
III
Particle production

8 Particle spectra

8.1 A thermal particle source: a fireball at rest

The longitudinally scaling limit in production of hadrons, section 6.4,
applies at the RHIC and at higher collision energies. At the SPS and AGS
energy ranges, table 5.1, it is natural to explore the other reaction picture,
the full-stopping limit. In this case all matter and energy available in the
collision of two nuclei is dumped into a localized fireball of hot matter.
Even at the highest SPS energies many experimental results suggest that
such a reaction picture is more appropriate than the (1 + 1)-dimensional-
flow picture.
The m⊥ spectra we have seen in Fig. 1.7 on page 20 provide a strong

encouragement to analyze the collision region in terms of the formation
of a thermalized fireball of dense hadronic matter. The high slopes seen
strongly suggest that the dynamic development in the transverse direc-
tion is very important. The pattern of similarity seen for very different
particles is what would be expected to occur in hadronization of a nearly
static fireball, and thus this case will be the first one we explore. However,
we note that this is solely an academic exercise since SPS results provide
ample evidence for rather rapid v � 0.5c transverse expansion. One can
recognize this important physical phenomenon only once the properties
of the stationary fireball matter are fully understood.
We consider a space–time-localized region of thermal hadronic matter

acting as a source of particles, yielding naturally a Boltzmann spectral
distribution. The thermal equilibrium is strictly a local property, with
different temperatures possible in different space–time domains. The ne-
cessity that there is also a local thermal pressure implies that a fireball is
in general a dynamically evolving object with local flows of matter, which
we shall study further below. The virtue of this model is that the spectra
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8 Particle spectra 131

and abundances of particles can be described in terms of a few parameters
that can be measured.
The thermal analysis of the experimental results differs in many key as-

pects from the microscopic-transport methods introduced in section 6.1.
These contain as inputs detailed reaction data and their extrapolations,
including often enough hypothetical reaction cross sections and novel
mechanisms without which the experimental results cannot be described
completely. The attainment of thermal equilibrium is, in these calcula-
tions, a result of many complex reactions. For the N–N collisions the
appearance of the thermal particle distributions in the final state is still
inexplicable in terms of such dynamic microscopic models. For this reason
alone, a microscopic dynamic approach cannot lead to an understanding
of the thermalization of fireball matter. Moreover, since the physical
thermalization processes are faster than those operating in present-day
numerical transport codes, microscopic transport theory delays the ther-
malization of collision energy available in heavy ion reactions and thus
will in general fail at predicting observables of interest which depend
on (early and rapid) thermalization. As long as these issues are being
studied, an empirical thermal model allowing for flow of matter and non-
equilibrium abundances of particles offers considerable advantages for the
understanding of experimental data.
We first aim to relate the experimental rapidity and transverse-mass

spectra to the particle distribution of the fireball. We consider the dif-
ferential particle-momentum distribution, e.g., near the surface of the
fireball,

E
d3N

d3p
≡ f(E, pL), (8.1)

where the presence of pL in the argument reminds us that an emitted
particle could remember the collision axis; the distribution need not be
intrinsically spherically symmetric as is implied when only the energy of
the particle is considered. The coefficient E is introduced in Eq. (8.1)
for convenience, it assures that the quantity f is invariant under Lorentz
transformations. This is understood on reexpressing the left-hand side of
Eq. (8.1) in terms of the invariant variables m⊥ and y. Given Eq. (5.4),
at constant p⊥, we find

dy =
dpL
E

. (8.2)

Since p⊥ dp⊥ = m⊥ dm⊥, considering Eq. (5.5) the Lorentz-invariant mo-
mentum-space volume element is

d3p

E
= dym⊥ dm⊥ dϕ. (8.3)
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132 Particle production

It is important to remember, looking at the spectra, that, while p⊥ > 0,
we have m⊥ > m.
We consider at first as the intrinsic distribution the simplest exponential

Boltzmann-type thermal shape:

f(E, pL)→ CEe−βE = Cm⊥ cosh y e−βm⊥ cosh y, (8.4)

with C = gV/(2π3) and Eq. (5.4) is used on the right-hand side to replace
the particle energy by transverse mass and rapidity. Since we have a
Lorentz-invariant distribution, a change of the frame of reference along
the pL axis, e.g., from the laboratory frame to the CM frame, is amounting
to a shift along the rapidity y axis of the particle spectrum considered
to be centered around the CM rapidity yCM = 0, see section 5.3. The
differential particle spectrum which we obtain is

d2N(y,m⊥)
m2

⊥ dm⊥ dy
= C

∫
dϕ cosh y e−βm⊥ cosh y. (8.5)

To obtain the transverse-mass spectra, we need to integrate Eq. (8.5)
over the applicable rapidity acceptance (often referred to as ‘rapidity win-
dow’):

1
m⊥

dN(y,m⊥)
dm⊥

= C

∫
dϕ

∫ y+

y−
dym⊥ cosh y e−βm⊥ cosh y. (8.6)

For a wide (see below) rapidity window, we can extend the limit of the
integration to infinity, since the argument is a rapidly decreasing expo-
nential function. We use Eqs. (10.44) and (10.45) and obtain

K1(z) =
∫ ∞

0
dt e−z cosh t cosh t,

→
( π
2z

)1/2
e−z
(
1 +

3
8z

− 15
128z2

. . .

)
. (8.7)

We obtain for the full rapidity coverage

1

m
3/2
⊥

dN(y,m⊥)
dm⊥

∝ e−βm⊥
(
1 +

3
8βm⊥

. . .

)
. (8.8)

For a narrow rapidity window, δy = y+−y−, surrounding yCM, one simply
substitutes, in the integral Eq. (8.6), cosh(δy/2) by 1 and the result is

1
m⊥

dN(y,m⊥)
dm⊥

∝ e−βm⊥ . (8.9)

In both cases, Eqs. (8.8) and (8.9), we have a (nearly) exponential transverse-
mass spectrum, provided that the preexponential factors in the spectra
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8 Particle spectra 133

Fig. 8.1. The saturation of particle yield for a fireball at rest within a rapidity
window: dashed line, y± = yCM± 0.5 and solid line y± = yCM± 1, as a function
of βm⊥; see the text for details.

are properly chosen. The result is not at all what one is naively tempted
to use when one is fitting invariant cross sections, i.e., to simply take an
exponential fit of the cross-section data: the choice is either to include the
factor 1/m1/2

⊥ (compare with Fig. 8.9 and also Fig. 8.8), or to multiply by
1/m⊥ for a truly narrow rapidity window, as we see in Fig. 1.7 on page 20.
The question thus is that of how narrow the ‘narrow’ rapidity window

must be for the factor to be as given in Eq. (8.9). We note that, in addi-
tion to the width of the typical experimental acceptance of 0.5–1 rapidity
unit, one has to keep in mind that there is, in principle, a superposi-
tion of contributions to the spectra occurring due to longitudinal flow in
the source, which effectively widens the rapidity acceptance domain. We
show, in Fig. 8.1, the ratio

RI ≡
∫ y+
y−dy cosh(y − yCM) e−βm⊥ cosh(y−yCM)∫ +∞
−∞dy cosh(y − yCM) e−βm⊥ cosh(y−yCM)

, (8.10)

of the rapidity integral Eq. (8.6) with the full rapidity coverage, as a func-
tion of βm⊥. Results shown are for a rapidity window of one unit (dashed
line, y± = yCM±0.5) and two units (solid line, y± = yCM±1) of rapidity,
centered around yCM.
We see that, for an experimental rapidity window of one unit (e.g.,

−0.5 < y − yCM < 0.5) (dashed line) and for a typical ‘high’ transverse
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134 Particle production

mass m⊥ � 1.5 GeV at T → T⊥ = 1/β = 230–300 MeV, we would
have reached nearly 80%–90% of the full rapidity integral, justifying use
of a result with a full rapidity window coverage – note that adding in
smearing of flow (the solid line) means that more than 99% of the spectral
strength will be effectively included. Consequently, we find that the test
for applicability of Eq. (8.8) is βm⊥ cosh(δy/2) > 8, with δy/2 comprising
an estimate of the flow.
We next consider the thermal rapidity spectra. We now integrate

Eq. (8.4) over the full range of transverse mass,

dN(y,m⊥)
dy

= C

∫
dϕ

∫ ∞

m
dm⊥m2

⊥ cosh y e−βm⊥ cosh y, (8.11)

to obtain the rapidity distribution shown in the top portion of Fig. 8.2,
for the case mπ

<∼ β−1 < mK (here β−1 ≡ T = 160 MeV).
The thin lines in Fig. 8.2 apply to spectra of massless particles, dashed

lines are for pions (m = 138 MeV), chain lines are for kaons (m = 497
MeV), and the thick solid line depicts data for nucleons (m = 938 MeV).
Since the experimental acceptance in p⊥ cannot, for practical reasons,
begin with p⊥ = 0, we have also shown in Fig. 8.2 what happens to these
spectra when only particles with p⊥ > pmin⊥ are included, with minimum
momentum cutoffs shown at pmin⊥ = 0.3, 0.5, and 1 GeV. We notice that,
when pmin⊥ < 0.5 GeV, the maximum peak for massless particles is nearly
half as high as that for nucleons, and, correspondingly, the widths of the
distributions vary considerably with particle mass.
This change in relative abundance of the different particles increases

with pmin⊥ (we changed the scale of the drawing by a factor of three to
make the small remaining particle abundance more visible for pmin⊥ =
1 GeV). The lighter particles disappear more rapidly and the relative
abundance of the heavier ones is increased in the sample. Moreover, all
shapes become increasingly more similar, resembling more and more the
nucleon spectrum. We note that for pmin⊥ = 0.3, the half-width parameter,
for most particles, is within the range 0.6 < σ < 0.7.
We see that, in the ideal situation of a thermal Boltzmann-like emitter,

the rapidity spectra of identified particles are very narrowly distributed
around the ‘central’ rapidity, with the distribution of the massive parti-
cles being narrower than that of lighter particles when all p⊥ are included,
which difference disappears when the minimum m⊥ for the different par-
ticles are (nearly) the same. Since the width of the rapidity spectra is
just half as large as was seen for the width for negative hadrons, h−, see
Fig. 9.6, there must be some other contribution to the width, that is in
general believed to be the flow: the small source is not stationary, and its
size and all other properties evolve rapidly in time, an effect we address
in section 8.4.
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8 Particle spectra 135

Fig. 8.2. Normalized thermal rapidity particle spectra (quantitative) for a
Boltzmann (exponential) energy distribution with β−1 = 160 MeV and set-
ting yCM = 2.92 as appropriate for the highest SPS energy: massless particles
(thin lines), pions (dashed lines), kaons (chain lines), and nucleons (solid lines).
The effect of the minimum transverse-momentum cutoff on particle yield and
shape of distribution is illustrated: we show pmin⊥ > 0, > 0.3, > 0.5, and > 1
GeV. Note the change of scale for the last (bottom) case.

Even though the above example of a thermal source is no more than
a case study, we have learned much about the possible shape of the ra-
pidity spectra of a well-defined, localized thermal source. This leads to
the practical question of what spectral shape arises when identification of
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136 Particle production

particles is not possible. In such a case, one generally studies pseudorapid-
ity distributions. We keep in mind that the relatively easily measurable
pseudorapidity, Eqs. (5.24) and (5.25), arises from the rapidity, Eqs. (5.4)
and (5.10), in the limit m → 0, and thus, in cases when an appreciable
yield of nucleons and even kaons is present, significant distortions in the
spectra occur.
We now discuss this quantitatively and evaluate the shape of the ther-

mal pseudorapidity distribution. Since η is not a good Lorentz variable,
we study the specific example of the spectra in the laboratory frame in
which the target is at rest and the projectile had 158A GeV. We take
as the input spectrum the rapidity shape of the thermal source defined
above in Eq. (8.11). To proceed with the change of variables, we need to
express the CM energy and momentum of the distributions in terms of
the laboratory pseudorapidity. Using Eq. (5.4),

E = m⊥ cosh(y′ − yCM) = E′ cosh yCM − p′L sinh yCM, (8.12a)

pL = m⊥ sinh(y′ − yCM) = p′L cosh yCM − E′ sinh yCM. (8.12b)

With the help of Eq. (5.24), we eliminate E′ and p′L, using the pseudora-
pidity η′ with reference to the laboratory frame, and p⊥,

E =
√
m2 + p2⊥ cosh

2 η′ cosh yCM − p⊥ sinh η′ sinh yCM, (8.13a)

pL = p⊥ sinh η′ cosh yCM −
√
m2 + p2⊥ cosh

2 η′ sinh yCM. (8.13b)

We also obtain
1
p⊥

dpL
dη′

= cosh η′ cosh yCM − p⊥ sinh η′ sinh yCM cosh η′√
m2 + p2⊥ cosh

2 η′
, (8.14)

for the (frame-of-reference-dependent) integration Jacobian relating the
CM longitudinal momentum and laboratory pseudorapidity (see Eq. (8.2)
for comparison).
We now are ready to evaluate the pseudorapidity particle distribution.

Proceeding in the same way as when we obtained Eq. (8.11), i.e., integrat-
ing over the azimuthal angle and the transverse momentum, and effecting
the change of the integration variable from longitudinal momentum to
pseudorapidity, we obtain, in the laboratory frame, the pseudorapidity
distribution

dN

dη′
≡ 2π

∫
dp⊥ p2⊥

(
dp′L
p⊥ dη′

)
f(E, pL)

E
. (8.15)

The arguments of the distribution are as given in Eqs. (8.13a) and (8.13b)
and the volume element is given by Eq. (8.14).
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8 Particle spectra 137

Equipped with this result, we can explore quantitatively the case of
the exponential, thermal-like distribution, Eq. (8.4). The explicit form of
the laboratory pseudorapidity distribution, including a necessary Lorentz
contraction factor (cosh yCM)−1 arising from the Lorentz transformation
of the volume V of the source, takes the form

dN

dη′
=2πC

∫ ∞

pmin⊥
dp⊥ p2⊥e

−β
[
cosh yCM

√
m2+p2⊥cosh

2 η′−p⊥ sinh yCM sinh η′
]

× cosh yCM

cosh η′− tanh yCM sinh η′ p⊥ cosh η′√
m2+ p2⊥ cosh

2 η′

. (8.16)
A simple test of this not-so-simple expression is its normalization, which
is easily (numerically) verified by integrating over η′ at given m and β,
for various values of yCM.
This distribution is shown in Fig. 8.3, which parallels Fig. 8.2 with the

same conventions and parameters. On comparing Figs. 8.2 and 8.3, we see
that the rapidity and pseudorapidity spectra agree exactly for massless
particles, since the pseudorapidity is the rapidity, in this case. The nearly
massless pions are visibly little changed in spectral shape. With progres-
sively increasing mass, the pseudorapidity spectra differ more from the
rapidity spectra and, in particular, their center shifts to higher pseudora-
pidity.
There is a notable deformation of the symmetric shape accompanied

by considerable widening – the peak is only 60% of the height of the orig-
inal rapidity spectrum for pmin⊥ = 0. In practical situations, the small-p⊥
particles are eliminated, which we allow for by means of a cutoff in pmin⊥ .
We see that now the spectral shapes appear progressively less shifted
from their rapidity form; the pseudorapidity and rapidity shapes become
more similar, although a residual shift remains for the heaviest parti-
cles (nucleons). Thus the pseudorapidity–rapidity difference is primarily
a low-momentum phenomenon. As the p⊥ cutoff increases, the relative
strength of the particle spectra changes and, in particular, there is con-
siderable relative enrichment of the contributions of the heaviest particles
compared with those of light particles.

8.2 A dynamic fireball

Naturally, a fireball at rest is not what we are likely to encounter in the
highly dynamic situation of colliding nuclei. We now look at the modifi-
cations introduced by the presence of a local flow of matter. As before a
volume element in a fireball is the particle source, but now this volume is
in motion, typically due to a local flow originating from a (hydrodynamic)
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138 Particle production

Fig. 8.3. Particle spectra as a function of laboratory pseudorapidity η′, for
β−1 = 160 MeV, yCM = 2.92; massless particles (thin lines), π (dashed lines),
K (chain lines), and N (solid lines). Results for various minimum transverse-
momentum cutoffs are shown: pmin⊥ > 0, > 0.3, > 0.5, and > 1 GeV. Note the
change of scale for the last (bottom) case.

expansion. We will refer to this collective flow velocity below simply as
/v. We would like to know how the statistical distribution appears to a
laboratory observer. However, when we refer to a statistical phase-space
distribution, we always imply an observer at rest in the local ‘intrinsic’
frame of reference. The ‘intrinsic i’ particle energy Ei and momentum

https://doi.org/10.1017/9781009290753.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.012


8 Particle spectra 139

/p i are measured in the local non-flowing frame of reference of a moving
volume element of the fireball.
We determine now how the intrinsic thermal spectrum appears to an

arbitrary Lorentz observer, such as a laboratory observer is. The physical
idea is to express the intrinsic thermal phase space in terms of Lorentz co-
variant quantities, and than to use variables associated with any observer,
e.g., a laboratory-frame observer. There are several approaches possible,
and we proceed in the first instance to consider as in section 12.3 the
Touschek invariant phase-space measure [143, 261]:

V0 d
3pi

(2π)3
e−E

i/T → Vµp
µ

(2π)3
d4p 2δ0(p2 −m2)e−pµuµ/T . (8.17)

The flowing volume element Vµ = V0uµ is as observed in the laboratory
frame. V0 is the comoving volume element in the local rest frame. δ0 is
the Dirac delta function for the positive (energy) roots only, . It is an
invariant function for all proper Lorentz transformations. The left-hand
side of Eq. (8.17), is written in terms of the intrinsic variables, but the
right-hand side is not frame-dependent and we can read it in the frame
of reference of the laboratory observer.
We see the invariant measure introduced in Eq. (8.3):

2δ0(p2 −m2) d4p =
d3p

E
= m⊥ dm⊥ dy dφp = p⊥ dp⊥ dy dφp. (8.18)

The particle momentum defined with reference to the collision axis has
the explicit form

pµ = (m⊥ cosh y, p⊥ cosφp, p⊥ sinφp, m⊥ sinh y), (8.19)

(in cylindrical coordinates) where we omit superscript p for the variables

y and m⊥ =
√
m2 + p2⊥, which, as usual, are understood to refer to the

observed particle. We recall the usual relations,
m⊥
m

= γ⊥ = cosh y⊥,
p⊥
m
= v⊥γ⊥ = sinh y⊥,

which allow us to write Eq. (8.19) in the form

pµ

m
= (cosh y⊥ cosh y, sinh y⊥ cosφp, sinh y⊥ sinφp, cosh y⊥ sinh y).

This suggests that we introduce such a cylindrical representation of the
velocity field as well,

uµ=(cosh yv⊥ cosh y
v
‖ , sinh y

v
⊥ cosφ

v, sinh yv⊥ sinφ
v, cosh yv⊥ sinh y

v
‖),

u2=1. (8.20)
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It is straightforward, in these coordinates, to obtain uµp
µ required to

construct the spectra in Eq. (8.17),

uµp
µ = γv⊥

[
m⊥ cosh(y − yv‖)− p⊥v⊥ cosφ

]
, (8.21)

where γv⊥ = cosh y
v
⊥ = 1/

√
1− v2⊥, φ = φp−φv, and the variables y, m⊥,

and p⊥ refer to the rapidity, the transverse momentum, and the transverse
mass of the observed particle.
The explicit form of the invariant spectrum which generalizes Eq. (8.5),

is

d2N

m2
⊥ dm⊥ dy

=
∫

dφ γv⊥
(2π)3

(
cosh(y − y‖)−

p⊥
m⊥

v⊥ cosφ
)

× exp
{
−γv⊥
[
m⊥ cosh(y − y‖)− p⊥v⊥ cosφ

]
/T
}
. (8.22)

For a suitable choice of the coordinate system in which the x axis is
pointing in the direction of the transverse flow vector, φv = 0, the particle-
emission angle is the azimuthal angle of integration φ = φp. We use the
range 0 < φ ≤ π, which has to be counted twice to include the part
π < φ ≤ 2π. The φ integrals we encounter are analytical:

1
π

∫ π

0
e±a cosφ dφ = I0(a),

1
π

∫ π

0
e±a cosφ cosφdφ = ±I1(a). (8.23)

It is helpful to remember that I0 ‘looks like’ a cosh function, and I1 like
a sinh function, and the analogy goes further with

I1(a) =
∂I0(a)
∂a

. (8.24)

However,

cosh a= I0(a) + 2I2(a) + 2I4(a) + 2I6(a) + · · · , (8.25)
sinh a=2I1(a) + 2I3(a) + 2I5(a) + · · · , (8.26)

where

In(a) =
1
π

∫ π

0
ea cosφ cosnφdφ =

∞∑
k=0

(a/2)2k+n

k!(n+ k)!
. (8.27)
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Using Eq. (8.23) in Eq. (8.22), we obtain

d2N

m2
⊥ dm⊥ dy

=
γv⊥
(2π)2

(
cosh(y−y‖) I0(p⊥v⊥/T )−

p⊥
m⊥

v⊥I1(p⊥v⊥/T )
)

× exp
[
−γv⊥m⊥ cosh(y − y‖)/T

]
. (8.28)

This is the statistical particle spectrum seen in the laboratory frame and
originating in a volume element of a fireball having two velocity compo-
nents y‖ and v⊥, and emitting particles at the local temperature T . If
the laboratory frame is not the CM frame, we need to shift the rapidity
y → y − yCM. This is the particle spectrum of final-state hadrons arising
if the matter in the entire volume of the fireball froze out suddenly.
This volume-style statistical phase-space hadronization based on work

carried out by Touschek [261], differs from the approach of Cooper and
Frye [96], which allows for the dynamics of the particle-emitting surface.
One imagines an opaque fireball, and each surface element is the parti-
cle source. The physical idea is thus to couple the intrinsic (statistical)
particle spectrum to the Lorentz-covariant surface dynamics. The de-
velopments till 1993 are well documented in [238]. It was subsequently
discovered that the radiation formula was non-positive definite and a gen-
eralization was proposed [119].
The particle phase space is written using a covariant surface in 4−1 = 3

space–time dimensions. Consequently, apart from the flow, there is yet
another velocity that describes how the hadronization surface moves, e.g.,
the surface may be flowing outward, but a rapid ‘peeling’ of matter may
move the boundary of the particle-producing volume inward. Moreover,
over the history of the particle production (freeze-out from the surface),
the surface may have both positive and negative velocities, and thus it
can be difficult to make sure that a particle is actually emitted rather
than absorbed in the fireball.
We now illustrate the difficulty inherent in dealing with the problem

of emission of particles, which continues to be actively studied. First, we
recall how, in the Touschek approach, the particle density in phase space
has been written in a Lorentz-invariant way as

d6N

d3x d3p
=

g

(2π)3
e−uµp

µ
i /T , (8.29)

where uµ is the 4-flow velocity. In the volume-hadronization approach,
we have made the following qualitative steps:

E
d3N

d3p
=

dN

dφdym⊥ dm⊥

=
g

(2π)3
e−uµp

µ
i /T

[
Ei d

3x → pµi Vµ ∝ pµi uµ

]
. (8.30)
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When surface emission dominates the particle spectra, the other way
to proceed is

E
d3N

d3p
=

g

(2π)3
e−uµp

µ
i /T

[
Ei d

3x →∫
dτ d3Σµf pµ i δ

(
dτ−
√
dt2f −d/x 2f

)]
, (8.31)

where xµf = (tf , /xf) are the freeze-out surface coordinates, and Σ
µ
f is the

three-dimensional hypersurface of the Minkowski volume element, char-
acterized by a unit 4-vector normal to the surface uµf , i.e., the 4-velocity
of the freeze-out surface:

nµs =
dxµf
dτ

=
dtf
dτ

(
1,
d/xf
dtf

)
. (8.32)

Equation (8.31) arises since we wish to sum the emission spectrum over
the contributions made by each surface element d3Σ over its (proper time
τ) history. For a fireball at rest, we have nµf = (1, 0, 0, 0), d

3Σµf = dtf d
2xf ,

and /vf = d/xf/dtf = 0. Noting that the δ-function simply sets the proper
time to the freeze-out time, we obtain

E
d3N

d3p
=

g

(2π)3
e−Ei/TEiSf ∆tf , (8.33)

where ∆tf is the length of (proper) time during which the emission of
particles occurs, and Sf is the size of the surface.
For simple geometries, we can use

dτ δ

(
dτ − dtf

√
1− d/x 2f /dt

2
f

)
= δ

(
1− dtf

dτ

√
1− d/x 2f /dt

2
f

)
→ 1,

and we find the conventional Cooper–Frye formula:

E
d3N

d3p
=

dN

dφdym⊥ dm⊥
=

g

(2π)3

∫
Σf

e−E
i/T piµ d

3Σµ. (8.34)

d3Σµ is the normal surface vector for the four-dimensional space–time
volume boundary, from which the emission of particles occurs,

d3Σµ ≡ εµνλρ
∂Σν

∂u

∂Σλ

∂v

∂Σρ

∂w
du dv dw, (8.35)

where u, v, w is a suitable set of three locally orthogonal coordinates. In
cylindrical coordinates (u, v, w) = (rf , φf , zf) and

Σµf = (tf , rf cosφf , rf sinφf , zf). (8.36)
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The freeze-out time tf is independent of the angle φf due to the assump-
tion of cylindrical symmetry and thus we have tf(rf , zf). The covariant
volume element is

d3Σcylµ =
(
1,−∂tf

∂rf
cosφf ,−

∂tf
∂rf

sinφf ,−
∂tf
∂zf

)
rf drf dφf dzf . (8.37)

We use the momentum vector of a particle pµi in cylindrical coordinates,
Eq. (8.19), and obtain

dτ

dtf
pµ d3Σcylµ = rf drf dφf dzf

[
m⊥

(
1
u0f
cosh y − 1

u
‖
f

sinh y

)

− 1
u⊥f

p⊥ cosφ

]
, (8.38)

where as before φ = φf − φp.
The 4-velocity of the freeze-out surface is

dxµ/dτ = uµf = (u
0
f , u

⊥
f cosφf , u

⊥
f sinφf , u

‖
f ).

This additional surface dynamics influences the observed spectra, even
though we are dealing with a preexponential factor only. The transverse-
mass spectra contain an additional factor, compared to Eq. (8.22),

d2N

m⊥ dm⊥ dy
→
∫

dφ γv⊥
(2π)3

(
1− /v−1

fr · /p
E

)

×
(
cosh(y − y‖)−

p⊥
m⊥

v⊥ cosφ
)

(8.39)

× exp
{
−γv⊥
[
m⊥ cosh(y − y‖)− p⊥v⊥ cosφ

]
/T
}
,

where

/v−1
fr · /p ≡ ∂tf

∂rf
p⊥ cosφ+

∂tf
∂zf

pz. (8.40)

Particles are emitted from the surface of fireball volume, and thus
the phase space is (2 + 2)-dimensional when the number of particles
is counted. For this dimensional reason there is one power of m⊥ less
in Eq. (8.39), than there is in Eq. (8.22). When vfr → c the prefactor
in Eq. (8.39) is able to compensate for this effect and both methods can
describe the experimental hadron spectra with similar precision.
We proceed to show how the longitudinal flow, and, in section 8.4, the

transverse flow, influence particle spectra. Numerical study shows that
the two flows are practically independent from each other, and it has
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Fig. 8.4. On the left, the abundance of Λ in S–S collisions at 200A GeV, as
a function of rapidity. The squares are the results for N–N collisions scaled
up by the pion-multiplicity ratio. On the right, corresponding results for the
abundance of Λ. Data produced by the NA35 collaboration [24].

become commonplace to study particle spectra as if either only parallel
or only transverse flows were present: in a study of rapidity spectra,
only y‖ is considered, while v⊥ is ignored; in a study of m⊥ spectra, the
longitudinal flow y‖ is not considered.

8.3 Incomplete stopping

Considering that, at very high collision energies, the longitudinal scaling
behavior is expected, see section 6.3, whereas in collisions of large nuclei at
moderate energies a central fireball is more appropriate, it is natural that
the real world is observed to be much more complex than these simple
‘asymptotic’ models.
A nice example of the case in which the baryon number just does not

punch through is seen in the central 200A-GeV S–S collisions at the
SPS. We show, in Fig. 8.4, the production yields of Λ (left-hand side)
and Λ (right-hand side) hyperons as functions of rapidity. The open
circles in Fig. 8.4 are the directly measured data. The particle spec-
tra must be symmetric around the CM rapidity, since this is a symmet-
ric collision system. For this reason the open black circles are obtained
by reflecting the measured data points (solid black circles) at the value
y = 2.96.
The spectra arising from N–N interactions at the same energy are

shown in Fig. 8.4 (open squares). These N–N-interaction comparison
data have been multiplied by the rapidity-dependent pion-multiplicity-
enhancement factor, which accounts for the increase in production of
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Fig. 8.5. Rapidity spectra of massless QGP quanta with flow: dotted, no flow
y‖ = 0; short-dashed, y‖ = 0.5; long-dashed y‖ = 1; and solid, y‖ = 1.5 [178].

pions per nucleon observed on comparing S–S with N–N reactions. In
the target (y = 0.75 ± 0.25) and projectile (y = 5.25 ± 0.25) fragmen-
tation regions, this procedure gives a good agreement between yields of
Λ particles in S–S and N–N scaled by the pion multiplicity. This sug-
gests that, in the target/projectile fragmentation regions, the production
of Λ has the same origin in both cases, presumably from individual N–N
interactions.
However, in the central rapidity region in Fig. 8.4, new mechanisms

of production of Λ and Λ are clearly visible. Inspecting the yield of Λ,
we see considerable localization at central rapidity of a particle made
entirely from constituents not brought into reaction, Λ(ūd̄s̄). Naturally,
there must have been associated localization of the energy. The Λ rapidity
spectrum is, in contrast, relatively flat. Λ(uds) contains, aside from the
strange quark made in the reaction, constituent quarks brought into the
collision region by the projectile and target. Were the punch through of
the light (u, d) quark content complete, we should see for Λ a distribution
similar to Λ, both in shape and in yield.
We consider now the rapidity spectra in the presence of a longitudinal

flow y‖, evaluating the m⊥ integral in Eq. (8.22). The challenge is to
describe a diversity of rapidity spectra of observed hadrons, which are
very strongly varying between certain particles. The different behaviors
are shown schematically in Fig. 8.5. We see how the thermal rapidity
spectra of massless quanta in the deconfined phase, with m = 0, (and
with T = 145 MeV, and v⊥ = 0.52, which values matter little), vary.
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Fig. 8.6. Rapidity spectra of baryons 〈b− b̄〉 observed by experiment NA49 [43]
in central (5%) Pb–Pb interactions at

√
sNN = 17.2 GeV (solid circles, direct

measurement; open circles, reflection at yCM). Stars are rapidity spectra of
baryons for S–S interactions obtained by NA35 at

√
sNN = 18.4 GeV, for the 3%

most central events, scaled with participant number 352/52.

These gradually ‘flow’ apart as y‖ is increased from y‖ = 0 (dotted line)
to y‖ = 1.5 (solid line) in steps of 0.5.
Comparing with Fig. 8.4, we see that both limits (the central production

of Λ and the flat distribution of Λ) are seen in Fig. 8.5. How can this be
happening in the same reaction? In order to obtain different types of flow
for different particles, we presume in the following illustrative example
that hadrons arise from a mix of three quark fluids. The incoming valence
quarks of colliding nuclei are retaining some (vvalence‖ = 0) memory of the
original motion along the collision axis, and constitute the projectile and
target fluids. However, all newly made pairs of quarks have practically no
memory (vpair‖ � 0) of the initial condition of colliding matter, they are
formed near yCM and are constituents of the third fluid. In particular,
pairs of strange quarks made in the plasma do not flow in the longitudinal
direction.
For the protons produced, this model implies that all three quarks

remember the incoming flow and their distribution should follow the solid
or long-dashed line (depending on y‖). For Λ, with one strange quark, we
consider a mix of two thirds weight in the spectrum with flow and one
thirds without. For particles like K+(us̄), we take a 50%–50% mix, and,
for all newly made particles like Λ and Φ, we assume that only no-flow
components contribute. To describe baryon rapidity spectra in Pb–Pb
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Fig. 8.7. Schematic representations of rapidity particle spectra within a thermal
model with flow, parameters chosen for

√
sNN = 17.2 GeV [178].

collisions at
√
sNN = 17.2 GeV, reported by NA49 [43], see Fig. 8.6,

we assume that the longitudinal flow is y‖ � ±1, and choose this value
without attempting to fit the spectra.
The proton rapidity spectrum is shown in the bottom panel in Fig. 8.7.

We usedmq = 0, T = 145 MeV, and v⊥ = 0.52c, which parameters hardly
matter and could be chosen very differently; these values were taken in
view of the m⊥ spectra we discuss below in section 8.4. We average over
positive and negative flows y‖ = ±1, since the collision in the CM frame
involves both. The strange-quark content of the Λ which contributes with
relative strength 33% suffices to yield a flat distribution – see the second
panel from the bottom in Fig. 8.7. The shape of the central rapidity
plateau is in agreement with the results seen in NA49 data, as well as
with those shown above in Fig. 8.4 for the NA35 S–S collisions.
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In the third panel from the bottom, corresponding to the 50%–50% flow
mix such as would be appropriate for K+(us̄), the resulting rapidity shape
is already peaked at the central rapidity. Finally, in the top panel, we
show a prototype of the rapidity distribution arising for all hadrons made
from completely newly made particles such as Λ and Φ. The measured Φ
spectrum is again in qualitative agreement with this result [21].
A comparison of the baryon distributions between Pb–Pb and S–S colli-

sion, seen in Fig. 8.6, suggests that y‖ is about 0.4 units of rapidity larger
in the lighter collision system. Even though it is seemingly a small change,
this opens by 50% the gap between the fluids, as we saw in Fig. 8.5, and
a more pronounced central-rapidity reduction in abundances of certain
particles is present for S–S compared with Pb–Pb collision systems.

8.4 Transverse-mass fireball spectra

The experimental study of the rapidity spectra is complemented by stud-
ies of particle-abundance distributions in the direction transverse to the
collision axis. Under a Lorentz transformation along the collision axis, p⊥
remains unchanged and thus

m⊥ =
√
m2 + /p 2⊥

is invariant. Transverse-mass m⊥-particle spectra are therefore not di-
rectly distorted by flow motion of the fireball matter along the collision
axis, and also no further consideration of the CM frame of reference is nec-
essary, which in fixed target experiments is rapidly moving with respect
to a laboratory observer.
There is also a great difference in the physics when we evaluate rapid-

ity and transverse-mass spectra. As discussed in section 8.3, the rapidity
spectra help us understand the degree of stopping and transparency of
matter in collision, whereas the m⊥ spectra offer insights into thermal-
ization of matter after collision, and evolution of flow. In that sense m⊥
spectra are often more interesting and also a greater challenge to describe
in an ab initio study. Within the statistical model the focus in studying
m⊥ spectra is on determining the local temperature and transverse flow
of the evolving fireball matter.
One could consider the particle spectra as functions of transverse-

momentum p⊥, but the regularities occurring for transverse-mass spectra
for different particles suggest that the spectra have a thermal character.
Therefore m⊥ is a better variable to use in heavy-ion collisions, at least
when m⊥ is not too big: particles with high values of m⊥ > 4 GeV, at
the temperatures we consider, are potentially produced in initial hard
scattering of partons. These decay in yield as a power law, and hence

https://doi.org/10.1017/9781009290753.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.012


8 Particle spectra 149

dominate the exponentially decaying thermal particle yields at high m⊥.
Since hard parton scattering knows nothing about the mass of the final
hadron observed, a better variable to look at to evaluate these processes is
p⊥. However, for m⊥ � m, there is little difference between p⊥ and m⊥,
so we conclude that m⊥ is overall the more suitable variable to consider
in heavy-ion collisions. One of the surprising early results obtained at
RHIC is the absence of high-p⊥ particles in central interactions [17]. This
suggests an effective parton thermalization mechanism.
In order to study the thermal properties in the fireball as ‘reported’

by the emitted particles, we analyze m⊥ spectra of many different had-
rons. The range of m⊥, on the one hand, should not reach very large
values, at which hadrons originating in hard parton scattering are rele-
vant. On the other hand, we do need relatively small m⊥, in order for the
non-exponential structure associated with transverse flow and resonance
decays to emerge.
The transverse-mass spectra of hyperons, which we have seen in Fig. 1.7

on page 20, are potentially very important in understanding and in mod-
eling of the exploding QGP fireball. We have already in the S–Au 200A-
GeV collisions the appearance of the exponential thermal spectra. The
central-rapidity high-transverse-mass spectra of strange particles, K0s , Λ,
and Λ, given by the CERN–SPS WA85 collaboration, m−3/2

⊥ dNi/dm⊥,
are shown in Fig. 8.8. The factor m−3/2

⊥ is introduced in view of the form
of Eq. (8.8). The resulting shape, shown in Fig. 8.8 on a semi-logarithmic
display, can be fitted with a straight line. This exactly exponential behav-
ior is initially surprising, considering that Eq. (8.8) required summation
over the entire range of rapidity, given the rapidity acceptance range of
WA85 limited to central ∆y < 1 interval. However, effective summation
over a wider range of y occurs, given the presence of collective longitu-
dinal flow of matter. Similar results were also reported from the related
work of the WA94 collaboration for S–S interactions [8].
We see, in Fig. 8.8, in the region of transverse masses presented, 1.5

GeV < m⊥ < 2.6 GeV, not only that the particle spectra are exponential,
∝ exp(−m⊥/T⊥), but also that the behaviors of all three different parti-
cles feature the same inverse slope, T⊥ = 232 ± 5 MeV. This is not the
actual temperature of the fireball, as noted earlier. The lower emission
temperature of these particles, Ttf , is blue-shifted by the flow as is seen in
Eq. (8.39), and can be approximately understood in terms of the Doppler
factor in Eq. (5.36).
The same shape of m⊥ spectrum appears in results from the WA80 col-

laboration results, for the neutral hadrons π0 and η. In Fig. 8.9, we show
the S–Au and S–S WA80 results at 200A GeV [28, 29, 234, 235], multiply-
ing the invariant cross sections by the power m−1/2

⊥ in order to establish
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Fig. 8.8. Strange-particle spectra for Λ, Λ, and KS [225]. The line connecting
the Λ and Λ spectra, denoted R−1

Λ , shows how at fixed m⊥ the ratio RΛ of
abundances of these particles can be extracted. Experimental WA85 results at
200A GeV [104, 116, 117].

a direct correspondence between the representations of the data of ex-
periments WA85 and WA80. To determine the required multiplicative
factor, we note that the particle-production cross section dσ is controlled
by the geometry of the collision, see section 5.2, and thus is the geometric
interaction surface, σinel, multiplied by the yield of particles dN . Using
Eq. (8.3) we obtain

m
−1/2
⊥ E

d3σ

d3p
= σinel

dN

2πm3/2
⊥ dm⊥ dy

. (8.41)

Like WA85, the WA80 experiment also presented data for the central
region in rapidity, 2.1 < y < 2.9, and no further adjustment is needed in
order to make the results exactly comparable.

https://doi.org/10.1017/9781009290753.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.012


8 Particle spectra 151

Fig. 8.9. Neutral-particle π0 and η spectra (invariant cross sections divided by
m
1/2
⊥ ) in the central-rapidity interval 2.1 < y < 2.9 [225]. Upper solid line, S–Au

thermal spectrum with temperature T = 232 MeV; lower solid line, S–S, T = 210
MeV. Experimental data at 200A GeV courtesy of the WA80 collaboration [28,
29, 234, 235].

The upper straight line (S–Au collisions) in Fig. 8.9 is the same expo-
nential as we saw in Fig. 8.8, for the three different WA85 strange-particle
spectra. While the WA85 data covered the interval 1.5 GeV < m⊥ < 2.5
GeV, the thermal exponential shape continues, in the WA80 data, through
the highest data point at m⊥ = 4GeV. The lower solid line in Fig. 8.9
is for S–S 200A-GeV interactions and is drawn with T = 210 MeV. The
choice of S–S temperature is based on the WA94 results obtained from
their spectra of strange antibaryons [8]. It is noteworthy that the WA80
particle spectra shown in Fig. 8.9 span seven decades, and that over 5–
6 decades the thermal spectral shape for neutral hadrons is in excellent
agreement with the strange-particle spectral shape. We note that the rise
in the yield of neutral mesons at low m⊥ � 0.5 GeV is expected. It is due
to secondary contributions to the yield of particles by decay of hadronic

https://doi.org/10.1017/9781009290753.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.012


152 Particle production

Table 8.1. Inverse (net) proton slopes T⊥ for various reaction systems at 200A
GeV (158A GeV for Pb–Pb), increasing in size from left to right

Reaction p–S p–Au d–Au O–Au

T⊥ 154± 114 163± 5 172± 5 219± 5
y interval 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0

Reaction S–S S–Ag S–Au Pb–Pb

T⊥ 235± 9 238± 2 276± 48 308± 15
y interval 0.5 ≤ y ≤ 3.0 0.5 ≤ y ≤ 3.0 3.0 ≤ y ≤ 5.0 y � 3

resonances. While at high m⊥ pion, kaon, and hyperon slopes agree, at
small m⊥ < 0.8 GeV the pion spectrum is much steeper. Since most
pions are produced at these m⊥, a global fit to the pion data yields an
inverse slope parameter which is much smaller than the value we can see
in Fig. 8.9.
There is a clear difference between T⊥ inverse slopes pertinent to differ-

ent collision systems, and a systematic trend is visible: T⊥ increases with
the volume of the reaction zone. We show, in table 8.1, the m⊥ inverse
slopes of participating (net) protons for a number of collision systems
studied by the NA35/NA49 collaboration [26, 43]. The shape of the m⊥
spectra has been fitted to the simple form

dN

dm⊥ dy
∼ mα

⊥ exp(−m⊥/T ). (8.42)

The results presented in table 8.1 were obtained with α = 1. Several
effects contribute to an increase of T⊥ with increasing size of the collid-
ing system. With increasing number of participants in the collision, the
fireball of dense matter becomes less transparent and thus colliding mat-
ter can be compressed more at a given collision energy. Moreover, larger
systems have more time to develop the outward flow under the (higher)
internal pressure, acquiring a greater collective velocity. Thus, what we
see is that the initial fireball of the collision system is getting hotter
and denser with increasing collision volume, which leads to a longer, and
more violent explosion. This in turn enhances the transverse velocity at
the time of production of particles. An in-depth analysis, which requires
consideration of other particles apart from the (net) production of pro-
tons, confirms that the systematic increase of the inverse m⊥ slope with
increasing size of the system is associated with an increasing velocity of
expansion of the source. The intrinsic temperature of emission from the
fireball remains at the level of T � 160 MeV [59, 60, 176, 259].
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Table 8.2. Inverse slopes T⊥ for various strange hadrons

Λ Λ Ξ− Ξ+ Ω− +Ω+ φ

Pb–Pb 289± 2 287± 4 286± 9 284± 17 251± 19 305± 15
S–W 233± 3 232± 7 244± 12 238± 16

To reach the most extreme conditions, collisions of the heaviest nuclei
are required, and thus much of the experimental effort has gone into study-
ing the Pb–Pb collision system. The highest inverse slopes are reported
for several strange baryons and antibaryons by the WA97 collaboration
[42]. Results presented in table 8.2 were obtained using, in Eq. (8.42),
α = 1 for Pb–Pb, and α = 3

2 for the S–W collision system. The corre-
sponding spectra are shown in Fig. 1.7 on page 20. The most interesting
result seen in table 8.2 is that there is practically the same inverse slope
for baryons and antibaryons of the same type. This confirms the result
reported by the WA85 collaboration for S–W interactions [6, 118], as is
also shown in table 8.2.
The data point in table 8.2 for the φ(ss̄), in Pb–Pb collisions, is from the

evaluation of the kaon-decay channel by the NA49 collaboration [21]. This
data point disagrees with a preliminary result Tµµ = 227 MeV, which was
reported by the NA50 collaboration and obtained in the dimuon-decay
channel [212].
If strange baryons and antibaryons were to be produced in an envi-

ronment of baryon-rich confined matter, the difference in interactions of
antibaryons, which have a large annihilation cross section at small mo-
menta, should be visible as a baryon–antibaryon difference in the spectral
shape, in particular at small m⊥. The absence, to a very high precision,
of any transverse-mass spectral asymmetry between strange baryons and
antibaryons is a very important item of experimental evidence for a com-
mon mechanism of production of strange baryons and antibaryons by a
source such as a QGP fireball which treats matter and antimatter in the
same way. In order to suppress interactions within a hadronic-matter
phase possibly formed after the QGP state hadronizes, either a sudden
breakup of the fireball, arising after considerable super-cooling, or se-
quential evaporation of hadrons in time, without formation of a hadron
phase, is required. This symmetry between matter and antimatter has not
been reproduced in transport models, in which confined hadron degrees
of freedom appear.
In Fig. 8.10, we see, for Pb–Pb collisions at 158A GeV, results shown

in table 8.2 along with other inverse slopes T⊥ ordered as functions of
particle mass. Several different results are shown for pions, which arise

https://doi.org/10.1017/9781009290753.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.012


154 Particle production

Fig. 8.10. Mass dependences of inverse slopes observed in Pb–Pb interactions
at 158A GeV; symbols indicate the experiment from which data is drawn, as
coded in the figure.

for different (low) m⊥, y windows considered in different experiments.
Even so, there is some unresolved variance between different pion results.
Ten different hadronic particles with 0.9 GeV < m < 1.5 GeV exhibit
a common inverse slope indicated by the horizontal dashed line. There
is general agreement that the increase in the slope seen on comparing
pions, kaons, and baryons (obtained within an overlapping range of p⊥,
not of m⊥) is due to the presence of a strong transverse flow of matter
from which these particles originate [59]. The observation of a thermal
charmonium spectrum (the point at m = 3.1 GeV) both in S- and Pb-
induced reactions [11, 14], with m⊥ slopes similar to those for the other
heavy hadrons, suggests that thermalization of hadrons is a universal
phenomenon in heavy-ion collisions. The thermal shape of the observed
charmonium spectra is somewhat surprising considering the ‘standard-
model’ reaction picture of suppression of charmonium, see section 1.6.
The highest value of T in Fig. 8.10, at m = 1.9 GeV, for the deuteron,

confirms that these particles are not produced thermally. Production of
deuterons is believed to arise predominantly from the final-state interac-
tion between nearly free-streaming nucleons. The inverse slope for Ω and
Ω (at m = 1.6 GeV) seems to be about two standard deviations below
expectation. It is understood to be due to excess production of Ω and Ω
at low p⊥; see Fig. 8.11.
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Fig. 8.11. Thermal analysis of Λ (left) and Ω+Ω (right)m⊥ spectra for various
centralities of collision [259].

8.5 Centrality dependence of m⊥-spectra

A study of transverse-mass spectra [259] has been performed for the pre-
cisely known strange-hadron spectra of the experiment WA97 [42], re-
ported for several centrality bins; this data, with all centrality bins com-
bined, is shown in Fig. 1.7 on page 20. The shapes of the various particle
spectra depend in a complex, nonlinear, but unique, way, on the temper-
ature used, and on the velocity of transverse flow, and these parameters
are determined universally for all particles considered in each collision
centrality.
In an early study of hadron spectra it was suggested that spectra alone

could not separate Ttf and vtf , as these quantities are highly correlated;
see the Doppler formula Eq. (5.36). As we will see, these two parame-
ters can be determined without any need for other experimental input,
when precise experimental data are available for m⊥ spectra reaching
down to relatively low values of p⊥. This is possible for the following
reason: it is assumed that, after hadronic resonances have decayed, their
decay products do not rescatter from surrounding matter, thus the non-
thermal spectrum is combined with the primary thermal spectrum to
form the final observed spectrum. By choosing the yield of resonances
to be determined by the temperature seen in the spectrum, the shape
of the computed spectrum becomes a highly nonlinear function of tem-
perature and velocity. Since there is a minimum transverse momentum
required in order to observe a particle, the yields above pmin⊥ depend also
on the transverse-flow velocity. This method assumes that the chemical
(particle-production) freeze-out temperature Tf is assumed to be nearly
equal to the thermal (spectrum-shaping) freeze-out temperature Ttf . The
results obtained are consistent with this assumption.
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The finalm⊥ distribution for particles is composed of directly produced
particles and decay products originating in the ‘root’ particle R decaying
to the observed particle X and any Z, with variables R(M,MT, Y ) →
X(m,m⊥, y) + Z [238]:

dNX
dm⊥

=
dNX
dm⊥

∣∣∣∣
direct

+
∑

∀R→X+Z

dNX
dm⊥

∣∣∣∣
R→X+2+···

. (8.43)

Only first-generation, and only two-body, decays were considered, as is
appropriate for the hyperons and kaons. The decay contribution to the
yield of X is

dNX
dm2

⊥ dy

∣∣∣∣
R

=
gRbRX
4πp∗

∫ Y+

Y−
dY

∫ MT+

MT−

dM2
T J d2NR

dM2
TdY

. (8.44)

Here, gR and bRX are the R-degeneracy and branching into X, and p∗ =√
E∗2 −m2 with E∗ = (M2 −m2 −m2

2)/(2M), are the energy and mo-
mentum of the decay product X in the restframe of its parent R. The
limits on the integration are the maximum values accessible to the decay
product X:

Y± = y ± sinh−1
(
p∗

m⊥

)
,

MT± =M
E∗m⊥ cosh∆Y ± p⊥

√
p∗2 −m2

⊥ sinh
2∆Y

m2
⊥ sinh

2∆Y +m2
,

and

J =
M√

P 2Tp
2
⊥ − (ME∗ −MTm⊥ cosh∆Y )2

,

where ∆Y = Y − y.
The primary particle spectra (both those directly produced and parents

of decay products) are derived from the thermal Boltzmann distribution.
As discussed earlier in this chapter, in general the longitudinal flow does
not significantly influence m⊥ spectra. Thus it is possible, in order to
simplify the evaluation of integrals, to disregard longitudinal flow and to
allow spherical symmetry of the transverse flow. A second hadronization-
surface ‘velocity’ seen in Eq. (8.39), v−1

f ≡ dtf/dxf , was considered. Thus
the thermal distribution of directly produced and parent particles R had
the form

d2N

dm⊥ dy
∝
(
1−/v−1

f · /p
E

)
γm⊥ cosh y exp

[
−γE

T

(
1−/v · /p

E

)]
, (8.45)

where γ = 1/
√
1− v2.
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Fig. 8.12. The thermal freeze-out temperature T (left), flow velocity v (bottom
right), and breakup (hadronization hyper-surface-propagation) velocity vf (top
right) for various collision-centrality bins. The upper limit vf = 1 (dashed line)
and chemical-freeze-out-analysis limits for v (solid lines) are also shown. For
the temperature, results obtained with increased error for kaon spectra are also
shown.

Simultaneous analysis of the spectra of Λ, Λ, Ξ, Ξ, Ω + Ω, and KS =
(K0 + K0)/2 in four centrality bins was performed. In each centrality
bin pronounced minima in T, vf and v plane are observed for the total
statistical error:

χ2 =
∑
i

(
F theoryi − Fi

∆Fi

)2
,

evaluated relative to the experimental precision of measurement ∆Fi of
the result Fi. The chemical parameters, which are not well determined
by a momentum-distribution fit, are not varied. Since the statistics of
kaons was very high, and thus the statistical precision of data potentially
was significantly greater than systematic error, also a global fit with a
five-fold-increased kaon error was performed [259].
Some of the resulting m⊥ spectra for particles are shown, in Fig. 8.11,

in each part for the four bins separately. On the left-hand side, we see
as an example the Λ spectrum. The description of the shape, in all four
centrality cases, is very satisfactory, also for all other particles consid-
ered, except for Ω + Ω in the right-hand panel in Fig. 8.11. In all four
centrality bins for the sum Ω+Ω, the two lowest m⊥ data points are un-
derpredicted. This low-m⊥ excess explains why the inverse m⊥ slopes
for Ω and Ω are reported to be smaller than the values seen for all
other strange (anti)hyperons in Fig. 8.10. This behavior suggests that
soft Ω and Ω are produced in a significant manner by mechanisms be-
yond the statistical model, which we discuss further at the end of sec-
tion 19.3.
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The parameters shaping the spectral form, which arise in this descrip-
tion of hyperon m⊥ spectra, are shown in Fig. 8.12, on the left-hand side
the thermal freeze-out temperature Ttf , and on the right-hand side the
transverse velocity v (bottom) and the breakup (hadronization) speed pa-
rameter vf (top). The value of vf is near to the velocity of light, which is
consistent with the picture of a sudden breakup of the fireball. The hor-
izontal lines delineate the ranges of the result of chemical particle-yield
analysis, and are similar to those presented in table 19.3 on page 360. The
range of values of T seen in this table is slightly different as the results
presented were updated. The m⊥-spectral-shape analysis is found to be
consistent with the purely chemical analysis of strange and non-strange
hadron production.
An important objective of this complex analysis is to see whether differ-

ent centrality bins yield results consistent with the same physics. There
is no indication, in the left-hand panel of Fig. 8.12, of a significant or
systematic change of T with centrality, or dominance of the result by
the kaon spectrum alone. The resulting temperature, here dominated by
the thermal shape, agrees with the temperature obtained from analysis
of particle yields alone, table 19.3, which is dominated by the chemical
freeze-out temperature.
The flow (expansion) velocity v (lower part of the right-hand panel of

Fig. 8.12), even though it is flat to within the experimental error, reveals a
slight but systematic increase with centrality, and thus size of the system.
This is expected, since the more central events involve a greater volume
of matter, which allows more time for the development of the flow.
For all four centralities these results show that there is no need to in-

troduce a two-staged freeze-out; in fact, we can conclude that Ttf � Tf .
The myth of unequal thermal and chemical freeze-out temperatures is
rooted in the high temperature obtained in chemical-equilibrium anal-
ysis of hadron yields. However, results of such an analysis of the ex-
perimental data lack the required statistical confidence, even though the
systematic behavior of the particle production data is well reproduced,
as we shall discuss at the end of section 9.2. Specifically, once a fully
descriptive set of parameters is introduced, allowing for precise data de-
scription, thermal and chemical freeze-out conditions are found to be the
same.
The results of the analysis described in this section are consistent with

strange hadrons being produced by the new state of matter at CERN
in all centrality bins explored by the experiment WA97, i.e., for num-
bers of participants greater than �100. The low-centrality fifth bin, now
being studied by experiment WA57, see Fig. 9.5 [87], exhibits different
characteristics, with less enhancement of the production of multistrange
hadrons.
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Fig. 9.1. The abundance of 1.6Λ + 4KS + 1.6Λ as a function of rapidity. On
the left, S–S; on the right, S–Ag (open circles are the directly measured data).
The triangles are reflected data points for S–S and reflected interpolated data
employing S–S and S–Ag. The squares in the S–S case are the results for N–N
collisions scaled up by the pion-multiplicity ratio; for S–Ag these are the scaled-
up p–S results. Data courtesy of the NA35 collaboration [128].

9 Highlights of hadron production

9.1 The production of strangeness

Strangeness is a valuable tool for understanding the reaction mechanism,
since it has to be made during the collision. The question is that of
how it is produced. In terms of experimental information, the first thing
we would like to establish is whether the mechanism producing stran-
geness involves a hot fireball at central rapidity, or whether perhaps a
lot of strangeness originates from the projectile/target-fragmentation re-
gion.
Results of the experiment NA35 [128] are shown in Fig. 9.1 as functions

of rapidity for the case of S–S 200A-GeV collisions. We consider the over-
all abundance of 〈s + s̄〉. The open circles are the measured data points,
the open triangles are the symmetrically reflected data points, and squares
on the left-hand side are the results of N–N (isospin-symmetric nucleon–
nucleon) collisions scaled up by the ratio in pion multiplicity, whereas on
the right-hand side the p–S results are scaled up. We show the rapidity
yield obtained by integrating the transverse-mass m⊥ distribution for the
total yield of strangeness:

d〈s + s̄〉
dy

= 1.6
dΛ
dy
+ 4

dKS
dy

+ 1.6
dΛ
dy

. (9.1)

We note that, on doubling the KS yield, we include KL, and, on doubling
again, we add both K+ and K−, which explains the factor 4.
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