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Meromorphic Functions with Prescribed
Asymptotic Behaviour, Zeros and Poles and
Applications in Complex Approximation
A. Sauer

Abstract. We construct meromorphic functions with asymptotic power series expansion in z−1 at∞ on an
Arakelyan set A having prescribed zeros and poles outside A. We use our results to prove approximation
theorems where the approximating function fulfills interpolation restrictions outside the set of approximation.

1 Introduction

The notion of asymptotic expansions or more precisely asymptotic power series is classical
and one usually refers to Poincaré [Po] for its definition (see also [Fo], [O], [Pi], and [R1,
pp. 293–301]).

A function f : A → C where A ⊂ C is unbounded, possesses an asymptotic expansion
(in A) at∞ if there exists a (formal) power series

∑
anz−n such that f (z)−

∑N
n=0 anz−n =

O(|z|−(N+1)) as z→∞ in A.
This imitates the properties of functions with convergent Taylor expansions. In fact, if f

is holomorphic at∞ its Taylor expansion and asymptotic expansion coincide. We will be
mainly concerned with entire functions possessing an asymptotic expansion. Well known
examples are the exponential function (in the left half plane) and Sterling’s formula for the
behaviour of the Γ-function at∞.

In Sections 2 and 3 we introduce a suitable algebraical and topological structure on
the set of all entire functions with an asymptotic expansion. Using this in the following
sections, we will prove existence theorems in the spirit of the Weierstrass product theorem
and Mittag-Leffler’s partial fraction theorem. It will turn out that zeros and poles can be
prescribed arbitrarily (not accumulating at a finite point of course) outside an Arakelyan
set A, whereas in A the asymptotic behaviour of the function is as described above. As
a corollary we get for a given Jordan path γ to ∞, a ∈ C the existence of a function f
meromorphic in C with f → a on γ having prescribed zeros and poles outside γ.

The main tool in our constructions is an approximation theorem of Arakelyan. To a cer-
tain amount our results overcome the problem that functions constructed from approxi-
mation theorems are usually difficult to control outside the set of approximation (which we
always denote by A). In this direction we will prove in Section 5 approximation theorems
where the approximating function has prescribed zeros outside A or solves an interpolation
problem outside A.
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118 A. Sauer

2 Definitions and Basic Results

First let us fix some notation. We will denote by Ĉ the one point compactification of C, by
N the positive integers and we set N0 := N ∪ {0}. For r ≥ 0 let Dr := {z ∈ C | |z| < r}
be the open disc of radius r and Dr be its topological closure. We set D := D1. The interior
and complement of a set A ⊂ C will be denoted by A◦ and Ac, respectively.

Definition 2.1 Let A be an unbounded set in C. We say that a function f : A→ C possesses
an asymptotic expansion in A if there exists a complex sequence aν such that for all n ∈ N0

zn+1
(

f (z)−
n∑
ν=0

aνz
−ν
)
→ an+1

as z →∞ in A. We write f (z) ∼
∑∞
ν=0 aνz−ν . Further if we set for n ∈ N0

Rn( f , z) := f (z)−
n−1∑
ν=0

aνz
−ν

then it is easy to show that f (z) ∼
∑∞
ν=0 aνz−ν is equivalent to Rn( f , z) = O(|z|−n) for all

n ∈ N0. Here for n = 0 we have R0( f , z) = f (z).

Remark (a) It is easy to see that the asymptotic expansion of a function is uniquely deter-
mined. But even for holomorphic functions with asymptotic expansion at∞ the identity
theorem does not carry over: Let A be a closed subsector of the left half plane. Then ez ∼ 0
and of course for f ≡ 0 we have f ∼ 0. (If aν = 0 for ν ≥ 1 we write a0 for

∑∞
ν=0 aνz−ν .)

Note that the asymptotic expansion of f need not converge and is therefore a “formal”
power series. Further, in case the expansion converges, it need not represent f as can be
seen from the above example f (z) = ez.

(b) Suppose f (z) ∼ anz−n + an+1z−(n+1) + · · · , i.e., that the first n coefficients in the
asymptotic expansion are zero. One easily shows zn f (z) ∼

∑∞
ν=0 aν+nz−ν . More gener-

ally, if p is a polynomial with degree deg p ≤ n, then p(z) · f (z) possesses an asymptotic
expansion. This property gives the oppurtunity to bring polynomials into play, although
polynomials have no finite limits at∞. This fact will play a key role in this paper and can
be considered as the reason to use asymptotic power series in the context we will be dealing
with.

We now fix an unbounded set A ⊂ C and consider the set F of all complex valued func-
tions on A that posses an asymptotic expansion in A. With pointwise addition and multi-
plication F is a unital algebra. This follows from the following well known proposition. We
omit its simple proof.

Proposition 2.2 Let f , g ∈ F with f ∼
∑∞
ν=0 aνz−ν and g ∼

∑∞
ν=0 bνz−ν in A and and

α, β ∈ C. Then the following holds:

(i) α f (z) + βg(z) ∼
∑∞
ν=0(αaν + βbν)z−ν

(ii) f (z) · g(z) ∼
∑∞
ν=0 cνz−ν where cν =

∑ν
n=0 anbν−n.
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Prescribed Asymptotic Behaviour and Zeros 119

Now let us consider the sub-algebra B of all bounded functions in F. We introduce on B
for k ∈ N0 the semi-norms

Mk( f ) := sup
z∈A
|z|k
∣∣∣ f (z)−

k−1∑
ν=0

aνz
−ν
∣∣∣ = sup

z∈A
|z|k |Rk( f , z)|.

Note that the number Mk( f ) is the infimum of all admissible constants in the O-terms in
Definition 2.1.

The following convergence theorem can be found in [Pi, p. 38].

Theorem 2.3 Let fn be a sequence in B with fn(z) ∼
∑∞
ν=0 a(n)

ν z−ν such that fn converges
pointwise to a function f . Assume that fn is bounded in the norms Mk, i.e., that for all k ∈ N
there exists Ck ≥ 0 such that Mk( fn) ≤ Ck uniformly in n. Then the limits ak := lim

n→∞
a(n)

k

exist and f (z) ∼
∑∞

k=0 akz−k with Mk( f ) ≤ Ck. In particular f ∈ B.

We will need the following estimation of Mk( f · g).

Lemma 2.4 For f , g ∈ B we have Mk( f g) ≤
∑k
κ=0 Mκ( f )Mk−κ(g).

Proof By induction. Let f ∼
∑

aνz−ν and g ∼
∑

bνz−ν . For k = 0 we have M0( f g) =
supz∈A | f (z)g(z)| ≤ M0( f )M0(g). It is easy to show that |a0| ≤ M0( f ) and Mk

(
z( f−a0)

)
=

Mk+1( f ). Using this the step k→ k + 1 is done by

Mk+1( f g) = Mk

(
z( f g − a0b0)

)
= Mk

(
z( f − a0)g + z(g − b0)a0

)
≤ Mk

(
z( f − a0)g

)
+ Mk

(
z(g − b0)a0

)
≤

k∑
κ=0

Mκ
(
z( f − a0)

)
Mk−κ(g) + |a0|Mk

(
z(g − b0)

)

≤
k∑
κ=0

Mκ+1( f )Mk−κ(g) + M0( f )Mk+1(g) =
k+1∑
κ=0

Mκ( f )Mk−κ(g).

3 Entire Functions with Asymptotic Expansions and Prescribed Zeros

Let now E be the sub-algebra of all entire functions in B. First we define the usual norms
that induce the topology of compact convergence: | f |n := max|z|=n | f (z)|. As is well-
known the algebra of all entire functions is complete in the topology induced by these
norms. This is in general not the case for our algebra E. Let A be a subsector of the left
half-plane. Then ez ∈ E and ez ∼ 0. Let f be an arbitrary entire function. Further let en

and fn be polynomial approximations of e−z and f respectively in the topology of compact
convergence (e.g., the Taylor expansions). Then Fn := fnenez ∼ 0 and therefore Fn ∈ E, but
Fn → f compactly.

It is natural to introduce a topology on E that is finer than the topology of compact
convergence such that E becomes a complete space. One way to do this, is to enlarge the
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system of norms by the norms Mk defined above. Theorem 2.3 tells us that E is complete in
the topology τA induced by the norms {| · |n | n ∈ N} ∪ {Mk | k ∈ N0}. With Lemma 2.4
one can prove that E with τA is a Fréchet algebra. Further, by a result of Carpenter (see [Go,
p. 163]) this topology is unique. So the above constructed topology on E is very natural.
From now on we endow E with τA.

We prove a useful characterisation of convergence in (E, τA):

Theorem 3.1 A sequence fn in E converges to f ∈ E iff fn → f compactly and for each
k ∈ N0 there exists Ck ≥ 0 such that Mk( fn) ≤ Ck for all n ∈ N.

Proof “⇒” is trivial. Suppose fn → f in the topology of compact convergence. Clearly f
is entire. Let fn(z) ∼

∑∞
ν=0 a(n)

ν z−ν . Since compact convergence implies pointwise conver-
gence Theorem 2.3 shows that the limits lim

n→∞
a(n)
ν = aν exist and that f (z) ∼

∑∞
ν=0 aνz−ν

(in particular f ∈ E). It is left to show lim
n→∞

Mk( fn − f ) = 0 for all k ∈ N. For |z| ≥ C(ε)

it holds

|z|k
∣∣∣ fn(z)− f (z)−

k−1∑
ν=0

(a(n)
ν − aν)z−ν

∣∣∣ ≤ |an
k − ak| +

ε

2
≤ ε

for n ≥ n0. Now A∩DC(ε) is compact. Since convergence of the coefficients of polynomials
with fixed degree implies compact convergence and by the assumed compact convergence
of fn it follows

sup
z∈A∩DC(ε)

|z|k
∣∣∣ fn(z)− f (z)−

k−1∑
ν=0

(a(n)
ν − aν)z−ν

∣∣∣ ≤ ε
for n ≥ n1. It follows Mk( fn − f ) ≤ ε for n ≥ max{n0, n1} and the proof is complete.

With Montel’s convergence theorem for normal families it follows from Theorem 3.1:

Corollary 3.2 E is a Montel space.

For the construction of non-trivial elements in E it is unavoidable to impose restrictions
on the set A. For example, if A is a neighbourhood of ∞ then E contains only the con-
stant functions by the Liouville theorem. Since we will use an approximation theorem of
Arakelyan we need the following definition.

Definition 3.3 A closed unbounded proper subset A of C is called an Arakelyan set if Ĉ \A
is connected and locally connected at ∞. We will call a sequence αn (possibly finite or
empty) in C admissible (with respect to A) if αn has no finite accumulation point and all αn

are contained in C \ A.

Simple examples of Arakelyan sets are sectors or Jordan paths going to∞. We will need
a charaterisation of local connectedness at∞ (cf. [Ga, p. 126]).

Lemma 3.4 The set Ĉ \ A is locally connected at∞ if and only if for each neighbourhood U
of∞ there exists a neighbourhood V ⊂ U of∞ such that every z ∈ V \ A can be connected
with∞ by a Jordan path in U \ A.
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It is easy to check that it is sufficient that U and V in the above statement belong to a
basis of neighbourhoods of∞, e.g., all sets of the form D

c
r with r > 0. With the notion

of an Arakelyan set the mentioned approximation theorem of Arakelyan can be stated (see
[Fu, p. 39] or [Ga, p. 145]).

Theorem 3.5 (Arakelyan) Let A be an Arakelyan set and ε : [0,∞)→ (0,∞) be continuous
such that ∫ ∞

1
t−3/2 log ε(t) dt > −∞.(1)

Then for every function f that is continuous on A and holomorphic in A◦ there exists an entire
function g such that

| f (z)− g(z)| ≤ ε(|z|)

for all z ∈ A.

It is easy to show that ε(t) := η exp(−ct1/3) with η, c > 0 fulfills (1). Now we can prove
the main result of the paper.

Theorem 3.6 Let A be an Arakelyan set and let αn be an admissible sequence. Further let on

be a sequence in N. Then there exists an entire function f with exactly the zeros αn of order on

and f ∼ 1 in A.

Proof We assume that αn occurs on times in the sequence. This sequence will be denoted
by α j . Further since Ac 6= ∅ simple transformations show that we can assume A∩D = ∅.
Since A is an Arakelyan set, for every n ∈ N0 there exists rn > n such that every point in
D

c
rn
\ A can be connected with∞ by a Jordan path in D

c
n \ A (Lemma 3.4). We can assume

that rn →∞monotonically.
Let Bn be the union of all bounded components of (A∪Dn)c and set An := A∪Dn ∪Bn.

For consistency of notation set A0 := A. We claim that An is an Arakelyan set. Clearly
An is closed and unbounded. Further Ac

n is connected in Ĉ since all components of Ac
n

are unbounded. Using Lemma 3.4 we show that An is locally connected at ∞. Let V be
a neighbourhood of ∞ in Ĉ. It exists l > n such that D

c
l ⊂ V and Bn ⊂ Dl. Hence

U := D
c
rl
⊂ V and every point in D

c
rl
\ A can be connected with∞ by a Jordan-path γ in

D
c
l \ A. Since D

c
l ∩ Dn = ∅ and D

c
l ∩ Bn = ∅ we deduce that γ lies in D

c
l \ An ⊂ V \ An

and the claim follows.
We define a partition of the sequence α j as follows. Set Θ0 := {α j | α j ∈ Dr1}

and Θn := {α j | α j ∈ Drn+1 \ Drn} for n ∈ N. By the definition of rn every point
in Θn ⊂ Ac

n can be connected with ∞ by a path in Ac
n. Hence it is possible to define

log(z − α j) as a holomorphic function in a neighbourhood of An for every α j ∈ Θn. By
Arakelyan’s approximation Theorem 3.5 it exists for all k ∈ N an entire function gn,k, j such
that |gn,k, j(z) + log(z − α j)| ≤ εn,k(|z|) on An where

εn,k(t) := min

{(
1

2

)k+1

, 1/2 exp(−t1/3rk
n+1)

}
.
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We define
En,k, j(z) := (z − α j) exp

(
gn,k, j(z)

)
.

Hence En,k, j possesses exactly one zero α j of order one. We show En,k, j ∼ 1. For all l ∈ N
we have

|zl
(
En,k, j(z)− 1

)
| = |z|l |exp

(
gn,k, j(z) + log(z − α j)

)
− 1|

= |z|l |exp
(
O(|z|−(l+1))

)
− 1| = O(|z|−1)→ 0

as z →∞ in A. The claim follows from Definition 2.1. It is easy to check that εn,k(t) ≤ 1/2.
Using the elementary inequality |ew − 1| ≤ 2|w| for |w| ≤ 1/2 we obtain:

|En,k, j(z)− 1| = |exp
(
gn,k, j(z) + log(z − α j)

)
− 1| ≤ 2

(
1

2

)k+1

=

(
1

2

)k

for z ∈ Dn. Let cn be the (finite) cardinality of Θn. Consider the compact exhaustion of C
by the sets Dl, l ∈ N. Then from the estimation above we deduce for z ∈ Dl:

∑
n≥l

∑
α j∈Θn

|En,kn, j(z)− 1| ≤
∞∑
n=l

cn

(
1

2

)kn

<∞

for suitable kn. Thus the product

f (z) :=
∞∏

n=0

∏
α j∈Θn

En,kn, j(z)

converges normally in C and hence represents an entire function with exactly the zeros αn

of order on (cf. [R1, p. 8]). To show that the product also converges in E it is by Theorem 3.1
sufficient to show that fN (z) :=

∏N
n=0

∏
α j∈Θn

En,kn, j(z) is bounded in the norms Ml for all

l ∈ N0. We deal the case l = 0. Since M0 is submultiplicative we get

M0( fN ) ≤
N∏

n=0

∏
α j∈Θn

M0(En,kn, j) ≤
N∏

n=0

∏
α j∈Θn

exp
(
max
z∈A
εn,kn (|z|)

)

≤ exp

(
1

2

N∑
n=0

cn exp(−rkn
n+1)

)
.

(2)

(Recall A ∩ D = ∅.) For large n clearly exp(−rkn
n+1) ≤ (1/2)kn and the series on the right

converges. For l > 0 first note that since En,kn, j ∼ 1 we have fN ∼ 1. Thus the norms can
be expressed by

Ml( fN ) = sup
z∈A
|z|l | fN (z)− 1|

= sup
z∈A
|z|l
∣∣∣exp

( N∑
n=0

∑
α j∈Θn

gn,kn, j(z) + log(z − α j)
)
− 1
∣∣∣.(3)
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By enlarging kn if needed we can assume
∑∞

n=0 cn exp(−rkn
n+1) ≤ 1. Then

∣∣∣ N∑
n=0

∑
α j∈Θn

gn,kn, j(z) + log(z − α j)
∣∣∣ ≤ 1

2

N∑
n=0

cn exp(−rkn
n+1) ≤

1

2
.

Using again |ew − 1| ≤ 2|w| for |w| ≤ 1/2 we obtain from (3) for z ∈ A

Ml( fN ) ≤ 2 sup
z∈A
|z|l
∣∣∣ N∑

n=0

∑
α j∈Θn

gn,kn, j(z) + log(z − α j)
∣∣∣

≤ sup
z∈A

N∑
n=0

cn|z|
l exp(−|z|1/3rkn

n+1).

(4)

It is elementary to show that for a constant c > 0 the function t l exp(−ct1/3) takes its
maximum on the positive reals in t = (3l/c)3. Hence

Ml( fN ) ≤
N∑

n=0

cn

(
3l

rkn
n+1

)3l

exp(−3l) ≤ (3l)3l
N∑

n=0

cnr−3lkn
n+1 .(5)

Enlarging kn if needed the last series converges hence fN converges in E. Since fN ∼ 1 it
follows f ∼ 1. The proof is complete.

Because of the importance of asymptotic values in the theory of entire functions we state
the following immediate corollary.

Corollary 3.7 Let γ be a Jordan path in C going to∞ and let αn be a complex sequence going
to∞ non of the αn lying on γ. Then there exists an entire function f having exactly the zeros
αn (with prescribed order) and f → a on γ for any given a ∈ C.

Proof Set A := γ. If a 6= 0 then multiply the function constructed in Theorem 3.6
by a. For the case a = 0 we show the existence of f1 ∈ E with f ∼ z−1 having no
finite zero. W.l.o.g. we assume 0 /∈ A. It is possible to define a branch of log(z) on A
which is holomorphic in a neighbourhood of A. By Arakelyan’s approximation theorem
it is possible to construct an entire function g such that |g(z) + log(z)| ≤ exp(−|z|1/3)
for all z ∈ A. Set f1 := eg . Clearly f1 has no finite zero. Further it holds | f1(z)| =
|exp

(
g(z) + log(z)

)
1
z | ≤ exp

(
exp(−|z|1/3)

)
1
|z| → 0 as z → ∞ in A. The second coefficient

is determined by z f1(z) = exp
(
g(z)+log(z)

)
→ 1 since g(z)+log(z)→ 0 in A. For n ≥ 2 we

get zn
(

f1(z)−z−1
)
= zn−1

(
exp
(
g(z)+log(z)

)
−1
)
= zn−1

(
exp
(
O(z−n)

)
−1
)
= O(z−1).

Hence all coefficients in the asymptotic expansion of f1 with index greater than 1 are zero.
Now choose f2 with the zeros αn and f2 ∼ 1. Set f := f1 f2.

Another consequence is:

Corollary 3.8 Let A be an Arakelyan set and αn, βn be admissible sequences. Then there
exists a function f meromorphic in the plane having exactly the zeros αn and poles βn (both
with prescribed order) and f ∼ 1 in A.
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Proof Take the quotient of two suitable functions constructed in Theorem 3.6.

We are now in the position to construct meromorphic functions with prescribed asymp-
totic expansion, zeros and poles. We will use an existence theorem in [V, Proposition 10]
which is a generalization of a theorem of Ritt (see [R1, p. 299]). We formulate it in a way
which fits to our situation.

Theorem 3.9 Let K be a continuum in Ĉ containing∞ such that Ĉ \ K is unbounded in C.
Then for every formal power series

∑∞
ν=0 aνz−ν there exists a function f holomorphic on Ĉ\K

such that f ∼
∑∞
ν=0 aνz−ν in Ĉ \ K.

Theorem 3.10 Let A be an Arakelyan set. For every formal series
∑∞
ν=0 aνz−ν there exists an

entire function f such that f ∼
∑∞
ν=0 aνz−ν in A.

Proof Let z0 be a finite point in Ac. Since A is an Arakelyan set there exists a Jordan path γ
connecting z0 and∞ in Ac. According to Theorem 3.9 there exists f1 holomorphic on Ĉ\γ
with f1 ∼

∑∞
ν=0 aνz−ν in A. Now Arakelyan’s approximation theorem gives the existence

of an entire function f with | f1(z) − f (z)| ≤ exp(−|z|1/3) on A. This implies f1 − f ∼ 0
in A which shows the assertion.

Multiplying the function from Theorem 3.10 with a suitable function from Corollary 3.8
we obtain:

Theorem 3.11 Let A be an Arakelyan set. For admissible sequences αn, βn and every formal
power series

∑
anz−n there exists f meromorphic in the plane with exactly the zeros αn and

poles βn such that f ∼
∑

anz−n in A.

4 A Mittag-Leffler Type Construction

We now construct meromorphic functions with prescribed principal parts outside A and
asymptotic expansion in A. This can be done without any explicit construction: Let f1 be
a Mittag-Leffler series with prescribed principal parts and f2 an entire function such that
f := f1 − f2 ∼ 0 in A. f2 can easily be constructed with Arakelyan’s Theorem 3.5. The
reason why we construct such a function f explicitely are inequalities (6) and (7). They
give estimations of Mk( f ) which we will use in section 5.

Theorem 4.1 Let A be an Arakelyan set and αn be an admissible sequence. For every n let hn

be a principal part with pole at αn. Then there exists a function f that is meromorphic in C
with exactly the principal parts hn and f ∼ 0 in A.

Proof We use the same notation as in the proof of Theorem 3.6 and again we can assume
A ∩ D = ∅. For every j ∈ N choose an entire function gn,k, j such that

|h j(z)− gn,k, j(z)| ≤ εn,k(|z|)
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for z ∈ A where

εn,k(t) := min

{(
1

2

)k

, exp(−t1/3rk
n+1)

}
.

It follows that h j − gn,k, j ∼ 0 in A. Now consider z ∈ Dl:

∑
n≥l

∑
α j∈Θn

|h j(z)− gn,kn, j(z)| ≤
∞∑
n=l

cn

(
1

2

)kn

<∞

for suitable kn. Thus the series

f (z) :=
∞∑

n=1

∑
α j∈Θn

(
h j(z)− gn,kn, j(z)

)

converges compactly in C \ {α j | j ∈ N} to a meromorphic function with exactly the
principal parts hn.

As in the proof of Theorem 3.6 it is left to show that the sequence

fN (z) :=
N∑

n=1

∑
α j∈Θn

(
h j(z)− gn,kn, j(z)

)

is bounded in the norms Ml. For l = 0 we get

M0( fN ) ≤
N∑

n=1

∑
α j∈Θn

exp(−rkn
n+1) <∞.(6)

Since h j − gn,k, j ∼ 0 in A it follows fN ∼ 0. Hence for l > 0:

Ml( fN ) ≤ sup
z∈A
|z|l

N∑
n=1

∑
α j∈Θn

exp(−|z|1/3rkn
n+1).(7)

Now the rest follows from the argumentation after (4).

With this we can prove analogues of the usual conclusions from the Weierstraß product
theorem and Mittag-Leffler’s partial fraction theorem:

Corollary 4.2 Let A be an Arakelyan set and αn be an admissible sequence. Set

Rn(z) :=

qn∑
ν=pn

a(n)
ν (z − αn)ν

with integers pn ≤ qn. Then there exists a function f meromorphic in the plane with poles
only at the points αn such that the first terms of the Laurent expansions of f at αn coincide
with Rn and such that f ∼ 0 in A.
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Proof The proof is virtually the same as in the classical case: First Theorem 3.6 gives the
existence of an entire function f1 with zeros exactly at the points αn of order kn > qn and
f1 ∼ 1 in A. Now let gn be the principal part of the function Rn

f1
at αn, i.e., Rn

f1
= gn + Pn

locally at αn with Pn holomorphic at αn. According to Theorem 4.1 there exists a function
g meromorphic in C with poles only in αn and principal part gn at αn such that g ∼ 0 in A.
Hence locally g = gn + Qn with Qn holomorphic at αn. Set f := f1g. In a neighbourhood
of αn it follows

f = f1(gn + Qn) = f1

(
Rn

f1
+ Qn − Pn

)
= Rn + f1(Qn − Pn).

Clearly f1(Qn−Pn) is holomorphic at αn with a zero of order at least kn. Hence the Laurent
expansion begins with Rn. Further from f1 ∼ 1 and g ∼ 0 it follows f ∼ 0.

Corollary 4.3 Let A be an Arakelyan set and αn be an admissible sequence. Further let an

be a complex sequence. Then there exists an entire function f with f (αn) = an for all n and
f ∼ 0 in A.

5 Some Approximation Theorems

So far we were only concerned with qualitative statements like f ∼ 1, i.e., we did not
determine the constants occuring in the O-terms of Definition 2.1. In order to prove ap-
proximation theorems we need to control the behaviour of the functions constructed in
Sections 3 and 4 also at finite points.

Lemma 5.1 Let A be an Arakelyan set and αn be an admissible sequence. Then the function
constructed in Theorem 3.6 can be chosen such that for given ε > 0 and n ∈ N we have
M0( f ) ≤ 1 + ε and Mk( f ) ≤ ε for k = 1, . . . , n.

Proof Under the assumption A∩D = ∅ this follows directly from inequalities (2) and (5)
by enlarging kn. Now simple transformations show the general case.

We can now prove approximation theorems where the approximating function has pre-
scribed zeros and poles outside the set of approximation. Unfortunately we have to impose
growth restrictions on the functions to be approximated. It would be interesting to know
whether condition (8) can be dropped.

Theorem 5.2 Let A be an Arakelyan set and g be continuous on A and holomorphic in A◦

such that for some k ∈ N it holds

|g(z)| ≤ C|z|k(8)

for z ∈ A. Then for all ε > 0 and n ∈ N there exists an entire function f having no zeros
outside A such that

| f (z)− g(z)| ≤ ε|z|−n

for all z ∈ A.
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Proof W.l.o.g. we assume A ∩ D = ∅. By Arakelyan’s Theorem 3.5 there exists an entire
function h with |h(z) − g(z)| ≤ η exp(−|z|1/3) for z ∈ A and we choose η > 0 such
that η exp(−|z|1/3) ≤ ε

2 |z|
−n. Now according to Theorem 3.6 we can construct an entire

function f1 having exactly the same zeros as h outside A (and no other zeros) with the
same multiplicity and f1 ∼ 1. Then f := h/ f1 is entire and zero-free outside A. Since g
satisfies (8) we deduce that h satisfies (8) with some constant C1 > C . Set K := max{C1, 1}.
It follows for z ∈ A

| f (z)− g(z)| =

∣∣∣∣h(z)

(
1

f1(z)
− 1

)
+ h(z)− g(z)

∣∣∣∣
≤

∣∣∣∣h(z)
f1(z)− 1

f1(z)

∣∣∣∣ + η exp(−|z|1/3)

≤ K|z|k
1

minz∈A | f1(z)|
Mn+k( f1)|z|−(n+k) +

ε

2
|z|−n

= K
1

minz∈A | f1(z)|
Mn+k( f1)|z|−n +

ε

2
|z|−n.

Set δ := ε/(2K + ε). According to Lemma 5.1 we can choose f1 such that Mn+k( f1) =
supz∈A |z|

n+k| f1(z)− 1| ≤ δ. This shows in particular minz∈A | f1(z)| ≥ 1− δ. It follows

K
1

minz∈A | f1(z)|
Mn+k( f1) ≤ K

1

1− δ
δ =
ε

2

which shows the assertion.

Theorem 5.3 Let A be an Arakelyan set and αν be an admissible sequence. Let oν be a
sequence in N and g be a continuous function on A that is holomorphic in A◦ and such that for
some k ∈ N

|g(z)| ≤ C|z|k

for z ∈ A. Then for all ε > 0 and n ∈ N there exists an entire function f with exactly the zeros
αν of order oν such that

| f (z)− g(z)| ≤ ε|z|−n

for z ∈ A.

Proof Theorem 5.2 shows the existence of an entire function f1 that has no zeros outside
A with

| f1(z)− g(z)| ≤
ε

2
|z|−n

for z ∈ A. Further from Theorem 3.6 we get an entire function f2 having exactly the zeros
αν of order oν with f2 ∼ 1 in A. Set f := f1 f2. With the notation of the foregoing proof it
follows for z ∈ A:

| f (z)− g(z)| ≤ | f1(z)
(

f2(z)− 1
)
| + | f1(z)− g(z)|

≤ C1|z|
kMn+k( f2)|z|−(n+k) +

ε

2
|z|−n.

Choosing f2 such that Mn+k( f2) ≤ ε
2C1

(Lemma 5.1) shows the assertion.
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For our last theorem we need the following lemma which is analoguous to Lemma 5.1.

Lemma 5.4 The functions f constructed in Theorem 4.1 and Corollary 4.2 can be chosen such
that for all ε > 0 and n ∈ N we have Mk( f ) ≤ ε for k = 0, . . . , n.

Proof For the function in Theorem 4.1 this follows from (6) and (7). The function f
from the proof of Corollary 4.2 was defined as a product f = f1g. Now f1 was constructed
by Theorem 3.6. Therefore f1 can be chosen such that Mk( f1) ≤ 2 for k = 0, . . . , n by
Lemma 5.1. The function g comes from Theorem 4.1 and can be chosen such that Mk(g) ≤
ε

2n for k = 0, . . . , n. This follows again from (6) and (7). The estimation Mk( f · g) ≤∑k
κ=0 Mκ( f )Mk−κ(g) of Lemma 2.4 shows immediately Mk( f ) ≤ ε for k = 0, . . . , n.

Using Lemma 5.4 we can prove an approximation theorem where the approximating
function solves an interpolation problem outside A. (The problem of approximation and
simultaneous interpolation inside A was treated, e.g., in [GH].)

Here the growth restriction (8) can be omitted.

Theorem 5.5 Let A be an Arakelyan set and αn be an admissible sequence. Further let g be a
continuous function on A that is holomorphic in A◦. Set

Rn(z) :=

qn∑
ν=pn

a(n)
ν (z − αn)ν

with integers pn ≤ qn. Then for all ε > 0, k ∈ N there exists a function f meromorphic in the
plane with poles only at the points αn such that the first terms of the Laurent expansions of f
at αn coincide with Rn and such that

| f (z)− g(z)| ≤ ε|z|−k

in A.

Proof By Arakelyan’s approximation theorem we have an entire function f1 such that
| f1(z)−g(z)| ≤ ε

2 |z|
−k on A. Let Pn(z) :=

∑qn

ν=0 c(n)
ν (z−αn)ν be the first terms in the Taylor

expansion of f1 atαn and set Sn := Rn−Pn. According to Theorem 4.1 and Lemma 5.4 there
exists a meromorphic function f2 with prescribed first terms Sn in the Laurent expansions
around the points αn and | f2(z)| ≤ ε

2 |z|
−k on A. Set f := f1 + f2 and the rest follows easily.

Corollary 5.6 Let A be an Arakelyan set and αn be an admissible sequence. Further let an be
a complex sequence and g be a continuous function on A that is holomorphic in A◦. Then for
all ε > 0, k ∈ N there exists an entire function f such that f (αn) = an and

| f (z)− g(z)| ≤ ε|z|−k

in A.
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