The hyper-archimedean kernel sequence of a lattice-ordered group

Jorge Martinez

The hyper-archimedean kernel Ar(G) of a lattice-ordered group (hence forth *l*-group) is the largest hyper-archimedean convex *l*-subgroup of the *l*-group *G*. One defines $Ar^{\sigma}(G)$, for an ordinal σ as $\bigcup Ar^{\alpha}(G)$ if σ is a limit ordinal, and as the $\alpha < \sigma$ unique *l*-ideal with the property that

$$Ar^{\sigma}(G)/Ar^{\sigma-1}(G) = Ar(G/Ar^{\sigma-1}(G))$$
,

otherwise. The resulting "Loewy"-like sequence of characteristic *l*-ideals, $Ar(G) \subseteq Ar^2(G) \subseteq \ldots \subseteq Ar^{\sigma}(G) \subseteq \ldots$, is called the *hyper-archimedean kernel sequence*. The first result of this note says that each $Ar^{\sigma}(G) \subseteq Ar(G)$ ".

Most of the paper concentrates on archimedean l-groups; in particular, the hyper-archimedean kernels are identified for: D(X), where X is a Stone space, a large class of free products of abelian l-groups, and certain l-subrings of a product of real groups.

It is shown that even for archimedean l-groups the hyperarchimedean kernel sequence may proceed past $A_{\mathcal{M}}(\omega)$.

1. Introduction

The purpose of this note is to derive structure of an archimedean

Received 19 December 1973.

l-group using the notion of the hyper-archimedean kernel sequence defined in [8]. Our general terminology and notation is standard, as in [3]; the special notions to be discussed here are in the notation of [8].

An *l*-group *H* is *hyper-archimedean* if it is archimedean and every *l*-homomorphic image of *H* is archimedean. The following theorem encapsules the basic facts about the structure of hyper-archimedean *l*-groups. Many individuals have contributed to this well known theorem; for a fairly complete history see Theorem 1.1 in [5].

THEOREM 1.1. For an 1-group G the following are equivalent:

- (1) G is hyper-archimedean;
- (2) every proper prime subgroup of G is maximal, and hence minimal;
- (3) the regular subgroups of G form a trivially ordered set;
- (4) $G = G(g) \oplus g'$, for each $g \in G$;
- (5) if 0 < a, $b \in G$ then $[a-(mb\wedge a)] \wedge b = 0$, for some positive integer m;
- (6) if 0 < a, b ∈ G then a ∧ nb = a ∧ (n+1)b, for some positive integer n;
- (7) G is 1-isomorphic to an 1-subgroup G' of $\prod \{R_i \mid i \in I\}$ so that for all 0 < x, $y \in G'$, there exists an n > 0such that $nx_i > y_i$ whenever $x_i > 0$. $(R_i = R, the$ additive group of reals with the usual ordering, for each $i \in I$.)

NOTES. (a) With reference to the notation in (4), if $x \in G$, $\mathcal{G}(x)$ denotes the convex *l*-subgroup generated by x. If $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family of *l*-groups then $G = \bigoplus \{G_{\lambda} \mid \lambda \in \Lambda\}$ is the direct sum of the G_{λ} with coordinatewise ordering.

If x is a subset of an l-group G,

$$X' = \{g \in G \mid |g| \land |x| = 0, \text{ for all } x \in X\}$$

is the polar of X; $g' \equiv \{g\}' = G(g)'$.

(b) It should be noted that Conrad calls hyper-archimedean l-groups

epi-archimedean; see [5].

If G is an l-group there is a convex l-subgroup At(G) which is hyper-archimedean and contains every hyper-archimedean convex l-subgroup of G. At(G) is characteristic; that is, invariant under all l-automorphisms of G, and $0 < g \in At(G)$ if and only if all its values are minimal prime subgroups. Further At(G) is the intersection of all non-minimal primes of G. We call At(G) the hyper-archimedean kernel of G, henceforth to be abbreviated h.a. kernel. It was first introduced and characterized as indicated in the lines of this paragraph in [8] by the author for representable l-groups; then in [5] Conrad removed the author's assumption of representability.

If σ is an ordinal, define $Ar^{\sigma}(G)$ as follows:

- (a) $Ar^{\sigma}(G)/Ar^{\sigma-1}(G) = Ar(G/Ar^{\sigma-1}(G))$, if σ is not a limit ordinal;
- (b) $Ar^{\sigma}(G) = \bigcup_{\alpha < \sigma} Ar^{\alpha}(G)$, otherwise.

Then $Ar(G) \subseteq Ar^2(G) \subseteq \ldots \subseteq Ar^{\sigma}(G) \subseteq \ldots$, and all entries in this sequence are characteristic *l*-ideals. This is the hyper-archimedean kernel sequence (henceforth h.a. kernel sequence).

The following was not defined in [8]: by a standard cardinality argument $Ar^{\tau}(G) = Ar^{\tau+1}(G)$ for a suitable large ordinal τ . We define $Ar^{*}(G) = \bigcup Ar^{\sigma}(G)$; thus $Ar^{*}(G) = Ar^{\tau}(G)$ for some ordinal τ .

THEOREM 1.2. For any l-group G, $Ar^*(G) \subseteq Ar(G)^n$.

Proof. If suffices to show that if $\operatorname{Ar}^{\sigma}(G) \subseteq \operatorname{Ar}(G)$ " then $\operatorname{Ar}^{\sigma+1}(G) \subseteq \operatorname{Ar}(G)$ ". If $\operatorname{Ar}^{\sigma}(G) \subseteq \operatorname{Ar}(G)$ " then $\operatorname{Ar}^{\sigma}(G)$ ' = $\operatorname{Ar}(G)$ '.

So suppose $0 < x \in Ar^{\sigma+1}(G) \cap Ar(G)'$; then the values of $x + Ar^{\sigma}(G)$ are minimal prime subgroups of $G/Ar^{\sigma}(G)$. Any such value is of the form $N/Ar^{\sigma}(G)$ where N is a prime subgroup of G. Either N is itself a minimal prime of G, or else it contains a minimal prime subgroup

M of G, and then $M \not\supseteq Ar^{\sigma}(G)$. We may then select $y \in Ar^{\sigma}(G) \setminus M$; by our assumption about σ , $x \wedge y = 0$, and this is absurd.

Therefore each prime subgroup N of G so that $N/Ar^{\sigma}(G)$ is a value of $x + Ar^{\sigma}(G)$, is a minimal prime of G, proving that $x \in Ar(G)$. This is once again a contradiction. Hence $Ar^{\sigma+1}(G) \cap Ar(G)' = 0$; that is, $Ar^{\sigma+1}(G) \subseteq Ar(G)''$ as promised.

2. The h.a. kernel sequence applied to archimedean *z*-groups

The central question here is naturally: how long can the h.a. kernel sequence be? Obviously, if one makes no restrictions on the types of l-groups one wishes to consider the answer is: as long as one pleases. Simply specify an ordinal σ and then construct a long enough lexicographic product of copies of the reals.

So let us ask the question again for archimedean l-groups. Let us in fact ask: if G is an archimedean l-group, is $Ar^*(G) = Ar(G)$? The answer is not, but most archimedean l-groups one considers have, in this sense, a trivial high kernel sequence.

It is useful to start with the following characterization of $A\pi(G)$.

LEMMA 2.1. Suppose G is a representable l-group; 0 < x is in Ar(G) if and only if for each $0 < a \in G$ there is a positive integer n so that $x \wedge na = x \wedge (n+1)a$.

Proof. Suppose $0 < x \in At(G)$ and $0 < a \in G$; then $x \wedge a$ is in At(G), so by Theorem 1.1 (6), $x \wedge n(x \wedge a) = x \wedge (n+1)(x \wedge a)$, for a suitable positive integer n. Since $k(x \wedge a) = kx \wedge ka$ in a representable *l*-group for all $k \ge 1$, we get $x \wedge n(x \wedge a) = x \wedge nx \wedge na = x \wedge na$, so that $x \wedge na = x \wedge (n+1)a$.

Conversely, if $x \wedge na = x \wedge (n+1)a$, for all $0 < a \in G$, and an appropriate n = n(a), then G(x) is hyper-archimedean by Theorem 1.1. Consequently, $x \in Ar(G)$

COROLLARY 2.1.1. If G is representable, $At(G) = \bigcap_{\substack{0 \le a}} [G(a) \boxplus a']$.

Proof. By our lemma, $0 < x \in Ar(G)$ if and only if whenever

 $0 < a \in G$, $x \wedge na = x \wedge (n+1)a$, for a suitable n. This equation is valid if and only if $[x-(na\wedge x)] \wedge a = 0$; that is, if and only if $x - (na\wedge x) \in a'$. Since $na \wedge x \in G(a)$, it is clear that $0 < x \in AR(G)$ if and only if $x \in G(a) \boxplus a'$ for all $0 < a \in G$.

Now let us have a look at a few examples.

(1) $G = \prod \{R_{\lambda} \mid \lambda \in \Lambda\}$, where $R_{\lambda} = R$ for each $\lambda \in \Lambda$. From Lemma 2.1 it is clear that $Ar(G) = \bigoplus_{\lambda} R_{\lambda}$. Now we wish to identify $Ar_{\lambda}^{2}(G)$, so we look at Ar(G/Ar(G)): if $0 < x + Ar(G) \in Ar(G/Ar(G))$ then each value of x is either a minimal prime of G or else properly contains a minimal prime $M \oint Ar(G)$. However, each such minimal prime Mis of the form $G_{\lambda} = \{g \in G \mid g_{\lambda} = 0\}$, since M will be the value of an element of Ar(G). Thus M is maximal, giving us a contradiction. It follows that every value of x is a minimal prime, putting $x \in Ar(G)$, again a contradiction. The conclusion is then Ar(G/Ar(G)) = 0; that is, $Ar^{2}(G) = Ar(G) = Ar^{*}(G)$.

(2) $G = \prod \{Z_{\lambda} \mid \lambda \in \Lambda\}$, where $Z_{\lambda} = Z$, the additive group of integers with the usual ordering. Again using Lemma 2.1 we can see that Ar(G) is the *l*-ideal of bounded integral functions. That Ar(G/Ar(G)) = 0 can be seen as follows. If $0 < x + Ar(G) \in Ar(G/Ar(G))$ then x is unbounded and - taking x > 0 without loss of generality - we can find a sequence $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots \in \Lambda$ such that the x_{λ_n} diverge. Define $u \in G$ as follows: u_{λ_i} is the largest integer $\leq \sqrt{x_{\lambda_i}}$, for all $i = 1, 2, \ldots$, and $u_{\lambda} = 0$ otherwise; then $u \notin Ar(G)$.

For each positive integer m, $x \land (m+1)u - x \land mu$ is unbounded: note that

$$[x \wedge (m+1)u - x \wedge mu]_{\lambda_{i}} = \begin{cases} 0 & , \text{ if } mu_{\lambda_{i}} \geq x_{\lambda_{i}}; \\ x_{\lambda_{i}} - mu_{\lambda_{i}}, \text{ if } (m+1)u_{\lambda_{i}} \geq x_{\lambda_{i}} > mu_{\lambda_{i}}; \\ u_{\lambda_{i}} & , \text{ if } x_{\lambda_{i}} > (m+1)u_{\lambda_{i}}. \end{cases}$$

For each m, there is an i = 1, 2, ... such that $(m+1)^2 < x_{\lambda_j}$, for all $j \ge i$. It is easy to see that this implies that $(m+1)u_{\lambda_j} < x_{\lambda_j}$, when $j \ge i$. It should now be clear that $x \land (m+1)u - x \land mu$ is indeed unbounded.

This is a contradiction, for according to Lemma 2.1 there is an m > 0so that $(x \land mu) + Ar(G) = (x \land (m+1)u) + Ar(G)$. We conclude therefore that Ar(G/Ar(G)) = 0.

THEOREM 2.2. Let G be an l-subring of $\prod R_{\lambda}$ (with $R_{\lambda} = R$ for each $\lambda \in \Lambda$) consisting of bounded functions. Then Ar(G) is the subgroup generated by

$$T = \{0 < g \in G \mid g.l.b.[g_{\lambda} \mid g_{\lambda} > 0] > 0, \}$$

and each positive element h < g also has this property $\}$. Moreover, Ar(G/Ar(G)) = 0.

Proof. From Lemma A in [3] it is clear that if $0 < g \in T$ then $g \in At(G)$. Conversely, suppose $0 < g \in At(G)$ but $g.1.b.[g_{\lambda} | g_{\lambda} > 0] = 0$; then we can find a sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$ in Λ such that $\lim_{n \to \infty} g_{\lambda_{n}} = 0$. Let $s = g^{2}$; without any loss of generality we assume each $g_{\lambda_{i}} < 1$. By Lemma 2.1 there is an m > 0 so that $g \wedge ms = g \wedge (m+1)s$. For all but finitely many λ_{i} , $g_{\lambda_{i}} < 1/(m+1)$; thus $(m+1)s_{\lambda_{i}} = (m+1)g_{\lambda_{i}}^{2} < g_{\lambda_{i}}$. So $(g \wedge ms)_{\lambda_{i}} = ms_{\lambda_{i}}$ and $(g \wedge (m+1)s)_{\lambda_{i}} = (m+1)s_{\lambda_{i}}$, and then $g \wedge ms < g \wedge (m+1)s$, a contradiction. Therefore, $g.1.b.[g_{\lambda} | g_{\lambda} > 0] > 0$, and clearly $g \in T$.

Suppose now by way of contradiction that 0 < g + At(G) in At(G/At(G)). Then either $g.l.b.[g_{\lambda} | g_{\lambda} > 0] = 0$ or some element below g has this property. Without loss of generality we take g > 0 and $g.l.b.[g_{\lambda} | g_{\lambda} > 0] = 0$. We use the notation of the previous paragraph: $\lim_{n \to \infty} g_{\lambda} = 0$. By setting $s = g^2$ once more, notice that for each m > 0, $n \to \infty$

$$\begin{split} & \left(g\wedge(m+1)s-g\wedge ms\right)_{\lambda_{i}} = s_{\lambda_{i}} \quad \text{for all but finitely many } \lambda_{i} \quad \text{Since} \\ & \lim_{n\to\infty} s_{\lambda_{n}} = 0 \quad \text{we have that} \quad g \wedge (m+1)s - g \wedge ms \notin \operatorname{Ar}(G) \; ; \; \text{moreover} \\ & s \notin \operatorname{Ar}(G) \; , \; \text{hence} \; g \wedge (m+1)s \; + \; \operatorname{Ar}(G) > g \wedge ms \; + \; \operatorname{Ar}(G) \; , \; \text{for all } m > 0 \; , \\ & \operatorname{contradicting the hypothesis that} \; g \; + \; \operatorname{Ar}(G) \in \operatorname{Ar}(G/\operatorname{Ar}(G)) \; . \; \text{Plainly then} \\ & \operatorname{Ar}(G/\operatorname{Ar}(G)) = 0 \; . \end{split}$$

Let us continue with our examples.

(3) Suppose G is a free abelian l-group on two or more generators; Bleier [1] has shown that G has no non-trivial characteristic l-ideals. Since G is obviously not hyper-archimedean $Ar(G) = 0 = Ar^*(G)$.

(4) Let G = C(X), the group of all real valued continuous functions on a compact, connected Hausdorff space X. It is a consequence of Theorem 2.2 that At(G) = 0; for if $0 < g \in G$ and g.l.b.[g(x) | g(x) > 0] > 0 then g(x) > 0, for all $x \in X$. To see this let m = g.l.b.[g(x) | g(x) > 0] and $U = \{x \in X | g(x) < m\}$; then $U = \{x \in X | g(x) = 0\}$, which implies that U is both open and closed. This is a contradiction unless U is void.

Now, if $0 \le g \in Ar(G)$ we may assume without loss of generality that $g(x) \ge 1$ for all $x \in X$. Select two distinct points $a, b \in X$. By Urysohn's Lemma there is a continuous function $f \in G$ so that $f(X) \subseteq [0, 1]$, and f(a) = 0 while f(b) = 1. $0 \le f \le g$, and by our arguments of the previous paragraph g.l.b. $[f(x) \mid f(x) > 0] = 0$. This is a contradiction, and so Ar(G) = 0 as we had claimed.

(5) Let $G = Z \parallel Z$, the free product as abelian *l*-groups of two copies of Z. By Theorem 2.8 of [8], G is isomorphic to the *l*-group of continuous functions on [0, 1] generated by f(x) = x and g(x) = 1 - x. Applying Lemma 2.1 directly, Ar(G) = 0.

We shall return to this example shortly.

Next, we shall take a look at D(X), the *l*-group of almost finite continuous functions from a Stone space X into the extended reals. (Recall: A *Stone space* is a compact, Hausdorff, extremally disconnected space.) We need to define a crucial concept first: a point p in a topological space X is a *p*-point, if whenever f is a real valued continuous function on X and f(p) = 0, then f = 0 on a neighbourhood of p. If f is a real valued continuous function on X, let supp(f) stand for the set $\{x \in X \mid f(x) \neq 0\}$.

THEOREM 2.3. Let X be a Stone space and G = D(X). Then $Ar(G) = \{f \in G \mid supp(f) \text{ is closed and consists of } p-points\}$. Ar(G/Ar(G)) = 0.

Proof. Suppose first that $0 \le f \in G$ and supp(f) is a closed set consisting of *p*-points. Let

 $P_{y} = \{g \in G \mid g = 0 \text{ on a neighbourhood of } y\},\$

with $y \in X$; by Proposition 3.1 in [2] these are precisely the minimal primes of G. So if $f \notin P_y$ then f(y) > 0, and y is a p-point, or else f(y) = 0 but every neighbourhood of y contains a point of supp(f); that is, $y \in \overline{supp(f)}$. This contradicts our hypothesis, and hence f(y) > 0. Using Theorem 3.11 in [2], P_y is a maximal l-ideal and hence a value of f; clearly $f \in Ar(G)$.

Conversely, suppose $0 < f \in At(G)$ yet f(z) > 0 at the non *p*-point $z \in X$. Without loss of generality we may suppose $f(z) \ge 1$ since At(G) is a real subspace of *G*. Let $V = \{x \in X \mid f(x) > 1/2\}$; then *V* is a neighbourhood of *z*. Since *z* is not a *p*-point there is a function $0 < g \in G$ such that g(z) = 0 yet each neighbourhood *U* of *z* contains a point *s* with g(s) > 0.

Let $V_n = \{x \in X \mid g(x) < 1/n\} \cap V$; V_n is a neighbourhood of z, so we may select an $s_n \in V_n$ such that $g(s_n) > 0$. Then $\lim_{n \to \infty} g(s_n) = 0$ while $f(s_n) > 1/2$, for all n = 1, 2, Since $f \in At(G)$ there should be a positive integer k so that $f \wedge kg = f \wedge (k+1)g$; yet for each k, (k+1)/n < 1/2 if n is large enough. Thus $kg(s_n) < (k+1)g(s_n) < (k+1)/n < 1/2 < f(s_n)$, so that $(f \wedge kg)(s_n) < (f \wedge (k+1)g)(s_n)$; this is a contradiction. We conclude that f vanishes at all non p-points.

If $x \in \overline{\operatorname{supp}(f)}$ while f(x) = 0, there is a sequence of <u>p</u>-points $\{t_n\}$ so that $\lim_{n \to \infty} f(t_n) = 0$, while each $f(t_n) > 0$ and finite. Using f^2 as in the proof of Theorem 2.2 one can obtain a contradiction to the

supposition that $f \in Ar(G)$. It follows that f(x) > 0, and supp(f) is closed.

Next, suppose $0 < h + Ar(G) \in Ar(G/Ar(G))$ with h > 0; then either (1) h(x) > 0 at some non p-point $x \in X$, or else

(2) $\overline{\text{supp}(h)}$ contains a non *p*-point.

We leave the second case to the reader.

In the first case we may suppose as earlier in the proof that $h(x) \ge 1$ and let $V = \{t \in X \mid h(t) > 1/2\}$. Choose a positive function d so that d(x) = 0, yet each neighbourhood of x contains a point s for which d(s) > 0. Again let $V_n = \{t \in X \mid d(t) < 1/n\} \cap V$, and select $s_n \in V_n$ so that $d(s_n) > 0$; then $d \notin At(G)$ since $\overline{supp}(d)$ is not closed. As earlier $h \wedge kd < h \wedge (k+1)d$, for each $k \ge 1$; further $[h \wedge (k+1) - h \wedge kd](x) = 0$.

Finally, if $h \wedge (k+1)d - h \wedge kd$ were in At(G) it would be real valued. Also $[h \wedge (k+1)d - h \wedge kd](t_n) = d(t_n)$ for large enough n; the latter sequence converges to 0, so that one can once again use the squaring method of the proof of Theorem 2.2 to get a contradiction. Hence $h \wedge (k+1)d + At(G) > h \wedge kd + At(G)$ for all k = 1, 2, ...; this contradicts our initial assumption, so it follows that At(G/At(G)) = 0.

To conclude this section let us observe that if G is any l-group which is a subdirect product of l-groups whose h.a. kernel is zero, then At(G) = 0; (see Proposition 1.8 in [8]). This enables us to show:

PROPOSITION 2.4. If A and B are abelian l-groups and $G = A \parallel B$, the free product as abelian l-groups, then if G is a subdirect product of integers, Ar(G) = 0.

Proof. By the proof of Proposition 3.4 in [7], G is then a subdirect product of copies of $Z \perp Z$, whose h.a. kernel is zero (Example 5).

NOTE. G satisfies the hypotheses of Proposition 2.4 if A and B are both hyper-Z l-groups; recall from [8] that an l-group is hyper-Z if it is a subdirect product of integers and each l-homomorphic image has the same property.

Jorge Martinez

3. Two examples

Let us record the following result, Proposition 1.10 in [8].

THEOREM 3.1. If G is a subdirect product of integers, say $G \subseteq \prod \{ Z_{\lambda} \mid \lambda \in \Lambda \}$, and G contains a bounded weak order unit, then Ar(G) consists of all the bounded functions in G.

(Recall that $0 < e \in G$ is a weak order unit if $e \wedge g > 0$ for all $0 < g \in G$.)

In [4] Conrad showed that a free abelian l-group on two or more generators had the property that in every representation as a subdirect product of integers there were no non-zero bounded functions. The question was then raised by him of how close this came to characterizing free abelian l-groups.

Consider a free product $G = A \parallel B$ of two abelian *l*-groups so that G is a subdirect product of integers. According to Proposition 2.4, At(G) = 0; moreover, in any subdirect product of integers a bounded functions is in the h.a. kernel. It follows that G has no non-zero bounded function in any representation by integers. A and B can be selected so that G is not free; for example let¹ A = B = Z.

Theorem 3.1 leaves open the question of what Ar(G/Ar(G)) is; we give an example of a subdirect product of integers so that $Ar(G) \subset Ar^2(G) = G$, and Ar(G) is a prime subgroup.

Let
$$H = \prod_{n=1}^{\infty} Z_n$$
; $Z_n = Z$, for each $n = 1, 2, ...$ Let G be the

l-subgroup generated by H(u) and v, where u = (1, 1, ...) and v = (1, 2, 3, 4, 5, ...). By Theorem 3.1, At(G) = H(u). It is not too hard to show that if $x \in H$, then $x \in G$ if and only if x - nv is bounded for a suitable integer n. It is evident then that $G/At(G) \simeq \mathbb{Z}$, so that $G = At^2(G)$.

This example also indicates how to construct an example of a subdirect

¹ The argument can also be presented by quoting Theorem 3.3 in [7], to the effect that these free products have no singular elements, and then using a result of Conrad in [4]: if a subdirect product of integers has no singular elements, then it has no non-zero bounded functions.

product of integers G so that $At^m(G) = G$ and $At^{m-1}(G) \subset G$, for any predetermined integer m. Once again let $H = \prod_{n=1}^{\infty} Z_n$, u = (1, 1, ...)and $v_k = (1, 2^k, 3^k, 4^k, ...)$, $1 \leq k \leq m-1$. Then define G to be the *l*-subgroup of G generated by H(u) and $\{v_1, v_2, ..., v_m\}$.

4. Parting comments

It would be nice if the h.a. kernel were well behaved with respect to large subgroups; (recall that the *l*-subgroup *H* of *G* is *large* in *G* if for each non-zero convex *l*-subgroup *K* of *G*, $K \cap H \neq 0$). What we would like is to have $At(H) = H \cap At(G)$ if *H* is a large subgroup of *G*. Then we could use our theorem about the h.a. kernel of D(X) to some advantage, in view of the so-called Bernau embedding theorem for

archimedean *l*-groups. However, if $G = \prod_{n=1}^{\infty} R_n$, the *l*-group of all real sequences, and *H* is the *l*-subgroup of all eventually constant sequences, then $Ar(G) = \bigoplus_{n=1}^{\infty} R_n$, while according to Theorem 2.2, Ar(H) = H; that is, *H* is hyper-archimedean. *H* is large in *G*, yet $Ar(H) \supset Ar(G) = Ar(G) \cap H$.

Another important question is the following. When is the h.a. kernel of an *l*-group dense in G? (Recall that the *l*-subgroup H of G is *dense* in G if for each $0 \leq g \in G$ there is an element $0 \leq h \leq g$, with $h \in H$.) A convex *l*-subgroup A of G is dense in G if and only if A'' = G. So it is immediate from Theorem 1.2 that if $Att^*(G) = G$ then At(G) is dense in G.

If G is an archimedean l-group with basis then it is well known that G may be expressed as a subdirect product of reals in such a way that G contains the cardinal sum. Since the h.a. kernel of G contains this cardinal sum it follows that At(G) is dense in G. However, our very first example shows that $At^*(G)$ may be a proper subgroup.

We should point out that if Ar(G) is a cardinal summand of an *l*-group G, then $Ar^*(G) = Ar(G)$, but the converse is false. This is a good place to mention a conjecture. If G is an archimedean l-group and Ar(G) is dense (or large) in G, then G is a subdirect product of reals. In particular, if $Ar^*(G) = G$ the same conclusion is valid.

Finally, we mention two unpublished results of Conrad:

- (a) if G is a finite valued l-group, then $At^*(G) = G$ if and only if the set of regular subgroups of G satisfies the descending chain condition;
- (b) let Λ be a root system; that is, Λ is a p.o. set, and if $\lambda \parallel \mu$ in Λ they have no common lower bounds. Consider $V = V(\Lambda, R_{\lambda}) = \{v \in \prod \{R_{\lambda} \mid \lambda \in \Lambda\}$ the support of v

satisfies the ascending chain condition } ;

as is well known, V is an *l*-group if one declares $0 < v \in V$ if and only if each maximal non-zero component of v is positive. (For details the reader may consult [3] or [6].)

$$\begin{split} \mathsf{At}^{\star}(V) &= \left\{ v \in V \ \big| \ v \ \text{ is finitely non-zero, and if } v_{\lambda} \neq 0 \ \text{ then} \\ \left\{ \mu \in \Lambda \ \big| \ \mu \leq \lambda \right\} \ \text{has finitely many maximal chains} \\ & \text{ and satisfies the descending chain condition} \right\} \,. \end{split}$$

References

- [1] Roger D. Bleier, "Free *l*-groups and vector lattices", J. Austral. Math. Soc. (to appear).
- [2] Donald Chambless, "Representations and extensions of lattice-ordered groups and rings", (Dissertation, Tulane University, Louisiana, 1971).
- [3] Paul Conrad, Lattice ordered groups (Lecture Notes, Tulane University, Louisiana, 1970).
- [4] Paul F. Conrad, "Free abelian *l*-groups and vector lattices", Math. Ann. 190 (1971), 306-312.
- [5] Paul Conrad, "Epi-archimedean groups", preprint.

- [6] Paul Conrad, John Harvey and Charles Holland, "The Hahn embedding theorem for abelian lattice ordered groups", Trans. Amer. Math. Soc. 108 (1963), 143-169.
- [7] Jorge Martinez, "Free products of abelian *l*-groups", *Czechoslovak Math. J.* 23 (98) (1973), 349-361.
- [8] Jorge Martinez, "Archimedean-like classes of lattice-ordered groups", Trans. Amer. Math. Soc. 186 (1973), 33-49.

Department of Mathematics, University of Florida, Gainesville, Florida, USA.