The hyper-archimedean kernel sequence of a lattice-ordered group

Jorge Martinez

The hyper-archimedean kernel $\operatorname{Ar}(G)$ of a lattice-ordered group (hence forth Z-group) is the largest hyper-archimedean convex Z-subgroup of the Z-group G. One defines $A r^{\sigma}(G)$, for an ordinal σ as $\bigcup_{\alpha<\sigma} A r^{\alpha}(G)$ if σ is a limit ordinal, and as the unique \quad-ideal with the property that

$$
A r^{\sigma}(G) / A r^{\sigma-1}(G)=\operatorname{Ar}\left(G / A r^{\sigma-1}(G)\right)
$$

otherwise. The resulting "Loewy"-like sequence of characteristic Z-ideals, $\operatorname{Ar}(G) \subseteq \operatorname{Ar}^{2}(G) \subseteq \ldots \subseteq \operatorname{Ar}^{\sigma}(G) \subseteq \ldots$, is called the hyper-archimedean kernel sequence. The first result of this note says that each $\operatorname{Ar}^{\sigma}(G) \subseteq \operatorname{Ar}(G)^{\prime \prime}$.

Most of the paper concentrates on archimedean Z-groups; in $^{\text {-g }}$ particular, the hyper-archimedean kernels are identified for: $D(X)$, where X is a Stone space, a large class of free products of abelian $Z_{\text {-groups, }}$ and certain $Z_{\text {-subrings of a product of }}$ real groups.

It is shown that even for archimedean 2 -groups the hyperarchimedean kernel sequence may proceed past $A / i)^{\prime}$.

1. Introduction

The purpose of this note is to derive structure of an archimedean

Received 19 December 1973.

Z-group using the notion of the hyper-archimedean kernel sequence defined in [8]. Our general terminology and notation is standard, as in [3]; the special notions to be discussed here are in the notation of [8].

An Z-group H is hyper-archimedean if it is archimedean and every Z-homomorphic image of H is archimedean. The following theorem encapsules the basic facts about the structure of hyper-archimedean Z-groups. Many individuals have contributed to this well known theorem; for a fairly complete history see Theorem 1.1 in [5].

THEOREM 1.1. For an l-group G the following are equivalent:
(1) G is hyper-archimedean;
(2) every proper prime subgroup of G is maximal, and hence minimal;
(3) the regular subgroups of G form a trivially ordered set;
(4) $G=G(g) \boxplus g^{\prime}$, for each $g \in G$;
(5) if $0<a, b \in G$ then $[a-(m b \wedge a)] \wedge b=0$, for some positive integer m;
(6) if $0<a, b \in G$ then $a \wedge n b=a \wedge(n+1) b$, for some positive integer n;
(7) G is Z-isomorphic to an Z-subgroup G^{\prime} of $\prod_{T\left\{R_{i} \mid i \in I\right\}}$ so that for all $0<x, y \in G^{\prime}$, there exists an $n>0$ such that $n x_{i}>y_{i}$ whenever $x_{i}>0 . \quad\left(\mathrm{R}_{i}=\mathrm{R}\right.$, the additive group of reals with the usual ordering, for each $i \in I$.

NOTES. (a) With reference to the notation in (4), if $x \in G, \hat{u}(x)$
 family of \mathcal{Z}-groups then $\left.G=\mathbb{T}^{\prime} G_{\lambda} \mid \lambda \in \Lambda\right\}$ is the direct sum of the G_{λ} with coordinatewise ordering.

If x is a subset of an \quad-group G,

$$
X^{\prime}=\{g \in G| | g|\wedge| x \mid=0, \text { for all } x \in X\}
$$

is the pozar of $X ; g^{\prime} \equiv\{g\}^{\prime}=G(g)^{\prime}$.
(b) It should be noted that Conrad calls hyper-archimedean Z-groups
epi-archimedean; see [5].
If G is an l-group there is a convex l-subgroup $\operatorname{Ar}(G)$ which is hyper-archimedean and contains every hyper-archimedean convex l-subgroup of G. Ar (G) is characteristic; that is, invariant under all Z-automorphisms of G, and $0<g \in \operatorname{Ar}(G)$ if and only if all its values are minimal prime subgroups. Further $\operatorname{Ar}(G)$ is the intersection of all non-minimal primes of G. We call $A r(G)$ the hyper-archimedean kernel of G, henceforth to be abbreviated h.a. kernel. It was first introduced and characterized as indicated in the lines of this paragraph in [8]. by the author for representable 2 -groups; then in [5] Conrad removed the author's assumption of representability.

If σ is an ordinal, define $A r^{\sigma}(G)$ as follows:
(a) $\operatorname{Ar}^{\sigma}(G) / A r^{\sigma-1}(G)=\operatorname{Ar}\left(G / A r^{\sigma-1}(G)\right)$, if σ is not a limit ordinal;
(b) $A r^{\sigma}(G)=\underset{\alpha<\sigma}{\cup} A r^{\alpha}(G)$, otherwise.

Then $A r(G) \subseteq A r^{2}(G) \subseteq \ldots \subseteq A^{\sigma}(G) \subseteq \ldots$, and all entries in this sequence are characteristic l-ideals. This is the hyper-archimedean kernel sequence (henceforth h.a. kernel sequence).

The following was not defined in [8]: by a standard cardinality argument $A^{\tau}(G)=A r^{\tau+1}(G)$ for a suitable large ordinal τ. We define $\operatorname{Ar}^{*}(G)={\underset{\sigma}{0}}^{\operatorname{Ar}}{ }^{\sigma}(G)$; thus $\operatorname{Ar*}(G)=\operatorname{Ar}^{\tau}(G)$ for some ordinal τ.

THEOREM 1.2. For any \quad-group $G, \operatorname{Ar} *(G) \subseteq \operatorname{Ar}(G)^{\prime \prime}$.
Proof. If suffices to show that if $\operatorname{Ar}^{\sigma}(G) \subseteq \operatorname{Ar}(G) "$ then $\operatorname{Ar}^{\sigma+1}(G) \subseteq \operatorname{Ar}(G)^{\prime \prime}$. If $\operatorname{Ar}^{\sigma}(G) \subseteq \operatorname{Ar}(G)^{\prime \prime}$ then $\operatorname{Ar}^{\sigma}(G)^{\prime}=\operatorname{Ar}(G)^{\prime}$.

So suppose $0<x \in \operatorname{Ar}^{\sigma+1}(G) \cap \operatorname{Ar}(G)^{\prime}$; then the values of $x+\mathrm{Ar}^{\sigma}(G)$ are minimal prime subgroups of $G / A r^{\sigma}(G)$. Any such value is of the form $N / A r^{\sigma}(G)$ where N is a prime subgroup of G. Either N is itself a minimal prime of G, or else it contains a minimal prime subgroup
M of G, and then $M \not \pm \operatorname{Ar}^{\sigma}(G)$. We may then select $y \in \operatorname{Ar}^{\sigma}(G) M M$; by our assumption about $\sigma, x \wedge y=0$, and this is absurd.

Therefore each prime subgroup N of G so that $N / A r^{\sigma}(G)$ is a value of $x+A_{r}{ }^{\sigma}(G)$, is a minimal prime of G, proving that $x \in \operatorname{Ari}(G)$. 'This'is once again a contradiction. Hence $A r^{\sigma+1}(G) \cap \operatorname{Ar}(G)^{\prime}=0$; that is, $A^{\circ+1}(G) \subseteq \operatorname{Ar}(G)^{\prime \prime}$ as promised.
2. The h.a. kernel sequence applied to archimedean z-groups

The central question here is naturally: how long can the h.a. kernel sequence be? Obviously, if one makes no restrictions on the types of l-groups one wishes to consider the answer is: as long as one pleases. Simply specify an ordinal σ and then construct a long enough lexicographic product of copies of the reals.

So let us ask the question again for archimedean Z-groups. Let us in fact ask: if G is an archimedean Z-group, is $\quad \operatorname{Ar}^{*}(G)=\operatorname{Ar}(G)$? The answer is not, but most archimedean Z-groups one considers have, in this sense, atrivial hiati kernel sequence.

It is useful to start with the following characterization of $A(G)$.
LEMMA 2.1. Suppose G is a representable l-group; $0<x$ is in Ar(G) if and only if for each $0<\alpha \in G$ there is a positive integer n so that $x \wedge n a=x \wedge(n+1) \alpha$.

Proof. Suppose $0<x \in \operatorname{Ar}(G)$ and $0<a \in G ;$ then $x \wedge a$ is in Ar (G), so by Theorem l.1 (6), $x \wedge n(x \wedge a)=x \wedge(n+1)(x \wedge a)$, for a suitable positive integer n. Since $k(x \wedge a)=k x \wedge k a$ in a representable l-group for all $k \geq 1$, we get $x \wedge n(x \wedge a)=x \wedge n x \wedge n a=x \wedge n a$, so that $x \wedge n a=x \wedge(n+1) a$.

Conversely, if $x \wedge n a=x \wedge(n+1) a$; for all $0<a \in G$, and an appropriate. $n=n(\alpha)$, then $G(x)$ is hyper-archimedean by Theorem 1.l. Consequently, $x \in \operatorname{Ar}(G)$

COROLLARY 2.1.1. If G is representable, $\operatorname{Ar}(G)=\bigcap_{0<a}\left[G(a) \oplus a^{\prime}\right]$.
Proof. By our lemma, $0<x \in \operatorname{Ar}(G)$ if and only if whenever
$0<a \in G, x \wedge n a=x \wedge(n+1) a$, for a suitable n. This equation is valid if and only if $[x-(n a \wedge x)] \wedge a=0$; that is, if and only if $x-(n a \wedge x) \in a^{\prime}$. Since $n a \wedge x \in G(a)$, it is clear that $0<x \in \operatorname{AR}(G)$ if and only if $x \in G(a) \nexists^{\prime}$ for all $0<a \in G$.

Now let us have a look at a few examples.
(1) $G=\prod \prod\left\{R_{\lambda} \mid \lambda \in \Lambda\right\}$, where $R_{\lambda}=R$ for each $\lambda \in \Lambda$. From

Lerma 2.1 it is clear that $\operatorname{Ar}(G)=\Psi_{\lambda} R_{\lambda}$. Now we wish to identify
$\operatorname{Ar}^{2}(G)$, so we look at $\operatorname{Ar}(G / \operatorname{Ar}(G))$: if $0<x+\operatorname{Ar}(G) \in \operatorname{Ar}(G / \operatorname{Ar}(G))$ then each value of x is either a minimal prime of G or else properly contains a minimal prime $M \nsupseteq \operatorname{Ar}(G)$. However, each such minimal prime M is of the form $G_{\lambda}=\left\{g \in G \mid g_{\lambda}=0\right\}$, since M will be the value of an element of $\operatorname{Ar}(G)$. Thus M is maximal, giving us a contradiction. It follows that every value of x is a minimal prime, putting $\left.x \in A r^{\prime} G\right)$, again a contradiction. The conclusion is then $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$; that is, $\operatorname{Ar}^{2}(G)=\operatorname{Ar}(G)=\operatorname{Ar*}(G)$.
(2) $G=T \prod\left\{Z_{\lambda} \mid \lambda \in \Lambda\right\}$, where $Z_{\lambda}=Z$, the additive group of integers with the usual ordering. Again using Lemma 2.1 we can see that Ar(G) is the Z-ideal of bounded integral functions. That $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$ can be seen as follows. If $0<x+\operatorname{Ar}(G) \in \operatorname{Ar}(G / \operatorname{Ar}(G))$ then x is unbounded and - taking $x>0$ without loss of generality - we can find a sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots \in \Lambda$ such that the $x_{\lambda_{n}}$ diverge. Define $u \in G$ as follows: $u_{\lambda_{i}}$ is the largest integer $\leq \sqrt{x_{\lambda_{i}}}$, for all $i=1,2, \ldots$, and $u_{\lambda}=0$ otherwise; then $u \notin \operatorname{Ar}(G)$.

For each positive integer $m, x \wedge(m+1) u-x \wedge m u$ is unbounded: note that

$$
[x \wedge(m+1) u-x \wedge m u]_{\lambda_{i}}= \begin{cases}0 & , \text { if } m u_{\lambda_{i}} \geq x_{\lambda_{i}} ; \\ x_{\lambda_{i}}-m u_{\lambda_{i}} & , \text { if }(m+1) u_{\lambda_{i}} \geq x_{\lambda_{i}}>m u_{\lambda_{i}} ; \\ u_{\lambda_{i}} & , \text { if } x_{\lambda_{i}}>(m+1) u_{\lambda_{i}}\end{cases}
$$

For each m, there is an $i=1,2$, ... such that $(m+1)^{2}<x_{\lambda_{j}}$, for
all $j \geq i$. It is easy to see that this implies that $(m+1) u_{\lambda_{j}}<x_{\lambda_{j}}$, when $j \geq i$. It should now be clear that $x \wedge(m+1) u-x \wedge m u$ is indeed unbounded.

This is a contradiction, for according to Lemma 2.1 there is an $m>0$ so that $(x \wedge m u)+\operatorname{Ar}(G)=(x \wedge(m+1) u)+\operatorname{Ar}(G)$. We conclude therefore that $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$.

THEOREM 2.2. Let G be an l-subring of $\prod R_{\lambda}$ (with $R_{\lambda}=R$ for each $\lambda \in \Lambda$) consisting of bounded functions. Then $\operatorname{Ar}(G)$ is the subgroup generated by

$$
\begin{aligned}
T=\{0<g \in G \mid & \mathrm{g} \cdot \mathrm{l} \cdot \mathrm{~b} \cdot\left[g_{\lambda} \mid g_{\lambda}>0\right]>0, \\
& \text { and each positive element } h<g \text { also has this property }\} .
\end{aligned}
$$

Moreover, $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$.
Proof. From Lemma A in [3] it is clear that if $0<g \in T$ then $g \in \operatorname{Ar}(G)$. Conversely, suppose $0<g \in \operatorname{Ar}(G)$ but g.1.b. $\left[g_{\lambda} \mid g_{\lambda}>0\right]=0$; then we can find a sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$ in Λ such that $\lim _{n \rightarrow \infty} g_{\lambda_{n}}=0$. Let $s=g^{2}$; without any loss of generality we assume each $g_{\lambda_{i}}<1$. By Lemma 2.1 there is an $m>0$ so that $g \wedge m s=g \wedge(m+1) s$. For all but finitely $\operatorname{many} \quad \lambda_{i}, g_{\lambda_{i}}<1 /(m+1)$; thus $(m+1) s_{\lambda_{i}}=(m+1) g_{\lambda_{i}}^{2}<g_{\lambda_{i}}$. So $(g \wedge m s)_{\lambda_{i}}=m s_{\lambda_{i}}$ and $(g \wedge(m+1) s)_{\lambda_{i}}=(m+1)_{\lambda_{\lambda_{i}}}$, and then
$g \wedge m s<g \wedge(m+1) s$, a contradiction. Therefore, g.l.b. $\left[g_{\lambda} \mid g_{\lambda}>0\right]>0$, and clearly $g \in T$.

Suppose now by way of contradiction that $0<g+\operatorname{Ar}(G)$ in $\operatorname{Ar}(G / \operatorname{Ar}(G))$. Then either g.l.b. $\left[g_{\lambda} \mid g_{\lambda}>0\right]=0$ or some element below g has this property. Without loss of generality we take $g>0$ and g.l.b. $\left[g_{\lambda} \mid g_{\lambda}>0\right]=0$. We use the notation of the previous paragraph: $\lim _{n \rightarrow \infty} g_{\lambda_{n}}=0$. By setting $s=g^{2}$ once more, notice that for each $m>0$,
$(g \wedge(m+l) s-g \wedge m s)_{\lambda_{i}}=s_{\lambda_{i}}$ for all but finitely many λ_{i}. Since $\lim _{n \rightarrow \infty} s_{\lambda_{n}}=0$ we have that $g \wedge(m+1) s-g \wedge m s \notin \operatorname{Ar}(G) ;$ moreover $s k \operatorname{Ar}(G)$, hence $g \wedge(m+1) s+\operatorname{Ar}(G)>g \wedge m s+\operatorname{Ar}(G)$, for all $m>0$, contradicting the hypothesis that $g+\operatorname{Ar}(G) \in \operatorname{Ar}(G / \operatorname{Ar}(G))$. Plainly then $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$.

Let us continue with our examples.
(3) Suppose G is a free abelian Z-group on two or more generators; Bleier [1] has shown that G has no non-trivial characteristic Z-ideals. Since G is obviously not hyper-archimedean $\operatorname{Ar}(G)=0=\operatorname{Ar}^{*}(G)$.
(4) Let $G=C(X)$, the group of all real valued continuous functions on a compact, connected Hausdorff space X. It is a consequence of Theorem 2.2 that $\operatorname{Ar}(G)=0$; for if $0<g \in G$ and g.l.b. $[g(x) \mid g(x)>0]>0$ then $g(x)>0$, for all $x \in X$. To see this let $m=$ g.l.b. $[g(x) \mid g(x)>0]$ and $U=\{x \in X \mid g(x)<m\}$; then $U=\{x \in X \mid g(x)=0\}$, which implies that U is both open and closed. This is a contradiction unless U is void.

Now, if $0<g \in \operatorname{Ar}(G)$ we may assume without loss of generality that $g(x) \geq 1$ for all $x \in X$. Select two distinct points $a, b \in X$. By Urysohn's Lemma there is a continuous function $f \in G$ so that $f(X) \subseteq[0,1]$, and $f(a)=0$ while $f(b)=1.0<f \leq g$, and by our arguments of the previous paragraph g.l.b. $[f(x) \mid f(x)>0]=0$. This is a contradiction, and so $\operatorname{Ar}(G)=0$ as we had claimed.
(5) Let $G=Z \mathbb{Z}$, the free product as abelian Z-groups of two copies of Z. By Theorem 2.8 of [8], G is isomorphic to the Z-group of continuous functions on $[0,1]$ generated by $f(x)=x$ and $g(x)=1-x$. Applying Lemma 2.1 directly, $\operatorname{Ar}(G)=0$.

We shall return to this example shortly.
Next, we shall take a look at $D(X)$, the Z-group of almost finite continuous functions from a Stone space X into the extended reals. (Recall: A Stone space is a compact, Hausdorff, extremally disconnected space.) We need to define a crucial concept first: a point p in a topological space X is a p-point, if whenever f is a real valued continuous function on X and $f(p)=0$, then $f=0$ on a neighbourhood
of p. If f is a real valued continuous function on X, let $\operatorname{supp}(f)$ stand for the set $\{x \in X \mid f(x) \neq 0\}$.

THEOREM 2.3. Let X be a Stone space and $G=D(X)$. Then $\operatorname{Ar}(G)=\{f \in G \mid \operatorname{supp}(f)$ is closed and consists of p-points $\}$. $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$.

Proof. Suppose first that $0<f \in G$ and $\operatorname{supp}(f)$ is a closed set consisting of p-points. Let

$$
P_{y}=\{g \in G \mid g=0 \text { on a neighbourhood of } y\}
$$

with $y \in X$; by Proposition 3.1 in [2] these are precisely the minimal primes of G. So if $f \not k_{y}$ then $f(y)>0$, and y is a p-point, or else $f(y)=0$ but every neighbourhood of y contains a point of $\operatorname{supp}(f)$; that is, $y \in \overline{\operatorname{supp}(f)}$. This contradicts our hypothesis, and hence $f(y)>0$. Using Theorem 3.11 in [2], P_{y} is a maximal $l_{\text {-ideal }}$ and hence a value of f; clearly $f \in \operatorname{Ar}(G)$.

Conversely, suppose $0<f \in \operatorname{Ar}(G)$ yet $f(z)>0$ at the non p-point $z \in X$. Without loss of generality we may suppose $f(z) \geq 1$ since $\operatorname{Ar}(G)$ is a real subspace of G. Let $V=\{x \in X \mid f(x)>1 / 2\}$; then V is a neighbourhood of z. Since z is not a p-point there is a function $0<g \in G$ such that $g(z)=0$ yet each neighbourhood U of z contains a point s with $g(s)>0$.

Let $\quad V_{n}=\{x \in X \mid g(x)<1 / n\} \cap V ; V_{n}$ is a neighbourhood of z, so we may select an $s_{n} \in V_{n}$ such that $g\left(s_{n}\right)>0$. Then $\lim _{n \rightarrow \infty} g\left(s_{n}\right)=0$ while $f\left(a_{n}\right)>1 / 2$, for all $n=1,2, \ldots$. Since $f \in \operatorname{Ar}(G)$ there should be a positive integer k so that $f \wedge k g=f \wedge(k+1) g$; yet for each $k,(k+1) / n<1 / 2$ if n is large enough. Thus $k g\left(s_{n}\right)<(k+1) g\left(s_{n}\right)<(k+1) / n<1 / 2<f\left(s_{n}\right)$, so that $(f \wedge k g)\left(s_{n}\right)<(f \wedge(k+1) g)\left(s_{n}\right)$; this is a contradiction. We conclude that f vanishes at all non p-points.

$$
\text { If } x \in \overline{\operatorname{supp}(f)} \text { while } f(x)=0 \text {, there is a sequence of } p \text {-points }
$$ $\left\{t_{n}\right\}$ so that $\lim _{n \rightarrow \infty} f\left(t_{n}\right)=0$, while each $f\left(t_{n}\right)>0$ and finite. Using f^{2} as in the proof of Theorem 2.2 one can obtain a contradiction to the

supposition that $f \in \operatorname{Ar}(G)$. It follows that $f(x)>0$, and $\operatorname{supp}(f)$ is closed.

Next, suppose $0<h+\operatorname{Ar}(G) \in \operatorname{Ar}(G / \operatorname{Ar}(G))$ with $h>0$; then either
(1) $h(x)>0$ at some non p-point $x \in X$, or else
(2) $\overline{\operatorname{supp}(h)}$ contains a non p-point.

We leave the second case to the reader.
In the first case we may suppose as earlier in the proof that $h(x) \geq 1$ and let $V=\{t \in X \mid h(t)>1 / 2\}$. Choose a positive function d so that $d(x)=0$, yet each neighbourhood of x contains a point s for which $d(s)>0$. Again let $V_{n}=\{t \in X \mid d(t)<1 / n\} \cap V$, and select $s_{n} \in V_{n}$ so that $d\left(s_{n}\right)>0$; then $d \notin \operatorname{Ar}(G)$ since $\overline{\operatorname{supp}(d)}$ is not ćlosed. As earlier $h \wedge k d<h \wedge(k+1) d$, for each $k \geq 1$; further $[h \wedge(k+1)-h \wedge k d](x)=0$.

Finally, if $h \wedge(k+l) d-h \wedge k d$ were in $\operatorname{Ar}(G)$ it would be real valued. Also $[h \wedge(k+1) d-h \wedge k d]\left(t_{n}\right)=d\left(t_{n}\right)$ for large enough n; the latter sequence converges to 0 , so that one can once again use the squaring method of the proof of Theorem 2.2 to get a contradiction. Hence $h \wedge(k+1) d+\operatorname{Ar}(G)>h \wedge k d+\operatorname{Ar}(G)$ for all $k=1,2, \ldots$; this contradicts our initial assumption, so it follows that $\operatorname{Ar}(G / \operatorname{Ar}(G))=0$.

To conclude this section let us observe that if G is any Z-group which is a subdirect product of \mathcal{Z}-groups whose h.a. kernel is zero, then $\operatorname{Ar}(G)=0$; (see Proposition 1.8 in [8]). This enables us to show:

PROPOSITION 2.4. If A and B are abelian \mathcal{Z}-groups and $G=A \| B$, the free product as abelian Z-groups, then if G is a subdirect product of integers, $\operatorname{Ar}(G)=0$.

Proof. By the proof of Proposition 3.4 in [7], G is then a subdirect product of copies of $Z \mathbb{L} Z$, whose h.a. kernel is zero (Example 5).

NOTE. G satisfies the hypotheses of Proposition 2.4 if A and B are both hyper- $Z \quad l$-groups; recall from [8] that an l-group is hyper- Z if it is a subdirect product of integers and each Z-homomorphic image has the same property.

3. Two examples

Let us record the following result, Proposition 1.10 in [8].
THEOREM 3.1. If G is a subdirect product of integers, say $G \subseteq \prod \prod\left\{Z_{\lambda} \mid \lambda \in \Lambda\right\}$, and G contains a bounded weak order unit, then Ar(G) consists of all the bounded functions in G.
(Recall that $0<e \in G$ is a weak order unit if $e \wedge g>0$ for all $0<g \in G$.

In [4] Conrad showed that a free abelian l-group on two or more generators had the property that in every representation as a subdirect product of integers there were no non-zero bounded functions. The question was then raised by him of how close this came to characterizing free abelian 2 -groups.

Consider a free product $G=A \| B$ of two abelian Z-groups so that G is a subdirect product of integers. According to Proposition 2.4, $\operatorname{Ar}(G)=0$; moreover, in any subdirect product of integers a bounded functions is in the h.a. kernel. It follows that G has no non-zero bounded function in any representation by integers. A and B can be selected so that G is not free; for example let ${ }^{1} A=B=Z$.

Theorem 3.1 leaves open the question of what $\operatorname{Ar}(G / \operatorname{Ar}(G))$ is; we give an example of a subdirect product of integers so that $\operatorname{Ar}(G) \subset \operatorname{Ar}^{2}(G)=G$, and $\operatorname{Ar}(G)$ is a prime subgroup.

Let $H=\prod_{n=1}^{\infty} Z_{n} ; Z_{n}=Z$, for each $n=1,2, \ldots$. Let G be the I-subgroup generated by $H(u)$ and v, where $u=(1,1, \ldots)$ and $v=(1,2,3,4,5, \ldots)$. By Theorem 3.1, $\operatorname{Ar}(G)=H(u)$. It is not too hard to show that if $x \in H$, then $x \in G$ if and only if $x-n v$ is bounded for a suitable integer n. It is evident then that $G / \operatorname{Ar}(G) \simeq Z$, so that $G=A r^{2}(G)$.

This example also indicates how to construct an example of a subdirect

[^0]product of integers G so that $A r^{m}(G)=G$ and $A r^{m-1}(G) \subset G$, for any predetermined integer m. Once again let $H=\prod_{n=1}^{\infty} Z_{n}, u=(1,1, \ldots)$ and $v_{k}=\left(1,2^{k}, 3^{k}, 4^{k}, \ldots\right), 1 \leq k \leq m-1$. Then define G to be the l-subgroup of G generated by $H(u)$ and $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.

4. Parting comments

It would be nice if the h.a. kernel were well behaved with respect to large subgroups; (recall that the Z-subgroup H of G is large in G if for each non-zero convex $l_{\text {-subgroup }} K$ of $G, K \cap H \neq 0$). What we would like is to have $\operatorname{Ar}(H)=H \cap \operatorname{Ar}(G)$ if H is a large subgroup of G. Then we could use our theorem about the h.a. kernel of $D(X)$ to some advantage, in view of the so-called Bernau embedding theorem for archimedean l-groups. However, if $G=\prod_{n=1}^{\infty} R_{n}$, the l-group of all real sequences, and H is the Z-subgroup of all eventually constant sequences, ∞
then $\operatorname{Ar}(G)=\underset{n=1}{\boxplus} R_{n}$, while according to Theorem 2.2, $\quad \operatorname{Ar}(H)=H$; that is, H is hyper-archimedean. H is large in G, yet $\operatorname{Ar}(H) \supset \operatorname{Ar}(G)=\operatorname{Ar}(G) \cap H$.

Another important question is the following. When is the h.a. kernel of an l-group dense in G ? (Recall that the Z-subgroup H of G is dense in G if for each $0<g \in G$ there is an element $0<h \leq g$, with $h \in H$.) A convex l-subgroup A of G is dense in G if and only if $A^{\prime \prime}=G$. So it is immediate from Theorem 1.2 that if $A r^{*}(G)=G$ then $\operatorname{Ar}(G)$ is dense in G.

If G is an archimedean Z-group with basis then it is well known that G may be expressed as a subdirect product of reals in such a way that G contains the cardinal sum. Since the h.a. kernel of G contains this cardinal sum it follows that $\operatorname{Ar}(G)$ is dense in G. However, our very first example shows that $A r^{*}(G)$ may be a proper subgroup.

We should point out that if $\operatorname{Ar}(G)$ is a cardinal summand of an Z-group G, then $\operatorname{Ar}^{*}(G)=\operatorname{Ar}(G)$, but the converse is false.

This is a good place to mention a conjecture. If G is an archimedean Z-group and $\operatorname{Ar}(G)$ is dense (or large) in G, then G is a subdirect product of reals. In particular, if $\operatorname{Ar}^{*}(G)=G$ the same conclusion is valid.

Finally, we mention two unpublished results of Conrad:
(a) if G is a finite valued Z-group, then $A r^{*}(G)=G$ if and only if the set of regular subgroups of G satisfies the descending chain condition;
(b) let Λ be a root system; that is, Λ is a p.o. set, and if $\lambda \| \mu$ in Λ they have no common lower bounds. Consider
$V=V\left(\Lambda, R_{\lambda}\right)=\left\{v \in \prod \prod R_{\lambda} \mid \lambda \in \Lambda\right\}$ the support of v satisfies the ascending chain condition \} ;
as is well known, V is an l-group if one declares $0<v \in V$ if and only if each maximal non-zero component of v is positive. (For details the reader may consult [3] or [6].)
$A r^{*}(V)=\left\{v \in V \mid v\right.$ is finitely non-zero, and if $v_{\lambda} \neq 0$ then $\{\mu \in \Lambda \mid \mu \leq \lambda\}$ has finitely many maximal chains and satisfies the descending chain condition\}.

References

[1] Roger D. Bleier, "Free 2 -groups and vector lattices", J. Austral. Math. Soc. (to appear).
[2] Donald Chambless, "Representations and extensions of lattice-ordered groups and rings", (Dissertation, Tulane University, Louisiana, 1971).
[3] Paul Conrad, Lattice ordered groups (Lecture Notes, Tulane University, Louisiana, 1970).
[4] Paul F. Conrad, "Free abelian Z-groups and vector lattices", Math. Ann. 190 (1971), 306-312.
[5] Paul Conrad, "Epi-archimedean groups", preprint.
[6] Paul Conrad, John Harvey and Charles Holland, "The Hahn embedding theorem for abelian lattice ordered groups", Trans. Amer. Math. Soc. 108 (1963), 143-169.
[7] Jorge Martinez, "Free products of abelian Z-groups", Czechoslovak Math. J. 23 (98) (1973), 349-361.
[8] Jorge Martinez, "Archimedean-like classes of lattice-ordered groups", Trans. Amer. Math. Soc. 186 (1973), 33-49.

Department of Mathematics,
University of Florida,
Gainesville, Florida,
USA.

[^0]: 1 The argument can also be presented by quoting Theorem 3.3 in [7], to the effect that these free products have no singular elements, and then using a result of Conrad in [4]: if a subdirect product of integers has no singular elements, then it has no non-zero bounded functions.

