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Since all the semigroups considered in this paper are commutative, we shall use the terms
" semigroup " and " group " where we actually mean " commutative semigroup " and
" commutative group ". Some basic results from the theory of semigroups are required and
will be used without explicit mention; these results may be found in [1, § 4.3]. We shall denote
the additive semigroups of integers, positive integers, negative integers, positive rationals
by Z, Z + , Z" , Q + respectively.

1. Introduction. In his book The theory of finitely generated commutative semigroups,
L. Redei has carried out a deep analysis of the congruences on finitely generated free semi-
groups. As a consequence of this theory, one can, in principle, construct all finitely generated
semigroups. However, Re"dei's theory does not give rise to a structure theorem for such semi-
groups. In this paper we consider the problem of giving a description of finitely generated
semigroups in the spirit of the so-called " Fundamental theorem of finitely generated groups "
[3, Theorems 10.3, 10.4]. We shall state this result as Theorem 1.1 because it serves as a
model for our results; taken with our results, it also shows where the analogy between groups
and semigroups breaks down.

THEOREM 1.1. Let G be a finitely generated group.

(I) Gx Z" x Ffor some non-negative integer n and some finite group F. The integer n is
unique and the group F is unique up to isomorphism.

(II) F is a direct product of cyclic groups of prime power order.

(III) Each subgroup of G is finitely generated.

Any finitely generated semigroup can be uniquely expressed as the union of a semilattice
of archimedean semigroups. Hence the structure of finitely generated semigroups depends on
the structure of the archimedean subsemigroups of finitely generated semigroups. Examples
1.2 and 1.3 show that these subsemigroups need not themselves be finitely generated so that
we cannot say much, in general, about the archimedean components of finitely generated
semigroups. ([10], [11] give a construction for all archimedean semigroups, but this is very
complicated). Indeed, we have not been able to characterise those semigroups which are
archimedean components of finitely generated semigroups although some results in this
direction are given in Proposition 4.4 and Theorem 6.2.

EXAMPLE 1.2. Let S = F(a, b) be the free semigroup on two generators a, b. Then
S has three archimedean classes <a>, <6> and K= {cfb": m,neZ+}. Since K\K2 =
{ab",a"b : « e Z + } is infinite, K is not finitely generated.

EXAMPLE 1.3. Let S = F(a,b; a2b2 = b2). Then S has two archimedean classes

https://doi.org/10.1017/S0017089500000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000987


FINITELY GENERATED COMMUTATIVE SEMIGROUPS 135

and K= {b",anb,ab":neZ + } . Since K\K2 = {b,a"b:neZ+} is infinite, K is not finitely
generated.

Proposition 1.4 sums up what we can usefully say, in general, about the archimedean
components of finitely generated semigroups.

PROPOSITION 1.4. If S is a finitely generated semigroup, then S is a finite semilattice of
archimedean semigroups. Each maximal archimedean class and each subgroup of S is finitely
generated.

Proof. Since 5 is finitely generated, so is its maximal semilattice homomorphic image
A; because each element of A is idempotent, this implies that A is finite. Hence S is the
union of the finite semilattice A of archimedean semigroups.

Each maximal archimedean class of S is clearly generated by those generators of S which
it contains and hence is finitely generated. It thus remains to prove that each subgroup of 5
is finitely generated. In fact, by Theorem 1.1, (III), it suffices to show that each maximal
subgroup of S is finitely generated.

Let H be a maximal subgroup of S; then H is contained in some archimedean class Sa

of S. Let D = (J {Sp: fl ^ a} and denote by e the identity of H. Then

so that Be = Sae. But, because H is a maximal subgroup of the archimedean semigroup
Sa, H = Sae; hence H = Be. It follows that we can define a mapping 9:S-*H°by

\xe if xeB,
xO = 4 n

{0 otherwise.

Since B is the complement of a prime ideal of S [6, Lemma 1.3], it is clear that 6 is a homo-
morphism of S onto H°; thus H° is finitely generated. But H° has maximal archimedean
class / / so that, by the second part of the proposition, H is finitely generated.

COROLLARY. A finitely generated semigroup is regular (i.e., is a union of groups) if and
only if it is a finite semilattice of finitely generated groups.

Although we cannot say much about the non-finitely generated archimedean subsemi-
groups of a finitely generated semigroup, finitely generated archimedean semigroups with and
without idempotents can be described in some detail; see Theorem 3.10 and Proposition 4.2.
Because of this, we shall consider semigroups which obey the ascending chain condition on
subsemigroups (A.C.C. for short). The following proposition follows by a standard argument.

PROPOSITION 1.5. A semigroup obeys the A.C.C. if and only if each subsemigroup is finitely
generated.

COROLLARY. A semigroup obeys the A.C.C. if and only if it is a finite semilattice of archi-
medean semigroups each of which obeys the A.C.C.

As a consequence of this corollary, the problem of determining the structure of all semi-
groups which obey the A.C.C. reduces to that of finding those archimedean semigroups which
obey the A.C.C. The congruences which we use to investigate the latter problem are dis-
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cussed in the next section and the problem itself is tackled in the third and fourth sections.
Separative semigroups which obey the A.C.C. are neatly characterised by Theorem 1.6;

the proof is given in § 5.

THEOREM 1.6. Let S be a separative semigroup. Then S obeys the A.C.C. if and only if it
can be embedded in a finite semilattice of groups Z x Fa, where each Fa is a finite group.

2. Some important congruences.

DEFINITION 2.1. [1] Let S be a semigroup; then

a={(a,b)eSxS: anb = an+1;ab" = bn+1 for some « e Z + } .

PROPOSITION 2.2. [1] a is the finest congruence p on S such that Sjp is separative. If S
is archimedean, then SI a is cancellative; in particular, a separative archimedean semigroup is
cancellative.

DEFINITION 2.3. [6] A semigroup 5 is torsion free if, for a,beS, « e Z + , a" = b" implies
a = b.

PROPOSITION 2.4. [6] Let S be a semigroup and let

t = {(fl,i)eSxS:fl"=t" for some «eZ+}.

Then x is the finest congruence p on S such that Sjp is torsion free. Further a £ T.

COROLLARY 1. Let S be a semigroup. Then the following are equivalent:

(a) S has an idempotent;
(b) Sja has an idempotent;
(c) S/x has an idempotent.

If, further, S is archimedean, then (a), (b), (c) are equivalent to

(d) there exist x,yeS with x = xy.

Proof. Clearly (a) implies (b) and (b) implies (c). Hence, to prove the equivalence of
these three statements, it remains to show that (c) implies (a). Suppose that (c) is satisfied and
let x6S be such that (x2,x)ex. Then x" = (x2)" = (x")2 for some neZ+; hence x" is idem-
potent.

In any semigroup with an idempotent e, there exist x ( = e), y ( = e) such that x = xy.
Therefore (a) implies (d), without any restriction on S. If S is archimedean, then S/a is
cancellative so that x = xy gives (j,y2)ea; that is, Sja has an idempotent. Hence (d) implies
(b).

COROLLARY 2. If S is an archimedean semigroup, then 5/T is cancellative.

Proof. Sjx is clearly separative. Hence, by Proposition 2.2, 5/T is cancellative.

DEFINITION 2.5. Let 5 be a semigroup. Then, for each a e S,

pa = {(x,y)eS x S : xa" = yam for some m,neZ+}.
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pa is Dubreil's reversible congruence P<a>, where <a> is the semigroup of S generated by
a. Hence we have the following proposition.

PROPOSITION 2.6 [2], [9]. Let S be a semigroup. Then, for each aeS, pa is the finest
congruence p on S such that S/p has identity ap".

If S is archimedean, then pa is the finest congruence on S such that S/p is a group with
identity op".

COROLLARY. Let S be a semigroup and let S = (J{SA:AeA} be the expression ofS as the
union of a semilattice A of archimedean semigroups Sx. Suppose that A has a minimum member
a. Then, for each aeSa, pa is the finest congruence p on S such that Sjp is a group with identity
ap\

If Q is a homomorphism of S onto a group G, there exists aeSx such that paz0<>8 i .

Proof. A straightforward argument shows that pa is the finest group congruence p on S
whose quotient has identity ap".

Suppose that 6 is a homomorphism of S onto a group G. Then, since Sx is an ideal of S,
Sa9 is an ideal of G; since G is a group, this means that G = Sj9. In particular, there exists
aeSa such that aO is the identity of G. By the first part of the proposition, pac.QoQ~l for
this a.

PROPOSITION 2.7. If S is an archimedean semigroup without idempotents, then

a = xr\pa

for each aeS.

Proof. By Proposition 2.6, Sjpa is a group and so is separative; hence a £ pa. But, by
Corollary 2 to Proposition 2.4, J S T . Thus we have a c par\x.

Conversely, let (x,y)epam. Then x" = / " and xd = yd* for some n,r,seZ+. These
equations give x"d" = x V and, since S has no idempotents, it follows that r = s. But then
xd = yd and so, since Sja is cancellative, (x,y)eo. Hence pam E a.

Proposition 2.7 is useful for describing the structure of finitely generated archimedean
semigroups which are cancellative. To characterise those that are not cancellative, we require
another congruence.

DEFINITION 2.8. Let S be a semigroup. Then, for each aeS,

Ha = Av{(x,y)6SxS:x=au,y = av,du = amv for some u, veS1, m, neZ+},

where A is the identity congruence on S.

PROPOSITION 2.9. Let a be an element of a semigroup S. Then \ia is the finest congruence
on S which contains (a, a2).

Proof. This is straightforward.

PROPOSITION 2.10. Let S be an archimedean semigroup without idempotents. Then, for
each aeS, fianx = Xa, where

l , = A u {(x,y)eSxS: x=aa,y=av,dlu=anv forsome u,veS1,neZ+}.
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Proof. Suppose that (x, y) e Xa but x ^ y. Then, for some u, v e Sl ,n e Z + , x = au, y = av
and a"u = a"v. Since a"u = a"v, we certainly have (a"u, a"u) e x but, by Corollary 2 to Proposi-
tion 2.4, 5/T is cancellative so that this implies that {au,av)ex; that is, that (x,y)ex. Hence
Xa £ T. Further, from the definitions of na, Xa, it is clear that ka £ ^a; it follows that Aa £ nonx.

Conversely, suppose that (x,y)ep,ar\x and that x # y. Then, for some u,veSl,n,r,seZ+,

x" = y", x = au, y = av and aru = a'v.

It follows, from the first three of these equations, that a"u" = a"v" and therefore that ^"u" =
o"V = cfV. By hypothesis, S is archimedean without idempotents; therefore, by Corollary
\{d) to Proposition 2.4, r = s. Thus (*,>>)eAa. Since (x,y)eXa if jc = _y, this shows that
Har\x = Xa and so completes the proof of the proposition.

COROLLARY. Let S be an archimedean semigroup that has no idempotents. Suppose that
aeS has the property that a2w = a2z implies aw = az for w,zeSl. Then fianr = A.

We shall use the congruences fia, x in the next section to study the structure of finitely
generated archimedean semigroups that have no idempotents. As the final result of this sec-
tion, we prove that these are almost the only congruences on such semigroups. The proof of
this result requires the structure theory given in the next section. However this seems the best
place to give the result.

PROPOSITION 2.11. Let S be a finitely generated archimedean semigroup without idempotents
and let p be a congruence on S. Then

(i) S/p has an idempotent if and only if p $ T;
(ii) if p £ T, then p = xn<p, where <p is a congruence such that (p $ T.

Proof, (i) Since S admits no idempotents, it follows, from Corollary 1 to Proposition
2.4, that 5/T is without idempotents. Hence, if p e T, Sjp does not have an idempotent.

Conversely, if p $ T, there exists {x, y)ep such that x" ^ y" for any « e Z + . By Theorem
3.4, there exist r,seZ+ such that x' = y' and, by the preceding sentence, r^s. Since (x,y)ep
and x' = y' we have (xr,xs)ep. Hence S/p admits an idempotent.

(ii) In this case, S/p is finitely generated and archimedean; further, since p £ T, S/p is
without idempotents. Hence, by the corollary to Theorem 3.10, there exists aeS such that
(a2x, a2y) e p implies (ax, ay) e p for x, y e Sx. Let

<p = pu{(x,y)eS x S : (x,au)ep,(y,av)ep,(anu,amv)ep for some u,veS1,m,neZ+}.

Then it can be shown that <p is a congruence on S and an argument like that used in the proof
of Proposition 2.10 shows that p = cpnx. Clearly \ia £ <p and so, since \ia % x, q> $ x.

REMARK. If p is a congruence on 5 with p $ T, then S/p has an idempotent and so it
follows, from Proposition 3.2 and Theorem 3.4, that S/p is finite; in particular, 5//i0 is finite
for each a e S. Thus each congruence on S is determined by x, some na and a congruence on a
finite semigroup.
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3. Archimedean semigroups without idempotents.

DEFINITION 3.1 [6]. A semigroup is rational if, for each a,beS, there exist positive integers
m, n such that a"1 = 6".

The semigroups described in Definition 3.1 have also been called power joined (see for
example [5]). In view of Theorem 3.5, we have preferred to call these semigroups rational.

The following simple consequence of Definition 3.1 will be used several times in this
section.

PROPOSITION 3.2. Let S be a finitely generated semigroup. Then S is rational with an
idempotent if and only if it is a finite archimedean semigroup.

Proof. Suppose that S is rational with an idempotent e and let * , , . . . ,xn be generators
for 5. Then, for each z = 1,...,«, there exists mteZ+ such that *"" = e. It follows that 5
has less than (mx + l)(m2 +1)... (mn +1)2" elements; thus S is finite.

Conversely, suppose that 5 is a finite archimedean semigroup and let a,beS. Then there
exist m,neZ+ such that d",b" are idempotent. Since an archimedean semigroup can have
at most one idempotent, it follows that d" = b". Hence S is rational.

Petrich [7] has proved the following result.

THEOREM 3.3. Let S be a finitely generated archimedean semigroup that has no idempotents.
If S is cancellative, then S is rational.

Proposition 2.4 allows us to generalise this theorem by dropping the assumption that 5
is cancellative. This extension is of fundamental importance in this paper; we state it as
Theorem 3.4. Theorem 3.4 has also been found by Tamura and Levin (see the appendix to
[11] and also [5]).

THEOREM 3.4. A finitely generated archimedean semigroup without idempotents is a rational
semigroup.

Proof. If S is a finitely generated archimedean semigroup without idempotents, then, by
Corollary 2 to Proposition 2.4, S/z is a finitely generated cancellative archimedean semigroup
that has no idempotents; hence, by Theorem 3.3, S/r is rational.

Let a,beS; then, since 5/T is rational, there exist m,neZ+ such that (a"1,b")ez. Thus
there exists reZ+ such that a"" = bnr. Hence S is rational.

COROLLARY. Let S be a finitely generated archimedean semigroup without idempotents.
Then S///a is finite for each aeS.

The following theorem from [6] characterises rational semigroups in terms of their
maximal torsion free homomorphic images.

THEOREM 3.5. Let S be a semigroup without idempotents. Then S is rational if and only if
S/T is isomorphic to a subsemigroup o / Q + .

COROLLARY. A finitely generated semigroup S is rational without idempotents if and only
ifSjz is isomorphic to a subsemigroup o / Z + .
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Proof. If 5/T is isomorphic to a subsemigroup of Z + , then, by Theorem 3.5, 5 is rational.
Conversely, if 5 is rational without idempotents, then 5/T is isomorphic to a finitely

generated subsemigroup of Q + . Let/>,/#,• (1 ^ i ^ n) be generators for 5/T where, for each /,
p h qt e Z + . Clearly the mapping 9: x -> xt^ . . . ^n is an isomorphism of 5/T onto a subsemi-
group of Z + .

We are now in a position to state a structure theorem for rational semigroups. This
theorem improves the result, stated without proof at the end of [6], by doing away with the
factor sets.

THEOREM 3.6. Let S be a separative semigroup without idempotents. Then 5 is rational if
and only ifS is isomorphic to a subsemigroup of Gx Q + for some periodic group G.

Proof If 5 is isomorphic to a subsemigroup of G x Q + , then, clearly, 5 is rational and
cancellative; further it has no idempotents.

Conversely, if 5 rational, it follows from Proposition 2.7 that pttr\i = A for each aeS.
Hence 5 is isomorphic to a subsemigroup of S/pa x 5/T. Since 5 is rational, G = Sjpa is a
rational, and hence periodic, group. Further, by Theorem 3.5, 5/T is isomorphic to a sub-
semigroup of Q + . Hence S is isomorphic to a subsemigroup of G x Q + .

A further consequence of Proposition 2.7 is that any finitely generated rational semigroup
is embeddable in Z + x G for some finite group G. To prove the converse of this and some
stronger results, we need deeper theory.

PROPOSITION 3.7. Let S be a rational semigroup that has no idempotents. Then the
following are equivalent:

(i) 5 has a cancellative ideal;
(ii) there exists aeS such that a2x = a2y implies ax = ay for x, yeS1;

(iii) 5 is isomorphic to a subsemigroup of Px Q+for some periodic semigroup P that has
a unique idempotent.

Proof. (i)=>(ii). Suppose that 5 has a cancellative ideal C and pick a e C. Then, for
any x,yeSl, ax, aye C. Hence, since C is cancellative, azx = a2y implies ax = ay.

(ii)^- (iii). If ae S has the cancellation property described in (ii), then, by the Corollary
to Proposition 2.10, ̂ n : = A. It follows that S is isomorphic to a subsemigroup oiSlna x 5/T.
By Theorem 3.5, 5/T is isomorphic to a subsemigroup of Q + while 5//ia is rational with an
idempotent. But it is easy to see that a rational semigroup that admits an idempotent is
periodic with a unique idempotent. Hence (iii) holds.

(iii)=> (i). Suppose that 5 £ Q+ x P, where P is periodic and has only one idempotent
and let K = 5n(Q + x KerP). If a = (r,p)eS, then, for some « e Z + , p" belongs to KerP;
hence a" = (nr,p")eSn(Q+ x KerP) so that Kis non-void. Since Q+ is cancellative and KerP
is a cancellative (in fact, a group) ideal of P, K is clearly a cancellative ideal of 5. Hence (iii)
implies (i).

EXAMPLE 3.8. Let K be as in Example 1.3. Then K is isomorphic to a subsemigroup of
Z + xP , where P= {xn:n^ l}u{<?,/} and
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x x = f/if m+n is odd "I e2 = / 2 = e, ef=fe = / ,
m " \e if W+M is even/'

-_ J / i f m is evenl _ f/if w is odd")
*"1' ~ \e if w is odd J' Xr"e ~ \e if m is even/ '

Proposition 3.7 gives a partial characterisation of rational semigroups. The next theorem
shows that this characterisation applies to all finitely generated rational semigroups that are
without idempotents. To prove the theorem we require the following lemma; the first part
of the lemma is due to Tamura [9].

LEMMA 3.9. Let S be an archimedean semigroup that has no idempotents. Pick aeS and
let Tn = Sa"\Sa"+i for each non-negative integer n, where xa° = xfor each xeS. Then

(ii) each Tn is non-void;
(iii) ifm £ n, then Tm £

Proof, (i) Tamura [9] has shown that (^{Sd'-.n ̂  0} = • • Hence, for each xsS, there
exists n £ 0 such that x e S t f W * 1 = Tn. It follows that S = []{Tn:n ^ 0}.

(ii) Since S does not have an idempotent, it follows, from Corollary 1 to Proposition 2.4,
thatfl"+1*Sa"+1. Hence a"+leTn.

(iii) If xe Tm, then x = cfu for some ueS. Put y = a"u; then yeSd1 and x = yam~".
Since x^Sd"+l, y cannot belong to Sa"+1. Hence yeTn. This holds for any xeTm; so we
have Tm £

COROLLARY. Let S be an archimedean semigroup that has no idempotents. Then S is
generated by S\Safor each aeS.

Proof. By (i) and (iii) of Lemma 3.9, S = \J {Toa":n ^ 0}. Since S has no idempotents,
ae To. Hence S is generated by To = S\Sa.

REMARK. If S is a finitely generated archimedean semigroup without idempotents, then
it can be shown that S1 is generated by S\S2. As we do not require this result, we omit a proof.

THEOREM 3.10. Let S be a finitely generated semigroup. Then S is archimedean without
idempotents if and only if it is isomorphic to a subsemigroup ofZ+ x Ffor some finite semigroup
F that has a unique idempotent.

Proof. If F is a finite semigroup that has a unique idempotent, then, by Proposition 3.7,
Z+ x F is rational. Hence every subsemigroup of Z+ x F is rational.

Conversely, suppose that S is archimedean and has no idempotents; then S is rational.
We shall show that there exists aeS which satisfies (ii) of Proposition 3.7. Then, as in the
proof of that proposition, S is isomorphic to a subsemigroup of 5/T X Sjfia. By the corollary
to Theorem 3.5, S/T is isomorphic to a subsemigroup of Z+ while, by the corollary to Theorem
3.4, F = Slna is finite with a unique idempotent. Hence S is isomorphic to a subsemigroup of
Z + x F .
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To demonstrate the existence of such an a, we proceed as follows. Pick beS and, for
each non-negative integer n, let Tn = Sb"\Sbn+1. Then, by Lemma 3.9, each Tn is non-void
and | Tm | ^ | Tn \ if m ^ n. Hence

Now | To | = | S\Sb | ^ | S/Sb |, where S/Sb is a finitely generated nilpotent semigroup; since
a finitely generated nilpotent semigroup is finite, it follows that To is finite. Hence there exists
N^ 0 such that | Tn\ = | TN| for all n ;> N. Suppose that TN = {tu...,tr}; then, for each

T. = { t 1 5 " - * . . . , » r 6 - - w } , (1)

where these elements are distinct.
Let a = bN and consider x,y e S1 such that a2x = a2y. Then ax = tfi", ay = tfi" for some

M, v ^ 0. Since a2x = a2j>, this means that tib
u+N = tjbv+N. Hence, since distinct T, are dis-

joint, it follows from (1) that u = v. But then the distinctness of elements in (1) gives tt = ty

Hence ax = ay.

COROLLARY. Let S be a finitely generated archimedean semigroup and let beS. Then
there exists ae(b} such that, for all x,yeSl, a2x = a2y implies ax = ay.

Proof. If S has an idempotent, then some power of b belongs to Ker S which is a group.
This power of b satisfies the conclusions of the corollary.

If S has no idempotent, this is the major part of the proof of Theorem 3.10.

REMARK. If F is a finite semigroup, then Z + x F is not finitely generated unless F2 — F.
Thus it follows, from Corollary 2 to Theorem 4.1, that, under the conditions of Theorem 3.10,
Z + x F is finitely generated if and only if F is a finite group.

It is an easy deduction from Theorem 3.10 that a finitely generated archimedean semi-
group S with no idempotents has a maximal cancellative ideal K. The canonical homo-
morphism cr*: S -> Sja embeds K naturally in S/o: In general, this embedding is proper (see
Example 3.11). However, if S has an idempotent e, then Se is the maximal cancellative ideal
of S. In fact, Se is the group kernel of S and the maximal separative homomorphic image of S.

EXAMPLE 3.11. Let S = F(a,b;ab2 = b3,ba2 = a3). Then a2b2 = a4 = bA and S =
(jby\j{a,a2,a3,ab), so that S is a finitely generated archimedean semigroup without idem-
potents. K= {b":n ^ 2} is a maximal cancellative ideal of S but KG* is a proper ideal of
5/<T; (b,b")$G for any n ^ 2, since otherwise Sja would have an idempotent, which would
contradict Proposition 2.4, Corollary 1.

There is a strong analogy between Part (I) of Theorem 1.1 and the structure, of finitely
generated archimedean semigroups without idempotents, described in Theorem 3.10. Our
next theorem shows that the analogue of Part (III) of Theorem 1.1 also holds for such semi-
groups.

THEOREM 3.12. Let S be an archimedean semigroup that has no idempotents. Then S
obeys the A.C.C. if and only if it is finitely generated.
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Proof. If S obeys the A.C.C., it is certainly finitely generated. Hence it remains to prove
the converse implication. To do this, we show that every subsemigroup of S is finitely
generated.

Let K be a subsemigroup of S. Then, by the corollary to Theorem 3.10, there exists
aeK such that a2x = a2y implies ax — ay for x,yeS1. Suppose that, for some x,yeK\Ka
(x,y)efia but x # j . Then there exist u, veS1, with u^v, such that x = au, y = av and
a"u = cFv for some m,neZ+. If, for example, m > n, then a"u = a W ~ " and so, because of
the cancellation properties of a, au = avd"~n which gives x = yam~". This contradicts the
hypothesis that x, ye K\Ka. \fm = n, then, by the cancellation properties of a, we get au = av;
that is, x = y. Hence distinct elements of K\Ka are distinct modulo \ia. By the corollary to
Theorem 3.4, S\\ia is finite; thus K\Ka is finite.

Since K is a subsemigroup of S (which is rational without idempotents) K is archimedean
and has no idempotents. Thus, by the corollary to Lemma 3.9, K is generated by K\Ka.
Hence K is finitely generated.

We can use Theorems 3.6 and 3.12 to give a complete characterisation of finitely generated
cancellative archimedean semigroups. Those with idempotents are just finitely generated
groups; those without idempotents are described in Theorem 3.13.

THEOREM 3.13. Let S be a cancellative archimedean semigroup that has no idempotents.
Then the following are equivalent:

(i) S obeys the A.C.C;
(ii) S is finitely generated;

(iii) S is isomorphic to a subsemigroup o / Z + x G for some finite group G.

Proof. Clearly (i) implies (ii). If S is finitely generated, then, by Proposition 2.7, S is
isomorphic to a subsemigroup of S/x x S/pa for each aeS, where, by the corollary to Theorem
3.5, S/x is isomorphic to a subsemigroup of Z + . Further G = S/pa is a finitely generated
rational group and is therefore finite. Hence (ii) implies (iii).

On the other hand, Z + x G is finitely generated when G is a finite group and is cancellative
and archimedean without idempotents. Hence, by Theorem 3.12, Z + xG obeys the A.C.C.
Consequently, if S is isomorphic to a subsemigroup of Z + xG, S also obeys the A.C.C.

REMARK. That (ii) implies (iii) in Theorem 3.13, has also been shown by Higgins and
Tamura (see the appendix to [11]). Their method however is different from ours.

As a corollary to Theorem 3.13, we can essentially obtain the results of Petrich [7] on
cancellative archimedean semigroups with two generators and no idempotents.

THEOREM 3.14. Let S be a cancellative rational semigroup with two generators and no
idempotents. Then S is isomorphic to a semigroup C(n,m) constructed as follows:

Let m, n be positive integers with n^m; then C(n, m) is the semigroup of all complex
numbers of the form

n/m 2nifi/m

where X,p are non-negative integers, not both zero.
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Proof. By the corollary to Theorem 3.5, we may suppose that Sjx £ Z + ; let a, b be
generators for S such that at" ^ bx". Further, let n and m be the least positive integers r and s,
respectively, such that d = bs. Then m is the order of the cyclic group generated by bp\ and
n. ax* = m. bx*; the latter implies that n^m. We may thus regard S as the subsemigroup of
Z + x G generated by (aT*,e) and (bx\bp*a), where e is the identity of G. The mapping
S -» C(H, m) generated by

(ax\ e) -> 21/n, (hr*, fcpa) -• 21/m e2ni/m

is clearly an isomorphism. Hence we have the result.
Theorem 3.13 shows that a finitely generated cancellative rational semigroup S without

idempotents can be embedded in Z + x F for some finite group F. However it is easy to see
that 5 need not be isomorphic to Z + x G for any finite group G. We end this section by giving
necessary and sufficient conditions on S in order that S « Z + x G for some finite group G.

We require the following simple group-theoretic lemma [4, page 80, Question l(a)].

LEMMA 3.15. Let G = {au . . . , an} be a finite group. Then {a^a2 ... an)
2 = e, where e is

the identity of G.

THEOREM 3.16. Let S be a finitely generated cancellative semigroup without idempotents.
Then S « Z + xGfor some finite group G if and only if S2 = Safor each aeS\S2.

Proof. Let X = {au..., an) be a minimal generating set for S and suppose, for example,
that a{eS2. Then ax = a\'...ar

n", where rlt...,rn are non-negative integers with Yfi ^ 2.
Since S does not have an idempotent, rt must be zero; otherwise we should have at — atx
for some xeS, which, because S is cancellative, would imply that x is an idempotent. Hence
a, is a product of powers of a2, • • •, an- This contradicts the minimality of X; so we must have

x=s\s2.
Now suppose that S2 = 5a for each a e S\S2. Then, in particular, a2 e Saj for 1 ̂  i,j ^ n

so that the generators of 5 are archimedean equivalent. Since each archimedean class of S
is a subsemigroup, it follows that 5 is archimedean. Further, an easy induction shows that
Sm = Sx for each x = Cj1 . . . af, where su..., sn are non-negative integers such that £ / f =
m— 1 2; 1. Also xeSm~\Sm, since otherwise xeSx, which implies that S has an idempotent.

Let y = (ai...an)
2 and pick aeS\S2. Then yeS2"\S2n+i = So 2 " - 1 ^ 2 * 2 " " 1 ; so

7 = a*a2""1, where a*eS\5 2 . Since S is finitely generated and archimedean, Slpa is a
finite group with identity ap\ and it follows, from Lemma 3.15, that (y,a)epa, (y,a*)epa;
thus (a,a*)epa. But distinct elements of S\Sa = S\S2 are distinct modulo pa; so we must
have a* = a. Hence j = a2n for each aeS \S 2 , so that all the generators of S are equivalent
modulo t. It follows that we may assume that S/x £ z + and that ax* = 1.

By Theorem 3.13, S is isomorphic to a subsemigroup of 5/T X S/pa. Under this embedding,
af is mapped onto ( 1 , 0 ^ ) for each i = 1,...,«. Since (S\S2)pa = 5pfl, it follows that the
elements (l,atpl) generate Z + x S/pa. Hence Sx Z + x 5/p0.

Conversely, suppose that S = Z + x G, where G is a finite group. Then it is easy to see
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that S\S2 = {(\,g):geG}. But, if n ^ 2 is a positive integer and f,geG, then

(n,f) = (n-l,fg-i)(l,g).

Hence S2 = Sa for each a = (l,g)eS\S2.

4. Archimedean semigroups with idempotents. The following interesting theorem charac-
terises finitely generated archimedean semigroups with idempotents. Note that an archi-
medean semigroup S has an idempotent e if and only if Ker S # • ; in this case Ker S = Se.

THEOREM 4.1. Let S be a finitely generated archimedean semigroup. Then Ker 5 =
":M ^ 1} {where the possibility Ker 5 = • is allowed).

Proof. If Ker S = • , then certainly Ker S s f] {Sn: n ^ 1}; if Ker S # D . then Ker S
is the minimum ideal of S and again KerS £ f]{S":n ^ 1}. Hence, in both cases, KerS £
fti} }

Conversely, if P){S":« ^ 1} = D , then f){5":« ^ 1} £ KerS. Thus we may suppose
that Q{S":n ^ 1} ,* • • Let x be in this intersection and let au...,an generate S. Then there
exist yteS and NeZ+ such that a? = xyf for / = / , . . . , « . Since xeSNn+1, x = a'-z for some
zeS and some j ^ n. This implies that a" = xyj = c^zy} and therefore, by Proposition 2.4,
Corollary 1, S has an idempotent e.

Since S is archimedean, e is the unique idempotent of S and Ker S = Se. Now (z>»y)me
Ker5 for some m e Z + and so, since a" = cfjizytf", a1]eKer S. Hence JC = a'JzeKer S. This
shows that f ) { S " : n ^ l } c Ker5 and the result follows.

COROLLARY 1. Let S be a finitely generated archimedean semigroup. Then S has an
idempotent if and only if

COROLLARY 2. Let S be a finitely generated archimedean semigroup. Then S is a group
if and only if S2 = S.

Proof. If S2 = S then, by Theorem 4.1, S = KerS. Hence S is a group. The converse
is immediate.

COROLLARY. 3. Let S be a finitely generated semigroup that satisfies S2 = S. Then S
contains idempotents.

Proof. Let 5a be a maximal archimedean component of S. Then Sx is finitely generated
and S2 = Sa. By the previous corollary, Sa is a group and the result follows.

COROLLARY 4. IfSis a finitely generated cancellative semigroup, then S has an identity if
and only if S2 = S.

COROLLARY 5. Let S be a finitely generated separative semigroup whose maximal semi-
lattice homomorphic image has no non-maximal meet irreducible elements. Then S is a union
of groups if and only if S2 = S.

Proof. Under the hypotheses of the corollary, the maximal semilattice homomorphic
image of S is generated by its maximal elements. Thus, if S2 = S, each archimedean com-

https://doi.org/10.1017/S0017089500000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000987


146 D. B. McALISTER AND L. O'CARROLL

ponent of S contains an idempotent and so is a group. Thus, if S2 = S, S is a union of groups.
The converse is immediate.

The results of Theorem 4.1 and its corollaries are false without the assumption that S is
finitely generated. This is seen by considering the semigroup Q + of positive rationals.

PROPOSITION 4.2. Let S be an archimedean semigroup with an idempotent. Then S is
finitely generated if and only (/" Ker S is a finitely generated group and S/Ker S is a finite nilpotent
semigroup.

Proof. Let e be the unique idempotent of S. Then KerS = Se is a group. Hence, if S
is finitely generated, Ker 5 is a finitely generated group and S/Ker S, being finitely generated
and nilpotent, is finite. The converse is immediate.

We can use Proposition 4.2 to characterise archimedean semigroups with idempotents
that obey the A.C.C.

THEOREM 4.3. Let S be an archimedean semigroup with an idempotent. Then S obeys the
A.C.C. if and only J/S/Ker S is finite and KerS is a finite group or is isomorphic to Z x F for
some finite group F.

Proof. If S obeys the A.C.C, then, as in Proposition 4.2, S/Ker S is finite and nilpotent.
Further, Ker S is a finitely generated group and so is isomorphic to Z" x F, where F is a finite
group and n is a non-negative integer. Now Z + x Z + does not obey the A.C.C. while KerS
does; hence we must have n ^ 1. Therefore either Ker S as F or Ker S as Z x F.

Conversely, if Ker S is finite, then S is finite and therefore obeys the A.C.C. On the other
hand, suppose that Ker S x Z x F, where F is a finite group and let K be a subsemigroup of S.
Then

K= {KnS\KerS}v{Kn{0} xF}u{KnZ+ xF}v{KnZ~ xF}.

The first two factors in this expression are finite while Z+ xF and Z~ x F are isomorphic and
obey the A.C.C, by Theorem 3.13. Hence K is finitely generated. By Proposition 1.5, it
follows that S obeys the A.C.C.

REMARK. There is a certain parallel between the structure of finitely generated archi-
medean semigroups with idempotents and that of those without idempotents. By Proposition
4.2, the former type are ideal extensions of finitely generated groups by finite nilpotent semi-
groups. However, as noted after Theorem 3.10, the latter are ideal extensions of finitely
generated rational cancellative semigroups by finite nilpotent semigroups.

Yamada [12] has given an inductive construction for finite nilpotent semigroups. Hence,
by means of Theorem 3.10 and Proposition 4.2, one can, in principle, construct all finitely
generated archimedean semigroups.

To complete this section, we prove a result that gives a partial answer to the question of
when an archimedean semigroup with an idempotent can be embedded in a finitely generated
semigroup.

PROPOSITION 4.4. Let S be an archimedean semigroup with an idempotent e. If S\Se is
finite, then S can be embedded in a finitely generated semig roup if and only ifS is finitely generated.
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Proof. Suppose that S s C , where C is a finitely generated semigroup. Then KerS i s a
subgroup of C and so, by Proposition 1.4, is finitely generated. Since S\KerS = S\Se is
finite, it follows that £ is finitely generated.

The converse is clear.
The following example shows that the assumption that S\Se is finite is necessary in

Proposition 4.4.

EXAMPLE 4.5. Let T = F(a, b,z : az = bz = b2 = z) and let S = {b, z}u6<a>. Then S is
an infinite semigroup with S2 = {z}; in particular S is archimedean. Since S\S2 = S\{z} is
infinite, S cannot be finitely generated. However 5 is a subsemigroup of the finitely generated
semigroup T.

5. Separative semigroups that obey the A.C.C. In this section, we shall apply the theory
given in §§ 3 and 4 to characterise those separative and cancellative semigroups that obey the
A.C.C.

THEOREM 5.1. Let S be a separative semigroup. Then S obeys the A.C.C. if and only if
S can be embedded in a finite semilattice of groups Z x Fa, where each Fa is a finite group.

Proof. If S obeys the A.C.C, then, by Theorems 3.13 and 4.3, each archimedean com-
ponent Sa is either isomorphic to Z x f , or to Fa or is isomorphically embedded in Z+ xFx

for some finite group Fa. Thus, whatever the case, Sa is isomorphic to a subsemigroup of
Z x Fa. It follows, from [1, Theorem 4.17], that S can be embedded in the finite semilattice of
groups Z x Fa.

Conversely, if 5 is embedded in a finite semilattice of groups Z x Fx, then

S = [j{SnZxFa},

where this is a finite union. But, as in the proof of Theorem 4.3, each Z x f , obeys the A.C.C.
Hence S obeys the A.C.C.

We shall use the following proposition in characterising cancellative semigroups that
obey the A.C.C; the proposition is however of interest in its own right.

PROPOSITION 5.2. Let Sx and Sp be distinct archimedean components of a cancellative
semigroup S. IfaeSa,beSp have infinite order, then (a,b) x F(q,b).

Proof Suppose that ar6s = a"b", where r, s, u, v are non-negative integers and (r, s) ̂  (u, v).
Then, since S is cancellative and a, b have infinite order, r #« , s ̂  v; so we may assume,
without loss of generality, that r>u. The cancellativity of S then gives a r ~ W " = 1 or
j-u _ y-s a c c o r ( j i n g a s s > v o r s < „. j n the first case, a and b are invertible in S and so are
archimedean equivalent while, in the second case, it is clear that a and b are archimedean
equivalent. This contradicts the fact that Sa and Sp are distinct. Hence arbs = a"b" implies
r = u, s = v and so <a, by « F(a, b).

COROLLARY. If S is a cancellative semigroup that obeys the A.C.C, then S has at most
two archimedean components.
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Proof. Suppose that S has three archimedean components (at least) Sa, Sp, Sr Then,
since a cancellative semigroup has at most one idempotent, at least two of Sx, Sp, Sy contain
elements of infinite order. It follows, from Proposition 5.2, that S contains the free semigroup
F(a, b) on two generators as a subsemigroup. But, by Example 1.2, F(a, b) does not obey the
A.C.C. Hence S does not obey the A.C.C.

THEOREM 5.3. Let S be a cancellative semigroup. Then S obeys the A.C.C. if and only if
S can be embedded in Z x G for some finite group G.

Proof. Suppose that S obeys the A.C.C. Then, by the corollary to Proposition 5.2, S
has at most two archimedean components. If S is archimedean, then, by Theorems 3.13 and
4.3, S can be embedded in Z x G for some finite group G.

If S has two archimedean components, let these be Sa, Sp, where a < /?. Since a cancel-
lative semigroup has at most one idempotent, each element of Sx has infinite order. If Sp
contained an element of infinite order, then, by Proposition 5.2, S would contain the free
semigroup on two generators as a subsemigroup and so would not obey the A.C.C. Hence
Sp is periodic and, since it is finitely generated, in fact, a finite group.

By Theorem 3.13, Sa can be embedded in Z + x G for some finite group G and, without
loss of generality, we can assume that Z x G is the group of quotients of Sa. Then T — SPKJZ X G
is the union of groups in which S is naturally embedded [1, Theorem 4.17]. Since Sp is finite,
it follows from [1, Theorem 4.11] that multiplication in Tis defined by

(fh if x=f,y = heSp,
xy = Un,fdg) if x =fe Sp, y = (n, g) e Z x G,

[(m + n,gh) if x = (m,g), y = («,h)eZ x G,

where 9 is a homomorphism of Sp into G. Suppose that/eKerfl and let (n,g)eSfi. Then

/ . (n, g) = (n,f9g) = (n,g) = e. (n, g),

where e is the identity of Sp. Hence, since S is cancellative,/= e. Thus 6 is one-to-one and
it is straightforward to verify thatcp:S-»ZxG defined by

,x9) if xeSp,

x if xeSa,

is an embedding of S into Z x G.
Conversely, as in the proof of Theorem 4.3, Z x G obeys the A.C.C. Hence each sub-

semigroup of Z x G obeys the A.C.C.
As a final application of the theory in §§ 3 and 4, we shall determine the structure of all

two-generator cancellative semigroups.

THEOREM 5.4. Let S be a cancellative semigroup with two generators. Then S is isomorphic
to exactly one of the following semigroups.

0)Z;
(2) (Z/mZ) x (ZjnZ)for some non-negative integers m, n with n't.!;
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(3) C{n,m)for some positive integers m,n with n^m and (n,m) / ( 1 , 1 ) ;
(4 ) N x (Z/mZ) for some positive integer m, where N denotes the additive semigroup of

non-negative integers;
(5) F(a,b), the free semigroup on two generators a,b.
Conversely, each of these semigroups is cancellative and has two generators.

Proof. If S is archimedean, then, by Theorem 3.16, either Sx C(n,m) for some m,n or
else 5 is a group which is generated as a semigroup by two elements. But it is easy to see that
such a group is isomorphic to Z or to (Z/wZ) x (Z/nZ) for some m, n.

If S is not archimedean, let a, b be generators for S and let Sx, Sfi be the archimedean
components containing a and b respectively; suppose, for example, that a ^ /?. Then Sx is
a maximal archimedean component of S and so is generated by a; thus Sx is cyclic. Further,
since only the maximum archimedean class of a cancellative semigroup can contain an idem-
potent, each element of Sp, in particular b, has infinite order.

If a has infinite order, then, by Proposition 5.2, S = <a, by x F(a, b). If a does not have
infinite order, then 5a = <a> is a cyclic group and so Sa x Z/mZ for some positive integer m.
Further, each element of S can be uniquely written as cfb", where r,n are non-negative integers
with 0 ^ r < m; an argument like that used in the proof of Proposition 5.2 shows the unique-
ness of the elements. Hence S s s N x (Z/wZ).

The converse is straightforward.

COROLLARY. A cancellative semigroup with two generators is free or obeys the A.C.C.

6. Extending characters on finitely generated semigroups.

DEFINITION 6.1. [6] A semigroup S is said to have the character extension property if each
character of each subsemigroup of S can be extended to a character of S; by a character of
S we mean a homomorphism of 5 into the multiplicative semigroup of complex numbers.

In this section we shall use the structure theory obtained so far to characterise finitely
generated semigroups that have the character extension property. In [6] it is shown that a
semigroup has the character extension property if and only if each archimedean component
is rational. The following theorem characterises the cancellative rational subsemigroups
of finitely generated semigroups.

THEOREM 6.2. Let S be a cancellative rational semigroup without idempotents. Then S
can be embedded in a finitely generated semigroup if and only if S is finitely generated.

Proof. Suppose that S^C, where S is a cancellative rational semigroup and C is finitely
generated. Then, since 5 i s rational, 5 g C , for some archimedean component C, of C. Let
D= \J{Cp:P ^ a}, where C = \J{CX: AeA} is the expression of Cas the union of a semilattice
of archimedean semigroups, and pick aeS. It is clear that D has minimum archimedean
component Ca so that, by the corollary to Proposition 2.6, G = Djpa is a group.

Define a mapping 6: S-> G° as follows:

a)pl if xeD,
0 if
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Since D is the complement of a prime ideal of C[6, Lemma 1.3] and since ap\ is the identity of
G, it is easy to see that 6 is a homomorphism of C onto G°. Hence C° is finitely generated and
it follows from Proposition 1.4 that G is finitely generated. Since S is rational and contains
a, S9 is a periodic subsemigroup of G. Hence it follows that S8 is a finite subgroup of G.

Suppose that x,yeS\Sa are such that x6 = yd; then, for some m,neZ+, xcT = yd1. But,
since S is cancellative, and x,yeS\Sa, this means that x = y. Thus distinct elements of
S\Sa are mapped onto distinct elements of S; since the latter is finite, this shows that S\Sa is
finite. By the corollary to Lemma 3.9, it follows that S is finitely generated.

COROLLARY. Q + cannot be embedded in a finitely generated semigroup.
If S is a semigroup without idempotents, then both the other hyoptheses of Theorem 6.2

are necessary in order that the conclusions of the theorem should hold. This is shown by the
following examples.

EXAMPLE 6.3. Let K be as in Example 1.2. Then K is cancellative but not rational or
finitely generated. However K e F(a, b).

EXAMPLE 6.4. Let K be as in Example 1.3. Then K is rational but not cancellative or
finitely generated; yet K c F(a,b;a2b2 = b2).

THEOREM 6.5. Let S be a finitely generated separative semigroup. Then S has the character
extension property if and only if each archimedean component is a finite group or can be embedded
in Z + x G for some finite group G.

Proof. If each archimedean component is a finite group or can be embedded in Z + x G
for some finite group G, then each archimedean component is rational. Hence, by [6, Theorem
3.5], S has the character extension property.

Conversely, suppose that S has the character extension property and let Sa be an archi-
medean component of S. If Sa has an idempotent, Sa is a finitely generated rational group and
is therefore finite. If Sa does not have an idempotent, then, by Theorem 6.2, Sa satisfies the
hypotheses of Theorem 3.13. Hence Sa can be embedded in Z + x G for some finite group G.

COROLLARY 1. Let S be a finitely generated separative semigroup. Then S has the character
extension property if and only if each maximal subgroup is finite and S obeys the A.C.C.

COROLLARY 2. Let S be a finitely generated cancellative semigroup. Then S has the
character extension property if and only ifS can be embedded in N x G for some finite group G.

Proof. Suppose that 5 has the character extension property. Then, by Corollary 1, S
obeys the A.C.C. and has finite or trivial group of units. The proof of Theorem 5.3 shows
that, under these conditions, 5 can be embedded in N x G for some finite group G.

The converse is immediate from Theorem 6.5.
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