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ZERO DIVISORS AND IDEMPOTENTS 
IN GROUP RINGS 

GERALD H. CLIFF 

1. Introduction. We consider the following problem: If KG is the 
group ring of a torsion free group over a field K, show that KG has no 
divisors of zero. At characteristic zero, major progress was made by Brown 
[2], who solved the problem for G abelian-by-finite, and then by Farkas 
and Snider [4], who considered G polycyclic-by-finite. Here we present a 
solution at nonzero characteristic for polycyclic-by-finite groups. We 
also show that if K has characteristic p > 0 and G is polycyclic-by-finite 
with only ^-torsion, then KG has no idempotents other than 0 or 1. 
Finally we show that if R is a commutative ring of nonzero characteristic 
without nontrivial idempotents and G is polycyclic-by-finite such that no 
element different from 1 in G has order invertible in R, then RG has no 
nontrivial idempotents. This is proved at characteristic zero in [3]. 

We denote by A(G) the augmentation ideal of a group ring RG. We 
denote conjugate elements g and hoi G by g ~ h, and for a = J2agg £ RG 
and g Ç G we write 

We denote by Md(RG) the ring of d by d matrices with entries in RG, and 
for a £ Md(RG), we write tr a for the sum of the diagonal entries of a. 

We cite [6] as a general reference. 

2. Idempotents. For a ring A, we set 

[A, A] = {J^iafii - bidi): ai} bt € A}. 

If A has prime characteristic p, it is well-known that if ai, a2, . . . , am G A 
then 

Œ><)p = 2>i" + 0 
where /3 Ç [^4,-4]. We need the following analogue at characteristic pn. 

LEMMA 1. Let A be a ring of prime-power characteristic pn. If k is an 
integer, k ^ n} and au a2, . . . , am G A, then for s = pn~l we have 

(Zai)pk = fl + X(ailat2...auy-n+1 
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where the sum on the right is over all s-tuples (iu i2,. . . , ia) with 1 ^ ij ^ m, 
and where (3 Ç [A, A]. 

Proof. Set t = pk. Then 

Œai)pk = 2><ia<2 • • • a-< 

where the sum on the right is over all /-tuples (i\, ii, . . . , it) with 
1 ^ ij, :g m. Let a(atlai2 . . . ait) — ai2au . . . auaix\ then if o-(x) = y, 
we have x — y Ç [yl, ̂ 4]. If x is not of the form {aiYai2 . . . aia)

pk~n+1, 
then 

o»n-l(x) j* x, 

and so the cr-orbit containing x has a multiple of pn members, each 
congruent to x modulo [A, A]. This completes the proof. 

The following result is proved, at characteristic p, by Formanek 
[5, Lemmas 6 and 7]. 

LEMMA 2. Let R be a commutative ring of prime-power characteristic pn. 
let G be a group with the property that if x £ G has infinite order and 
x ~ xp% for some i, then i = 0. Let e = 2^?=i atgi be an idempotent 
element of RG. If x has infinite or p-power order, then txe = 0. 

Proof. Let s = pn~~l. Then by Lemma 1, we have, for any integer k > n, 

e = e*
k = (3 + Ziaua* • • • ai.)*"1*1 (gag* • • • S«.)**"n+\ 

where fi £ [RG, RG], and the sum is over all s-tuples (it, ii, . . . , is) with 
1 ^ i0 <; m. Pick k sufficiently large so that no (gngi2 . . . gis)

pk~n+1 

is conjugate to x. Then since tx$ = 0, the proof is complete. 

We define, for an ideal / of a ring, 

r = n r and rn+1 = (ry. 
n - l 

LEMMA 3 ([7, 1.3.15]). Let H be a poly-infinite-cyclic group with Hirsch 
number n. Then for a field K, we have A(H)"n = 0. 

Proof. Pick Hi <\ H, with H/Hi infinite cyclic, and Hi poly-infinite-
cyclic. Then &(H/HiY = 0. Now use induction on n. 

We can now prove our result on idempotents. This is proved, at 
characteristic 0, by Formanek [5, Theorem 1]. 

THEOREM 1. Let G be a polycyclic-by-finite group with only p-torsion and 
let K be afield of characteristic p. If e Ç KG and e2 = e, then e is 0 or 1. 

Proof. We claim that it suffices to prove the theorem for finite K. For 
if e = 2 ? = i dfgi with each at ^ 0, then [6, 2.2.6] there exists a valua-
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tion ring A in K containing all the af and a homomorphism <f> from A 
into an algebraic closure of GF(p) such that each <\>{at) 7^ 0. Then 
Yl4>(ai)gi is a n idempotent in the group ring of G over the finite field 
generated over GF(p) by all the <£(af). We now assume that K is finite. 
There exists a discrete valuation ring R of characteristic zero, unramified 
over the p-locsl integers Z (p), such that R/pR = K [8, II, Theorem 3]. 

We have e(l — e) = 0, so we may assume that the augmentation of e 
is 0, that is, e G A (G). We may lift e to an idempotent en of (R/pnR)G 
by [6, 2.3.7], since (pR/pnR)G is a nilpotent ideal of (R/pnR)G. We 
choose e„ so that en+i is a lifting of en, for n > 1. Let i?" be a normal 
poly-infinite-cyclic subgroup of G of finite index, and let en denote the 
image of en in (R/pnR)(G/H). Then if en = X>j>, with ag G P / W 
g Ç G, we have 

ÇÇLH h 

where the sum on the right is over certain h G H. By Lemma 2, then = 0 
if h 7^ 1, whence / ^ = /i^n. Now for g G G, g T6- 1, we have ^ew = 0, 
and since the augmentation of £n is 0, it follows that t\en — t\ën = 0. Let 

e = lim ën e l i m (R/pnR)(G/H). 

Then tie = 0, and since lim (R/pnR) is an integral domain of charac
teristic 0, and G/H is finite, this implies that e = 0. Thus e is in the 
kernel of KG —> K(G/H), namely KGA(H). However for large n, 

e e (KGA(H))»n = KG(A(HYn) 

which is 0 by Lemma 3. This completes the proof. 

3. Euler characteristics. We state some elementary facts about 
Euler characteristics of projective modules over group rings. Proofs can 
be found in Chapter 13, § 4 of [6], and in [1]. 

Let R be a commutative ring and let P be a finitely generated pro
jective i^G-module. Choose a projective module Q such that P © Q 
is free over RG, of finite rank, say d. Let a: P ® Q —> P © Q be the 
projection onto P, and let e Ç Md(RG) be a matrix which represents a 
with respect to some ordered basis of P © Q. Thus e2 = e. Define the 
Euler characteristic of P, denoted x(P), to be /i(tr e) ; this is independent 
of the choice of Q and of e. If H is a subgroup of G of finite index, then 
the restriction of P to RH, denoted by PH, is finitely generated and pro
jective over RH, and 

X(PH) = [G:H]X(P). 

If G is finite and R is local, then P i is free, and x(F\) is the rank of 
Pi over R. 

https://doi.org/10.4153/CJM-1980-046-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-046-3


GROUP RINGS 599 

4. Zero divisors. We need a generalization of Lemma 2, proved at 
characteristic p by Farkas-Snider [4] (see [6], Lemma 13.4.15). 

LEMMA 4. Let R and G be as in Lemma 2. Let a = (a(i,j)) be an 
idempotent element of Md(RG). If x has infinite or p-power order, then 

tx(tra) = 0. 

Proof. Let 5 = pn~l and let 

X = U supp{a(ii, i2)a(i2, i3) . . . a( i„ ii)} 

where the union is over all s-tuples (iu i2, . . . , is) with 1 ^ -̂ ^ d. Let 

Y= {gjg2.. .g.: ^ a . l ^ â 5}, 

so F is a finite subset of G. It follows from the hypothesis on G that 
x ^ ypt for some 3/ G Y for only finitely many integers t. Let /0 be the 
largest such /, and let k be an integer such that k — 2n + 2 > /0-

Let {ê -} be the matrix units of Md(RG), so that a =• ^2ijOù(i, j)eij. 
From Lemma 1, we have 

a=0^=p + Z(«(ii,ji)a(i2,J2) • • • *(is Js))
pk-n+1 (eiUl... et.;.)*-»*1, 

where the sum is over all s-tuples of pairs ((ii,ji), . . . , (is, j j ) , with 
1 g ih,jh ^ d, and p e [Md(i?G), Md(i?G)]. Using the facts that tr 0 = 0 
and ei:jeki = bjken where djk is the Kronecker delta, we have 

tra = y£(a(iui2)a(i21iz) • . . a(i. , ii))p*"n+1 

where the sum is over all ^-tuples (ix, . . . , is) with 1 ^ ij ^ d. Con
sider a typical term in this sum, and suppose that 

m 

a (ii, i2)a(i2, is) . • . afo» h) = Z) a ^ ^ £ RG-

Then 

(Za^y)**""+1 = 7 + £ K « * • • • «y.)**- i ,+,(f*g* • • • ëu)pk'in+\ 

y G [i£G, -KG], and the sum is over all s-tuples (71,72, • . . ,js) with 
1 ^jiû m. By our choice of k, we know that (g^g^ . . . gjs)

pk~2n+2 

is never conjugate to x, and since ^(7) = 0, we conclude that tx(tr a) = 0. 

THEOREM 2. Le/ G be a torsion free polycyclic-by-finite group and let K 
be afield of characteristic p > 0. Then KG has no zero divisors. 

Proof. As in the proof of Theorem 1, we may assume that K is finite, 
and that K = R/pR where R is an integral domain of characteristic 0. 
Fix an integer n > 1 and set 5 = R/pnR. 
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Now Theorem 13.4.11 of [6] (which is a version of Theorem 1 of 
Farkas-Snider [4]) states the following: KG has no zero divisors provided 
that for every finitely generated projective i£G-module P , and any poly-
infinite-cyclic normal subgroup H of G of finite index, we have that 
[G:H] divides dimK(PH/A(H)PH). Accordingly, let P be a finitely 
generated projective i£G-module, and let e 6 Md(KG) be an idempotent 
matrix such that x(P) = h(tv e). Since pMd(SG) is a nilpotent ideal of 
Md(SG),and 

Md(SG)/pMd(SG) ~ Md(SG/pSG) ~ Md(KG) 

then [6, 2.3.7] e may be lifted to an idempotent matrix e' £ Md(SG). 
If 

TT: M d (SG)-+M d (XG) 

is the extension of the natural map 5 —» 5 /^5 = i£, then 7r(V) = e. Let 
P' be the projective 5G-module given by the kernel of 

1 - e'\ (SG)d-+ (SG)d, 

so x(P ' ) = h(tr e'). Let H be a normal poly-infinite-cyclic subgroup of 
G of finite index; then 

(1) x ( i V ) = [G: ff]xOP')-

We claim that X(P'/HG)P') = x(-?')• Let tr e' = 5>,g € SG. Then 

X (P ' /A(G)P') = 2«» = *i + Ex.- £ . - « « . 

for certain x4 Ç G. Since G satisfies the hypothesis of Lemma 4, we 
deduce that ^ , ^ I t ae = 0 for each xf, and therefore 

I X = o, = x(P'), 
and our claim is valid. By the same argument, we have 

X(PB'/HH)PB') = x( iV) . 

Therefore (1) becomes 

(2) X(PB'/A(H)PH') = [G:H]X(P'/A(G)P'). 

Now PH' / A(H)PH
r is a finitely generated projective 5-module, and is 

therefore free since 5 is local. Moreover, 

X(PH'/A(H)PH') = r a n k s ( i V / A ( i ï ) i V ) = d i r M i V A ( 2 ? ) P H ) 

and 

X(P'/A(G)P') = rank s (P7A(G)P' ) = dim*(P/A(G)P) 

where the right sides of these equations are interpreted as elements of 
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S. We then have, from (2), 

dimK(PH/A(H)PH) s [G: H] dimK P/A(G)P (mod p») 

and since n was arbitrary, this congruence may be replaced by an equality. 
The theorem now follows from Theorem 1 of [4]. 

5. Idempotents again. We remark that the proof of Theorem 2 may 
be used to give an alternate proof of Theorem 1. For if e G KG is an 
idempotent in A(G), we have, with P = KGe, 

dimK((KGe)H/A(H)(KGe)H) = [G: H]dimK(KGe/A(G)KGe). 

Since e £ A (G), the right side is 0; hence so is the left side, and 
e Ç KGA(H), which implies that e — 0 from Lemma 3. 

Our final result was proved at characteristic 0 in [3, Theorem 2]. 

THEOREM 3. Let Rbe a commutative ring of characteristic n > 0, having 
no idempotent other than 0 or 1. Let G be a polycyclic-by-finite group, 
having no element ^ 1 whose order is a unit of R. Then RG has no nontrivial 
idempotent. 

Proof. Let e £ RG be a nontrivial idempotent. Since R has no non-
trivial idempotent, its characteristic must be a ^-power for some prime 
p. We may factor out the nil radical of R, and thus assume that R has 
no nilpotent element; in particular, R has characteristic p. We may 
further assume that R is generated (as a ring) by the finitely many 
coefficients of e Ç RG, so R is Noetherian, and 

m 

RClI Ft, 

a direct product of fields of characteristic p. Then RG C TlFtG, and by 
Theorem 1, we have 

e = (1, 1,. . . , 1,0, 0, . . . ,0) 6 UFtG. 

Let / be the ideal of R generated by the coefficients of e. Then I2 — I, so 

n r = /; 
by Krull's Theorem, [9, p. 216, Theorem 12], there exists x G I with 
1(1 — x) = 0. Then x2 = x, so x is 0 or 1. Since e 9e 0, then x ^ 0 . 
Therefore x = 1 so / = i?, which is impossible, since 

e = (1, ! , . . . , ! , 0, . . . , 0 ) ^ ( 1 , 1 , . . . , ! , . . . , ! ) . 

This completes the proof. 
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