<I> — ¢l ) 2,

i€eF

MI»—-A

we deduce the first inequality in (2.4).
Let us prove that 1/4 is best possible in the second inequality in (2.4). Assume that
there is a ¢ > 0 such that

(2.7) <zl = S|z e < e D19 — oif* - |¢,+<1> twe’

i€F i€F
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provided that ¢;, ®;,z and F satisfy (i) and (ii).
We choose F' = {1}, &; = e = (1/v2,(1/v2)) € R?, z = (z1,75) € R?, &, = ®
=m>0, ¢ =¢=—-m, H=R? to get from (2.7) that

. 2
(2.8) 022 +22— @tz 2332)
< dem? ~ ————(Il + $2)2
= 2 t
provided
(2.9) 0 € (me — z,z + me)

= (—%—x;)(:ﬂl-f%) + (% —xz)(1;32+’:7n—§)-
From (2.8) we get
(2.10) z? + 22 < 4em?

provided (2.9) holds.
If we choose z; = m/v/2, 23 = —m/+/2, then (2.9) is satisfied and by (2.10) we get
m? € 4cm?, giving ¢ > 1/4.

REMARK 2. If F={1},e; =1, |le}l = 1 and for ¢,® € K and z € H one has either
(2.11) Re(®e —z,2 — ¢e) 2 0

or, equivalently,

¢+ d 1
(2.12) o - E5=e| < 512 -4,
then
(2.13) 0 < Jlzli® - iz, &)
1 s |lo+ @ L )
21—l - [ — <= |P - o2,

The constant 1/4 is best possible in both inequalities.

REMARK 3. It is important to compare the bounds provided by Corollary 1 and The-
orem 3.
For this purpose, consider

Bi(z,e,6,8) = %(@ ~ §)2 — (®e — 7,z — de)
and

Bz, e,6,0) = (® - 9~ (22— (z,0)),
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where H is a real inner product, e € H, |le]| = 1,z € H, ¢,® € R with (Pe—z,z—¢e) > 0
or equivalently,

o~ 57 <5109
If we choose ¢ = —1, ® = 1, then we have
Bi(z,e) =1—(e~z,z+¢€) =1— (Jlel” - [|z]|*) = l|=®,
By(z,e) =1 - (z,¢)’,

provided ||z|| €1
Choose z = ke, with 0 < k£ < 1. Then we get

By (k) = k%, By(k)=1-k2,
which shows that B;(k) > B(k) if 0 < k < v/2/2 and B, (k) < By(k) if V2/2 <k <1
We may state the following proposition.

PROPOSITION 1. Let {e;}ics be a family of orthornormal vectors in H, F a
finite part of I, ¢;, ®; € K (i € F). If z € H either satisfies (i), or, equivalently, (ii) of
Theorem 3, then the upper bounds

Bl($,€,¢,@,F) = izlél - ¢i|2 - RG<Z(I),'€,' -T,Tr— Z¢iei>5

ieF i€F i€F
i + <I>
By(z,e,6,8,F) = 7 310 — i = 30| 2T (g e[
tEF i€F
for the Bessel’s difference B,(z,e,F) := ||z|* - Zl(z,ei)|2, cannot be compared in
icF

general.

3. A REFINEMENT OF THE GRUSS INEQUALITY

The following result holds.

THEOREM 4. Let {e;}ier be a family of orthornormal vectors in H, F a finite
part of I, ¢;,®;, vi,[i € K, i € F and z,y € H. If either

(3.1) Re<z¢>,~e,~ —x,z—z¢;.ei> >0,

ieF i€EF
Re<zl“iei —%y- Z%ei> 20,
i€EF ieF

or, equivalently,

1 1/2
2
SE(E |‘Di—¢i|> ,

D, + ¢
(3.2) I
ieF icF
C; + 'y, 1 12
“y—z §(ZIF—% ) :
i€F icF
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hold, then we have the inequalities

(3.3) 0< |(z9) — ) _(z &) y)
teF
1/2 1/2
< :11(2 |®; — ¢i|2) : (Z IT; — %‘|2)

ieF teF

®; '2i' o I + Vi (v, e)

— ,t)

i€F
1 N\ 2 O\ V2
Sz(ZIQi—¢i|) '(Z|Fi—%’|) :

i€F ieF
The constant 1/4 is best possible.

PRrRooOF: Using Schwarz’s inequality in the inner product space (H L )) one has

<x - E(z,ei)ei,y - Z(y,e,)e,> T - Z(z e;)e Z(y, ei)e;

ieF i€EF i€F i€F

(3.4) ’

and since a simple calculation shows that
<z - Z(xa ei)ei’y - Z(y)ei>ei> = (.T, y) - Z(za ei)(@,’, y)
i€F i€F i€F

and

Izl = > (=, )’

i€F

z— Z(z, eel|l =

i€F

for any z,y € H, then by (3.4) and by the reverse of Bessel's inequality in Theorem 3,
we have

(z.9) - Y (z,)

i€F

(3.5)

< (1el - Sl eaf?) (1 - Slweal”)

i€F i€EF

[ Si-f —Z|q’ ul ,>|2]
x [§ - DY el

iEF

= K.

Recall Aczé!l’s inequality for real numbers, that is, we recall that
2
(3.6) (a2 - Z a?) <b2 - zbf) < (ab - Z a,—b,~> ,

i€EF ieF i€F
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provided that a,b,a;,b; > 0, i € F, and either a®> — Ya? > 0 or b2 — Y52 > 0. So we
may state that i€F i€F

(3.7) Ks[ (Z|q> ¢l ) (ZIF ol )1/2

teF t€EF
d; + ¢
2P - e

F+71 (et)lr'

Using (3.5) and (3.7) we conclude that

<[ ar) " (Srar)

i€eF

_Z|<1> +¢,_ ze l)III‘ % W, e'>|r'

i€F

(3.8)

(z,9) - S (z, &) (e,

i€F

Taking the square root in (3.8) and taking into account that the quantity in the last square
brackets is nonnegative (use for example (2.4) and the Cauchy-Bunyakovsky-Schwarz’s
inequality for real numbers), we deduce the second inequality in (3.3).

The fact that 1/4 is the best possible constant follows by Theorem 3 and we omit
the details. 0

The following corollary may be stated.

COROLLARY 2. Letee€ H, el =1, ¢,9,7,T € K and z,y € H such that either
(3.9) Re(®e —z,2 — ¢e) 2 0 and Re(l'e —y,y — ve) >

or, equivalently,

o+ @ v+T 1
(3.10) |e- 22| <512 -9l, | S0 =11
Then we have the following refinement of Griiss’ inequality
(3.11) 0 < {z,y) — (z,e)e, y)l

1

<310 - glI0 - |22 ~ (0] | L3~ - .

1

72— ¢ll -2l

The constant 1/4 is best possible in both inequalities.

4. SOME COMPANION INEQUALITIES

The following companion of the Griiss inequality also holds.
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THEOREM 5. Let {e;}ics be a family of orthornormal vectors in H, F a finite
part of I and ¢;,®; €K, i € F, z,y € H and X € (0,1), such that either

(4.1) Re<z ®.e; — (/\:c +(1- /\)y), Az+(1-Ay— Z¢iei> >0

icF i€F
or, equivalently,
®; + ¢ 1 2\
(4.2) /\z+(1—/\)y—ZT'€i <5(2|¢i_¢i|) )
i€EF iEF
holds. Then we have the inequality
(4.3)
2
icF
1_ 1 P+ ¢i 2
- = — (A 1-My,e;
4,\(1-,\) 24|72 Oz + (1= Ny, &)

<16 ,\(1 Z|<1> ol

The constant 1/16 is the best possible constant in (4.3) in the sense that it cannot be
replaced by a smaller constant.

PRrOOF: We know that for any z,u € H, one has
1
Re(z,u) < n lz +ul®.
Then for any a,b € H and A € (0,1) one has

(4.4) Re(a, b) < [|Aa + (1 = 2|

__t
4201 - A)
Since

@)= Emedlens) = (2= Swedeny - Sweder),

i€F icF i€F
for any z,y € H, then, by (4.4), we get

(45)  Re [<x,y> ~S e, e.-)(ei,y>]

i€F
=Re [<:c - Z(z, ee,y— Z(y, e;)ei>]
ieF i€F \
< ?4/\(11—_/\) /\( ;(z ,€i)e ) +(1- (y - iezp(y, 6:')3:')
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2

1
= ‘L\(T/\_) Az +(1— ANy — ; (/\z +(1- /\)y,e,-)e,-
-1 — P - - N
= i [“/\z + (1 - Ny ;l(AJZ + (1 /\)y,e,)| ]
If we apply the reverse of Bessel’s inequality in Theorem 3 for Az + (1 — \)y, we may
state that
2
(4.6) [RERCERVH ) B [CERTCEPI RS
icF
1 d; + ¢; 2
<3 > 1% — ¢l - Z|T¢ - Az +(1- ’\)ywei>|
i€F i€F
1
< ZZM’:’ - if*.

ieF

Now, by making use of (4.5) and (4.6), we deduce (4.3).

The fact that 1/16 is the best possible constant in (4.3) follows by the fact that if
in (4.1) we choose = y, then it becomes (i) of Theorem 3, implying for A = 1/2 the
inequality (2.4), for which, we have shown that 1/4 is the best constant. 0

REMARK 4. In practical applications we may use only the inequality between the first
and the last term in (4.3).

REMARK 5. If in Theorem 5, we choose A = 1/2, then we get

(47) AEED IO
icF
< %ZM’:‘ — ol - Z'Qi;—QSi - <z—;—y,ei> ’
i€F i€F
S %Zlél _¢i|27
icF
provided

Re<zq>i6,'—$;y,x;y —Z¢i6i> ?0

i€eF i€F

or, equivalently,

et st ()"

i€F 1eF

We note that (4.7) is a refinement of the corresponding result in [3].
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COROLLARY 3. With the assumptions of Theorem 5 and if

(4.8) Re < Z@.-e,- (A1 -ANy),Az+£(1— — Z¢iei> >0

i€eF icF

or, equivalently

(4.9)

D; + o 1 1/2
EEXERVEDY 2¢'€i”<§(2|¢i—¢i|2> ;

i€F i€F

then we have the inequality

Rete = St enn)]| < g5 sy S

ieF

(4.10)

The constant 1/16 is best possible in (4.10}.
REMARK 6. If H is a real inner product space and m;, M; € R with the property
(4.11) <Z Me; — /\:z::t (1—/\)y) Azt (1- Zm,e,> >

ieF iEF

or, equivalently,

/\:c:t(l—/\)y—zw-ei

ieF

(4.12)

‘ < %[Z(Mi - mi)z] 1/2,

i€EF

then we have the Griiss type inequality

(@.9) = (o) < g - sy M — )

i€F i€F

(4.13)

5. INTEGRAL INEQUALITIES

Let (2, Z, 1) be a measure space consisting of a set §2, £ a g—algebra of subsets and
p a countably additive and positive measure on £ with values in RU {oo}. Let p 2 0
be a u—measurable function on Q2. Denote by L2(f2,K) the Hilbert space of all real or
complex valued functions defined on §2 such that

(5.1) Amamwwmw<w

Consider the family {f;}ies of functions in L2(, K) with the properties that

(5.2) Ammwmmmhm,MeL

where 6;; is 0 if i # j and §;; = 1if i = j. {fi}ies is an orthornormal family in L2(, K).
The following proposition holds.
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PROPOSITION 2. Let{f;}ics bean orthornormal family of functions in Lg(Q, K),
F' a finite subset of I, ¢;,®; € K (i € F) and f € L2(Q,K), so that either

63 [ oorre[(Zounto) - 16)) (70) - & ) o) >0

i€F

or, equivalently,

(5.4) [ ot

7o) =322 pgs

Z | — ¢

iEF :GF‘
hold. Then we have the inequality
2

5.5) 0< [ p(s)|£(s)|"dp(s) - (5)£(s)Fi(s)du(s)
( / [ | v ; /np s)f(s)fi(s)duls

< 2ol - SPEE - [ o eTdme]

16F iEF Q

< 1 Z |®; — ¢
teF

The constant 1/4 is best possible in both inequalities.

The proof follows by Theorem 3 applied for the Hilbert space L;",(Q,K) and the
orthornormal family {f;}ies.
The following Griiss type inequality also holds.

PROPOSITION 3. Let {f}ic1 and F be as in Proposition 2. If ¢;, ®;,v;, T; € K
(i € F) and f,g € L3(Q,K) so that either

(5.6) / Re[(zé fi(s) = 1)) (Fls) = % FoGs )J (s) >

1E€EF icF
/n Re[(gf‘f,(s 9(5)) (30s) ;v,f. )] (s) >0,

or, equivalently,

(5.7) [ o|ts) - 52t o) < I
:GF’ :GF
Fi + '71
d I; —
/ 1EF 2 (s ;I
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hold, then we have the inequalities

68) | olerr(e)aiduts) - > [ A Te)6) [ p(6) 117Nl
< %(; |®; — ¢i|2) " (; T — 'Yi|2> v
SR - [T F52 - [ s o)
< E(IGZF |®; — ¢i|2> " <§ T — 'Yi|2) 1/2-

The constant 1/4 is the best possible.
The proof follows by Theorem 4 and we omit the details.

REMARK 7. Similar results may be stated if one applies the inequalities in Section 4.
We omit the details.

In the case of real spaces, the following corollaries provide much simpler sufficient
conditions for the reverse of Bessel’s inequality (5.5) or for the Griiss type inequality (5.8)
to hold.

COROLLARY 4. Let {fi}ic: be an orthornormal family of functions in the real
Hilbert space L%(Q), F a finite part of I, M;;m; € R (i € F) and f € LZ(Q) so that
(5.9) Zmifi(s) £ fls) < ZMifi(s) for u— almost everywhere s € (),

ey i€F

then we have the inequalities

610) o< [ sl - X[ [ s asaue)

i€eF
L Mi + my 2
S3 ;(M,- - mi)? - ;[T - /QP(S)f(S)f.-(s)du(s)]

< EZ(M‘ - mi)>.

i€F
The constant 1/4 is best possible.

COROLLARY 5. Let {fi}ics and F be as in Corollary 4. If M;, m;, N;,n; € R
(i € F) and f,g € L%() such that

(5.11) S mafi(s) < f(s) € D Mifi(s)

i€EF i€F

Znifi(s) < g(s) € ZNif,-(s) for p— almost everywhere s € Q,
icF icF

https://doi.org/10.1017/50004972700036066 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700036066

340

S.S. Dragomir [14]

then we have the inequalities

| / p(3)1(8)a(s)du(s) = 3 /Q p(5) () () d(s) /Q p(5)9(s) fi(5)du(s)

<

N

(1]
2]
(3]

(4]

ieF
%(;(Mi - m;-)?) 1/2 (;(Ni - n.-)2) e §|M_;Ln_z _ /Qp(s)f(s)f,-(s)du(s)‘
B = [ polate) o)t
%(Z(Mi - mi)2> " (Z(Ni - ni)2> 1/2-

icF i€F
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