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We perform linear stability analysis and direct numerical simulations to study the effect
of the radius ratio on the instability and flow characteristics of the sheared annular
centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer
cylinder rotate with a small angular velocity difference. With the shear enhancement, the
thermal convection is suppressed and finally becomes stable for different radius ratios
{η ∈ R|0.2 � η ≤ 0.95}. Considering the inhomogeneous distribution of shear stresses
in the base flow, a new global Richardson number Rig is defined and the marginal-state
curves for different radius ratios are successfully unified in the parameter domain of Rig
and the Rayleigh number Ra. The results are consistent with the marginal-state curve
of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction,
demonstrating that the basic stabilization mechanisms are identical. Moreover, systems
with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results
in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll
pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear
enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing
for an outward shift of the convection region and the elevation of bulk temperature under
strong shear.

Key words: turbulent convection, Bénard convection, buoyancy-driven instability

1. Introduction

Thermally driven turbulent flows are ubiquitous in nature and industrial processes.
As a general paradigm for modelling this common phenomenon, the Rayleigh–Bénard
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convection (RBC) has been studied extensively in scientific research (Ahlers, Grossmann
& Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013; Ecke &
Shishkina 2023), in which a layer of fluid is confined between two horizontal plates, heated
from below and cooled from above. Under gravity or other body force fields, buoyancy
is generated, inducing instability, driving thermal convection and forming manifold and
involute flow structures (Niemela et al. 2001; Xi, Lam & Xia 2004; Sun, Xia & Tong
2005; Wang et al. 2021; Guo et al. 2023). In recent years, apart from the classical
RBC with rectangular cells, annular centrifugal Rayleigh–Bénard convection (ACRBC)
has been put forward (Jiang et al. 2020; Wang et al. 2022, 2023). Due to the use of a
stronger centrifugal force to substitute gravity, a higher Rayleigh number can be achieved
in ACRBC, enhancing the thermal convection to the ultimate regime (Jiang et al. 2022).
The scaling law in ACRBC is found to be in agreement with the theoretical predictions
(Grossmann & Lohse 2000, 2011). Similar to RBC, Taylor–Couette (TC) flow, where the
flow is driven by two concentric cylinders rotating independently with constant angular
velocity, is another canonical paradigm of the physics of fluids to model the flow driven
by wall shear stress (Huisman, Lohse & Sun 2013; Grossmann, Lohse & Sun 2016). In
TC flow, differential angular speed induces instabilities and forms the secondary flow,
including Taylor rolls. As similar exact global balance relations between the respective
drive and the dissipation can be derived, a close analogy is put forward between RBC
and TC flows, by which the Grossmann–Lohse theory is extended from RBC to TC flow
(Bradshaw 1969; Eckhardt, Grossmann & Lohse 2000, 2007; Busse 2012).

The comprehensive study of the interplay between buoyancy and shear holds significant
importance in enhancing our comprehension of atmospheric motion and oceanic
flow (Deardorff 1972; Khanna & Brasseur 1998; Vincze et al. 2014; Feng et al.
2022). Numerous attempts have been made to integrate shear and buoyancy within a
unified system, with the intent of investigating their mutual coupling effects, including
wall-sheared RBC (Deardorff 1965; Blass et al. 2020, 2021) and a TC system with an
axial or radial temperature difference under gravity or a centrifugal force (Yoshikawa,
Nagata & Mutabazi 2013; Meyer, Yoshikawa & Mutabazi 2015; Kang et al. 2017; Leng
et al. 2021; Leng & Zhong 2022). Recently, based on the high similarity between ACRBC
and TC systems, we have proposed an innovative system, namely the sheared ACRBC
system, combining ACRBC with TC to study the coupling effect of shear and buoyancy
(see Zhong, Wang & Sun (2023), ZWS23 for short). In the new system, an ACBRC cell
bounded by two independently rotating concentric cylinders is considered. It is a closed
system and inherits the exact global balance relations from ACRBC and TC. The system
becomes ACRBC when the two cylinders rotate at the same angular velocity and turns
into TC flow when two cylinders rotate at different speeds with no temperature difference.
In the large parameter domain of buoyancy strength and shear strength, it is found that an
ACRBC flow is stable at first and then develops into a TC flow with the enhancement of
shear. In such a system with a fixed geometry, the coupling mechanism of buoyancy and
shear is well revealed.

To further reveal the coupling mechanism of buoyancy and shear in a sheared ACRBC
system, it is necessary to consider the effect of the radius ratio η, namely the ratio of
radius of the inner cylinder to the outer cylinder. In the high-Reynolds-number TC flow,
the momentum Nusselt number is found to increase with increasing radius ratio when
η ≥ 0.5 for fixed Taylor number and rotation ratio, and the value of the rotation ratio
for optimal transport first increases with η and then saturates for η ≥ 0.8 (Grossmann
et al. 2016). In the ACRBC system, the radius ratio has a significant impact as well. With
η decreasing from 1, which means the geometry of the system changes and asymmetry
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Figure 1. Schematic diagram of the flow configuration in the sheared ACRBC system with (a) a small radius
ratio η = r∗

i /r
∗
o = 0.3 and (b) a large radius ratio η = 0.8 in the stationary reference frame. Here, r∗

i,o,Ω
∗
i,o and

θ∗
i,o are the radius, angular speed and temperature of the inner and outer cylinders, respectively, and L∗ is the

gap between two cylinders.

increases, the onset critical Rayleigh number of ACRBC increases (Pitz, Marxen & Chew
2017); when the convection is fully developed, the zonal flow in ACRBC is stronger and
the heat transport efficiency is weaker for smaller η. Due to the asymmetry of the inner
and outer walls, the bulk temperature deviates from the arithmetic mean temperature; and
the deviation increases with decreasing η (Wang et al. 2022). Meanwhile, the study of the
radius ratio is a key to link the sheared ACRBC system to the wall-sheared RBC, as these
two systems may gradually become identical when the radius ratio tends to one. Therefore,
in this paper, we concentrate on the radius ratio effect, attempting to give a more complete
and systematic understanding of the coupling effect of buoyancy and shear in the sheared
ACRBC.

The rest of the paper is organized as follows: the governing equations are introduced
in § 2, and the results of linear stability analysis (LSA) and direct numerical simulation
(DNS) are demonstrated in §§ 3 and 4, respectively. Finally, conclusions are presented in
§ 5.

2. Governing equations

In sheared ACRBC, an incompressible viscous fluid is bounded by an inner cylinder
with radius r∗

i and an outer cylinder with radius r∗
o , rotating independently about the z

axis. Hereafter, the asterisk ∗ denotes the dimensional variables. The radius ratio is then
defined as η = r∗

i /r
∗
o . Figure 1 depicts two typical flow domains with η = 0.3 and 0.8.

The inner cold cylinder with temperature θ∗
i rotates at a larger angular velocity Ω∗

i , while
the outer hot cylinder rotates at a smaller angular velocity Ω∗

o . Also, L∗ = r∗
o − r∗

i is the
gap width and Δ∗ = θ∗

o − θ∗
i is the temperature difference between the two cylinders.

No-slip and isothermal boundary conditions are applied at the two cylinder surfaces,
and periodic boundary conditions are imposed on the velocity and temperature in the
axial direction. In the rotating frame with averaged angular velocity Ω∗

c = (Ω∗
i +Ω∗

o )/2,
an equivalent gravitational acceleration along the radial direction can be defined as
g∗

e = Ω∗
c

2(r∗
i + r∗

o)/2. Then, the free fall velocity U∗ = √
g∗

eα
∗Δ∗L∗, the gap L∗ and the

temperature difference Δ∗ are introduced as the velocity, length and temperature scales,
respectively. The coefficient of thermal expansion α∗, the kinematic viscosity ν∗ and the
thermal diffusivity κ∗ of the fluid are assumed to be constant. Then the motion of the
flow is governed by the non-dimensional Oberbeck–Boussinesq equation, which reads
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(Jiang et al. 2020; Zhong et al. 2023)

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p − Ro−1ez × u +
√

Pr
Ra

∇2u − θ
2(1 − η)

1 + η

(
1 + 2uϕ

Ro−1r

)2

r,

∂θ

∂t
+ ∇ · (uθ) =

√
1

Ra · Pr
∇2θ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

where u = (ur, uϕ, uz) is the velocity vector, p is the pressure (the density is contained
within), θ is the temperature, ez is the unit vector in the axial direction and η = r∗

i /r
∗
o is

the radius ratio. Relative to Ω∗
c , the non-dimensional boundary conditions read

r = ri : u = (0,Ωri, 0), θ = 0,

r = ro : u = (0,−Ωro, 0), θ = 1,

}
(2.2)

where ri = η/(1 − η) and ro = 1/(1 − η) are the non-dimensional radii of the inner
and outer cylinders, and Ω = (Ω∗

i −Ω∗
c )L

∗/U∗ represents the non-dimensional rotating
angular velocity difference.

The above dimensionless governing equations and the boundary conditions reveal five
control parameters in the current system: the Rayleigh number Ra, the inverse Rossby
number Ro−1, the Prandtl number Pr, the angular velocity difference Ω and the radius
ratio η, in which Ra, Ro and Pr are defined as follows:

Ra = g∗
eα

∗Δ∗L∗3

ν∗κ∗ , Ro−1 = 2Ω∗
c L∗

U∗ , Pr = ν∗

κ∗ . (2.3a–c)

Certainly, one can replace several of these five parameters with some other commonly used
ones, such as the famous Taylor number, Ta = (1 + η)6Ω2Ra/16η2(1 − η)2Pr (Zhong
et al. 2023). In the current study, a practical alternative is the Richardson number,
measuring the ratio between the buoyancy and shear strength, which reads

Ri(r) = N2

S2 =
2r(1 − η)

∂θ

∂r

(1 + η)

(
r
∂(uϕ/r)
∂r

+ ∂ur

∂ϕ

/
r
)2 . (2.4)

Here, N = √
Ω∗2

c r∗α∗(∂θ∗/∂r∗) is the buoyancy frequency and S = r∗(∂(u∗
ϕ/r

∗)/∂r∗)+
(∂u∗

r /∂ϕ
∗)/r∗ is the shear stain rate. Note that the definition (2.4) is a local form. In

sheared RBC studies, Ri can be defined directly by the temperature and velocity differences
of the two horizontal plates (Blass et al. 2020, 2021; Zhang & Sun 2024). In the current
sheared ACRBC system, however, adhering to such a definition is inappropriate due to the
nonlinear radial distributions of both the temperature and velocity base flow. As will be
shown later, the local Ri calculated by the base flow changes dramatically along the radial
direction, and this non-uniformity is further affected by the radius ratio. Therefore, we will
first investigate the properties of local Ri and find a proper global definition afterward.

As reported in ZWS23 with fixed η = 0.5, there exist three regimes in the parameter
space (Ra,Ω): the buoyancy-dominated, stable and shear-dominated regimes. In the
shear-dominated regime, the shear is much stronger than the buoyancy and the flow
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behaves like TC flow. Moreover, the solution to the instability problem between the
stable regime and the shear-dominated regime can be given by the generalized Rayleigh
discriminant (Ali & Weidman 1990; Drazin & Reid 2004; Yoshikawa et al. 2013)
and has been widely discussed (Kang, Yang & Mutabazi 2015; Meyer et al. 2015;
Yoshikawa et al. 2015). Therefore, the effect of the radius ratio on this regime can be
reasonably predicted. However, within the buoyancy-dominated regime, the stabilizing
influence of shear on buoyancy-driven convection in sheared ACRBC necessitates further
investigation into the underlying physics mechanism. Consequently, this paper focuses on
the buoyancy-dominated regime, where the flow is quasi-two-dimensional in the r−ϕ
plane and becomes gradually stable as the shear increases. Various radius ratios within
different (Ra,Ω) will be considered.

3. Linear stability analysis

Our previous work ZWS23 has revealed that the unstable region of sheared ACRBC is
well predicted by the linear theory at η = 0.5. Here, we further conduct LSA with respect
to different η, with a particular emphasis on the inhibitory effect of weaker shear on
Rayleigh–Bénard instability. As previously mentioned, as η approaches 1, the current
system tends to wall-sheared RBC. Investigating the similarities and differences in the
stability properties of these two scenarios holds significance.

In the normal LSA approach, the flow field is decomposed into the base flow and
perturbation field, i.e.

ψ = ψ0 + ψ ′, (3.1)

in which ψ = (u, p, θ). The base state solution ψ0 possessed by (2.1) is stationary and
invariant in both the axial and azimuthal directions and depends only on r, which reads
(Ali & Weidman 1990; Yoshikawa et al. 2013)

u0 =
(

Ar + B
r
, 0, 0

)
, θ0 = ln(r/ri)

ln(ro/ri)
, (3.2a,b)

in which A = −(1 + η2)Ω/(1 − η2), B = 2r2
i Ω/(1 − η2). Note that p0 can be determined

from the other two fields, thus we omit its expression here for simplicity. The perturbation
field ψ ′ is expanded into normal modes (Meyer et al. 2015; Kang et al. 2017)

ψ ′ = ψ̂(r) exp(st + i(nϕ + kz)), (3.3)

in which ψ̂ is the radial shape function, s is the temporal growth rate of perturbations, n is
the azimuthal mode number and k is the axial wavenumber. Substituting (3.1)–(3.3) into
the governing equations (2.1) and boundary conditions (2.2) and neglecting the high-order
terms, one can get eigenfunctions with respect to ψ̂ . This eigenvalue problem can be
numerically solved by discretization on Chebyshev–Gauss–Lobatto collocation points.
More details of the LSA approach can be found in Appendix A and our previous work
ZWS23. In the current work, the number of collocation points is set at 512 for good
convergence. The LSA is performed over a large Rayleigh number range 103 � Ra ≤ 109,
a radius ratio range 0.2 � η ≤ 0.95 and a rotating velocity difference range 10−3 � Ω ≤
10. The other two parameters, including the inverse Rossby number and the Prandtl
number, are fixed, as Ro−1 = 20 and Pr = 4.3, according to our previous experiments
of ACRBC (Jiang et al. 2020, 2022).

Figure 2 shows the LSA results revealing how the parameter space (Ra,Ω) is divided
into the buoyancy-dominated regime and stable regime at 0.2 ≤ η ≤ 0.95. The variation
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Ω

Figure 2. The critical Rayleigh number Rac vs non-dimensional rotating speed difference Ω at η =
0.2, 0.3, 0.5, 0.7, 0.9, 0.95. Each curve indicates the marginal states at one radius ratio η, namely the flow
is unstable on the left side of the curve and stable on the right side. The horizontal dashed line represents the
critical Rayleigh number Rac = 1708 of RBC.

of the critical Rayleigh number Rac with Ω is consistent with DNS, as will be discussed
in § 4. When Ω → 0, there is the onset of unsheared ACRBC, where the critical Rayleigh
number Rac,ACRBC tends to Rac,RB = 1708 as η gradually approaches 1 (Pitz et al.
2017; Wang et al. 2022). Subsequently, upon introducing shear, the critical Rayleigh
number experiences a gradual increment, ultimately leading to an intriguing phenomenon:
when Rac ≥ 105, the marginal-state curve prominently inclines, nearly reaching a vertical
orientation. Notably, this trend in the variation of Rac with Ω remains consistent across
various radius ratios, while a significant displacement of the marginal-state curve towards
the left is observed as η progressively escalates. At Ra = 107, the critical Ω shrinks by
almost two orders of magnitude as η increases from 0.2 to 0.95, which means a much
smaller Ω is needed to stabilize the convection for a larger η.

It is important to note that the smaller Ω does not imply weaker shear when η varies.
As ri = η/(1 − η) and ro = 1/(1 − η), the radii of both inner and outer cylinders increase
with η. Consequently, the velocity differences between two cylinders, i.e. Δu = Ω(ri +
r0), may be not small. While it might be natural to substitute Δu for Ω , the results under
this parameter do not exhibit consistent behaviour. The intrinsic radially non-uniform
shear rate distribution in the current system prevents us from simply characterizing global
properties using Δu. This can be revealed by the local Richardson number calculated by
the base flow, namely substituting (3.2a,b) into (2.4), which reads

Rib(r̂) = (1 − η)7(1 + η)

−8η4 ln η
Ω−2

(
r̂ + η

1 − η

)4

, (3.4)

where r̂ = r − ri ∈ [0, 1] is the normalized radius. Obviously, Rib increases with r̂. For the
sameΩ , the ratio between the minimum Rib(0) at the inner wall and the maximum Rib(1)
at the outer wall is η4. For large η = 0.95, Rib is more evenly distributed; while for small
η = 0.2, Rib(0)/Rib(1) = 0.0016, indicating extremely high inhomogeneity. Note that the
radius r cancels in the expression of N, thus the buoyancy strength is uniformly distributed
and the inhomogeneity of Rib mainly comes from the shear. Figure 3 displays the radial
distribution of Rib at the marginal state shown in figure 2. As η increases from 0.2 to 0.95,
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Figure 3. The local Richardson number Rib defined by the base flow varies with normalized radius
r̂ = (r − ri) for the marginal states at different η and (a) Ra = 104, (b) Ra = 106 and (c) Ra = 107.
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Figure 4. (a) The critical Rayleigh number Rac vs the global Richardson number Rig for six radius ratios.
The black line indicates the critical Rayleigh number vs the Richardson number of the transverse rolls in
wall-sheared RBC. (b) A closer look at (a), showing the critical global Richardson number vs the radius ratio
for Ra = 105, 106, 107, 108.

the pronounced non-uniform distribution gradually becomes uniform. A very interesting
finding is that the curves representing different radius ratios approximately intersect at one
point (r̂ ≈ 0.45) for Ra = 104 and Ra = 106, while for Ra = 107, the converging curved
lines spread out a little. This implies that the critical Rib is almost the same near the middle
region for different η. Therefore, an appropriate global Richardson number can be defined
as

Rig = Rib(0.45). (3.5)

With the newly defined Rig, we convert the marginal-state curves Rac(Ω) to Rac(Rig),
and the results are shown in figure 4(a). When Rac ≤ 106, we are delighted to find that all
the curves collapse into a single line, except for a small deviation at η = 0.2. When Rac
exceeds 106, the curves that have collapsed together begin to spread out slightly. We take
a closer look in figure 4(b), picking up four Rayleigh numbers from 105 to 108 to figure
out how the critical Rig varies with η. It is shown that, for lower Ra ≤ 106, the critical Rig
varies little with η; while for larger Ra, the critical Rig increases with η at first and then
decreases. Considering that the three-dimensional wall-sheared RBC will never become
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stable under a strong horizontal shear (Blass et al. 2020, 2021), the corresponding critical
Richardson number should be zero (infinite shear). In figure 4(b), as η approaches 1, the
sheared ACRBC system is supposed to converge more closely to the wall-sheared RBC
system; however, all the curves tend to maintain a positive value rather than zero, which
seems to contradict the absence of a stable state in the three-dimensional wall-sheared
RBC. This inconsistency comes from the fact that the unstable modes of the latter system
mainly grow in the spanwise direction, namely the direction perpendicular to the shear
and buoyancy, which would be stabilized by strong rotation in sheared ACRBC (Jiang
et al. 2020). At large Ro−1, the strong Coriolis force suppresses the vertical disturbances,
which is a manifestation of the Taylor–Proudman theorem and can also be quantitatively
described by the generalized Rayleigh discriminant (Bayly 1988; Yoshikawa et al. 2013).
In the streamwise direction, we believe that the inhibitory effect of shear on the instability
should be similar for both systems. To confirm this statement, we conduct additional LSA
on a two-dimensional wall-sheared RBC system and illustrate the results in figure 4(a)
as well. Note that the global Richardson number has a simple definition here, i.e. Rig =
gα∗Δ∗L∗/Δ∗

u
2 (Blass et al. 2020). Indeed, the results of wall-sheared RBC agree well

with sheared ACRBC, indicating that the streamwise instability mechanisms of the two
systems are the same. This also implies that Rig defined as (3.5) serves well as a global
control parameter for the current system.

Based on the results of wall-sheared RBC, as shown by the black line in figure 4(a),
we can further investigate the deviations at Rac ≥ 107, namely smaller critical Rig appears
at around η = 0.3 while larger critical Rig appears at around η = 0.7. Meanwhile, the
trends of Rig varying with η under different Ra in figure 4(b) can be analysed as well.
In figure 3(c), the curves do not intersect at a single point at Ra = 107, signifying that
the designated value of r̂ = 0.45 may no longer hold its ground as a good representative
position as a typical instability mode. To investigate the nature of alterations of critical
modes at high Rayleigh numbers, the eigenfunctions (u′, θ ′) of the critical modes for
η = 0.3 and η = 0.7 are displayed in figure 5, offering deeper insights into the intricate
dynamics at play. When no shear is applied, i.e. Rig = ∞, there are three hot–cold
perturbation roll pairs for small η = 0.3 and nine pairs for large η = 0.7. Such roll
pairs will develop into the convection rolls when Ra > Rac, and the number of roll
pairs is determined by the circular roll hypothesis, which implies that the aspect ratio
of convection rolls is approximately equal to one (Pitz et al. 2017; Wang et al. 2022). As
both shear and buoyancy strengths increase along the marginal-state curve, the critical
wavenumber gradually decreases for both η = 0.3 and η = 0.7. This is due to the fact
that the perturbation modes are elongated in the azimuthal direction under the action of
shear, which is similar to the behaviour of plumes under shear (Goluskin et al. 2014;
Blass et al. 2020). The perturbation roll pairs are slightly off centre towards the inner
wall, corresponding to the chosen radius r̂ = 0.45 for the global Richardson number. Until
Ra = 105, there is only one roll pair in the case of η = 0.3. An interesting phenomenon
is discovered as Ra increases to 106: the critical mode moves towards the outer wall and
the wavenumber begins to increase with Ra. However, for η = 0.7, this phenomenon does
not happen. The roll pairs are still located near the middle and the wavenumber remains
unity when Ra ≥ 106. In figure 6(a), we summarize the variation of critical azimuthal
wavenumber nc. There are two different trends of variation of nc with Ra. For small η, nc
decreases at first, drops to 1 and then increases again. It is observed that, for smaller η,
nc decreases to 1 earlier and increases earlier while, for large η ≥ 0.7, nc decreases from
a high value with increasing Ra, finally drops to 1 and holds on. Within the considered
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Figure 5. Eigenfunctions (u′, θ ′) of the critical modes for (a–e) η = 0.3 and ( f –j) η = 0.7 at corresponding
Rayleigh numbers and global Richardson numbers. The contour denotes the temperature distribution and the
vectors denote the velocity.
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Figure 6. (a) The critical azimuthal wavenumber nc vs Ra at η = 0.3, 0.5, 0.7, 0.9. (b) Variation of energy
generation proportions −WTa/WcB and Dν/WcB with the global Richardson number Rig, for the modes of
azimuthal wavenumber n = 1 and n = 6 at Ra = 107, η = 0.3. The blue vertical dashed line shows the critical
Rig for n = 6 and the red vertical dashed line shows the critical Rig for n = 1.

range of Ra, the re-increase of the critical wavenumber is absent for large η = 0.7 and 0.9,
but it may occur at much higher Ra.

The physical interpretation of the above phenomena is twofold. Firstly, the current
annular system inherently constrains the infinite growth of the azimuthal wavelength,
which does not exist in wall-sheared RBC. Consequently, when nc decreases to 1 and Ra
further increases, the critical shear strength, originally applicable to the modes with longer
wavelength, no longer applies to the mode for which the wavenumber remains unity. The
elongation of the perturbation filed for this mode does not further increase, resulting in
a smaller corresponding critical shear strength. This explains the phenomenon of larger
Rig at approximately η = 0.7 and higher Ra, as depicted in figure 4(b). Meanwhile, in
figure 4(a), this can also explain the fact that the curves for large radius ratios deviate
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sequentially to larger Rig from the marginal-state curve of wall-sheared RBC when
Ra ≥ 107. Secondly, the radially non-uniform distribution of shear strength in the current
system causes the most unstable mode to shift toward the outer wall. As seen in figure 3,
for small η, the shear strength near the outer wall is significantly smaller than that from
the centre to the inner wall. Considering the stabilizing effect of shear on unstable modes,
when Ra is sufficiently large (corresponding to a longer distance between the two walls),
the unstable modes tend to develop preferentially near the outer wall. At this point, the
critical shear strength at r̂ = 0.45 overestimates the dominated mode near r̂ = 1. This
elucidates the phenomenon of smaller Rig at around η = 0.3 and higher Ra, as observed
in figures 4(a) and 4(b).

The above discussion can be further demonstrated from the perspective of energy. The
kinetic energy equation of perturbations is expressed as (Yoshikawa et al. 2013, 2015;
Meyer et al. 2015)

dK
dt

= WTa + WcB − Dν, (3.6)

where K is the kinetic energy, WTa is the rate of energy exchanged from the inertial shear
flow, WcB is the power of centrifugal buoyancy and Dν is the energy dissipation rate due
to viscosity. Detailed expressions for each of the above terms can be found in (3.2) of
our previous paper ZWS23. Note that WTa is usually negative in the ACRBC system,
implying that the energy released by centrifugal buoyancy is consumed by both dissipation
and azimuthal shear flow. We select the cases at η = 0.3 and Ra = 107, concentrating on
how the energy generation terms of the two kinds of modes with azimuthal wavenumber
n = 1 (located in the middle) and n = 6 (located closer to the outer cylinder with stronger
shear) vary with increasing shear, and the results are illustrated in figure 6(b). Here, we
consider the proportions of energy generation terms relative to the buoyancy term, i.e.
−WTa/WcB and Dν/WcB, the sum of which reaching one indicates the marginal state. As
shown in figure 6(b), both the inertial term and viscous term consume greater proportions
of the energy of buoyancy for n = 1 and n = 6 with the shear enhancement, indicating
that the shear suppresses the growth of instability induced by buoyancy. When comparing
the modes with n = 1 and n = 6, we discover that under weak shear (high Rig), the
proportions of total energy consumption are close between the two modes. As Rig tends
to the critical value for n = 1, as denoted by the red vertical dashed line in figure 6(b),
the viscous proportion of the mode with n = 6 is a bit larger than that of the mode with
n = 1, but the inertial proportion is much smaller for the former, making the corresponding
mode unstable. That is, the outward shifting of the perturbation mode is advantageous for
reducing the energy converted to the shear flow, this in turn promoting the development
of the mode. Therefore, the critical mode changes from the middle mode to the outward
mode with smaller critical Rig, as denoted by the vertical blue dashed line in figure 6(b),
which is consistent with our previous reasoning.

4. Direct numerical simulation

Based on the LSA results, fully nonlinear numerical simulations are performed using
an energy-conserving second-order finite-difference code AFiD (van der Poel et al.
2015; Zhu et al. 2018), which has been validated many times in the literature (Verzicco
& Orlandi 1996; Ostilla-Monico et al. 2014; Jiang et al. 2020, 2022). The current
simulations are performed on a two-dimensional (2-D) cyclic cross-section, with the
radius ratio η ∈ [0.3, 0.9]. Previous studies have demonstrated that the flow in the sheared
ACRBC is quasi-two-dimensional in the buoyancy-dominated regime (Jiang et al. 2020;
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Figure 7. The distribution of main simulation parameters and the corresponding azimuthal resolutions Nϕ in
the (η,Rig) domain under (a) Ra = 106 and (b) Ra = 107. The black solid lines denote the marginal state.

Zhong et al. 2023). Therefore, we believe that the 2-D simulations can provide valuable
insights into the physics of sheared ACRBC. Two Rayleigh numbers Ra = 106 and 107

are selected and the global Richardson number Rig varies from the critical value to 102,
as shown in figure 7. The critical Rig predicted by LSA has been validated by additional
cases in the stable regime, which are not presented in the figure for simplicity. We have
performed the posterior check on the relevant scales including the Kolmogorov scale and
the Batchelor scale to guarantee adequate resolutions (Silano, Sreenivasan & Verzicco
2010). Meanwhile, the Courant–Friedrichs–Lewy (CFL) conditions are used as CFL≤ 0.7
to ensure computational stability (Ostilla et al. 2013; van der Poel et al. 2015). Moreover,
enough simulation time is ensured to limit the error in the statistics. All the numerical
details of the unstable cases are illustrated in Appendix B.

4.1. Initial development
In the DNS, small random perturbations are added to trigger the flow development. When
the Rayleigh number Ra is larger than the critical Ra (or the rotation angular speed
differenceΩ is smaller than the criticalΩ), the perturbations will first grow following the
prediction of LSA, then become turbulent and finally reach the statistical steady state. To
investigate the initial development, we calculate the perturbation energy E′

k = 〈|u′|2〉V/2
from the instantaneous velocity fields and depict its time evolution for three typical cases,
i.e. (η,Rig) = (0.3, 1), (0.3, 10) and (0.7, 1), in figure 8(a). Meanwhile, we draw the LSA
results calculated by the growth rate of the linear fastest-growing mode for each case, as
indicated by the dashed lines. It can be seen that after the mode with the highest growth
rate dominates, the perturbation energy grows in line with the predictions given by LSA
until it approaches the peak, where the linear mode saturates and the nonlinear effects
begin to make sense. Therefore, the instability and initial development of the flow field for
different radius ratios in ACRBC can be well described by the linear theory.

Moreover, we have performed checks on the outward displacement of the critical modes
given by LSA. Figures 8(b)–8(d) show the instantaneous temperature perturbation fields
that are denoted in figure 8(a). Different initial modes can be found in the linear stage. For
η = 0.3, when the shear is weak (Rig = 10), the perturbations develop in the entire space.
Since this is not a critical mode, many pairs of hot and cold plumes can be observed.
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Figure 8. (a) Time series of the mean perturbation energy E′
k = 〈|u′|2〉V/2 for three cases with (η,Rig) =

(0.3, 1), (0.3, 10) and (0.7, 1) at Ra = 107. The dashed lines represent the predictions of LSA. (b–d) The
perturbation temperature fields at the instants marked in panel (a) for corresponding cases.

These plumes are elongated in the azimuthal direction by shear, which is similar to the
modes obtained by LSA. Under the strong shear (Rig = 1), however, perturbations develop
only in parts close to the outer cylinder, while perturbations close to the inner cylinder are
suppressed. Correspondingly, in a large radius ratio system under the same strong shear
(η = 0.7,Rig = 1), the perturbations still occupy the whole domain. These phenomena
are consistent with the LSA results.

4.2. Flow structures
When the perturbations develop further to form convection, a statistically steady state can
be found. In this section, we focus on the flow structures in this state. Figure 9 shows
some typical snapshots of the instantaneous temperature field on the r − ϕ plane with
increasing shear strength under η = 0.3 and 0.7 at Ra = 106. Without shear, two pairs of
convection rolls appear at η = 0.3 while seven pairs appear at η = 0.7. The fact that more
pairs of convection rolls form at larger η has been confirmed by previous LSA. Due to the
Coriolis force, the cold and hot plumes turn to the right when crossing the bulk region,
breaking the symmetry of one roll pair. The single roll of a pair in the plume deflection
direction becomes larger and the other becomes smaller (Wang et al. 2022). When the
shear is applied, the movement direction of the two walls aligns precisely with the rotation
direction of the larger roll, thereby further enhancing the asymmetry. Consequently,
as the shear strengthens, the convection rolls gradually diminish until they cease to
exist.
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Figure 9. Typical snapshots of the instantaneous temperature field on the r − ϕ plane at Rig = ∞, 10, 5, 2, 1
for (a–e) η = 0.3 and ( f –j) η = 0.7. Ra = 106.

Since there are fewer convection rolls for a small radius ratio, they quickly disappear
when shear becomes stronger. For η = 0.3, only one strong cold plume and several hot
plumes remain at Rig = 5, as shown in figure 9(c). Due to the high temperature of the bulk
regime, the hot plume is not easily observed compared with the cold plume. In fact, there is
a rising hot plume immediately adjacent to the cold plume, and the two form a convection
roll. With the shear of the boundary, the plumes will move azimuthally. The number of
hot temperature perturbations near the outer wall seems to be greater than that of the
temperature perturbations near the inner wall because the surface of the outer cylinder is
much larger than the surface of the inner cylinder, which is one of the manifestations of
the asymmetry in ACRBC. With the further enhancement of the shear, the cold plume
disappears, while significant long tilting hot plumes derive from the outer cylinder. This
phenomenon again validates the outward shift of the critical modes discovered in the LSA,
which indicates that the thermal convection pattern is also affected by the inhomogeneous
distribution of the shear, and the influence is more pronounced at small radius
ratios.

Under η = 0.7, since more convection roll pairs exist without shear; their disappearance
occurs at smaller Rig. Until Rig = 1, although no significant convection rolls are present,
there are still many plumes detached from both the inner and outer cylinders, as shown in
figure 9( j). This is partly due to the large inner wall area of the system with large η, which
therefore allows for more plumes to be generated, and partly because the shear effect is
more uniform, which means that the shear on the inner cylinder side is not as strong as
that in the case with small η. When the shear is further enhanced, the plumes on the inner
and outer cylinder surfaces are further suppressed as well.

In the snapshots of the temperature field, differences in the bulk temperatures for
different η are another concern. For ACRBC without shear, the bulk temperature increases
from θm = 0.5 as η decreases from 1. The enhancement of bulk temperature is caused
by the asymmetry of ACRBC in the radial direction, and the effect of the radius ratio
on the asymmetric temperature distribution is well described by Wang et al. (2022). In
the sheared ACRBC system, this asymmetry has more profound implications for the flow
dynamics. In figure 10 we plot the averaged temperature profiles of different Rig under
η = 0.3 and 0.7. It can be seen that at weak shear, the bulk temperature at η = 0.3 is larger
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Figure 10. Radial distribution of azimuthally and time-averaged temperature 〈θ〉t,ϕ at different shear
strengths for (a) η = 0.3 and (b) η = 0.7. Ra = 106.

than that at η = 0.7. With the increase of shear strength, the uniform bulk temperature
gradually increases, meanwhile, the uniform bulk area shifts towards r̂ = 1. For small
η = 0.3, a significant increase of bulk temperature and the corresponding shift happen
at a larger Rig = 2, where the cold plumes totally disappear, as shown in figure 9(d),
while, for η = 0.7, the bulk temperature remains nearly constant until Rig = 1, indicating
the robust bulk convective mixing. Afterward, the flow suddenly evolves to the laminar
and non-vortical state. Again, this is consistent with the LSA results, illustrating that the
inhomogeneity of the shear distribution affects the sheared ACRBC at different radius
ratios with different intensities in various aspects including stability and flow structures.

4.3. Global transportation
The different flow structures for different η further affect the global transportation in
sheared ACRBC. The heat transfer efficiency and the momentum transfer efficiency in
the statistically steady state are measured by two Nusselt numbers: Nuh and Nuω, defined
as the ratios of the corresponding fluxes of the current system to the fluxes in the laminar
and non-vortical flow cases (Eckhardt et al. 2007; Wang et al. 2022; Zhong et al. 2023)

Nuh =
√

RaPr〈urθ〉t,ϕ,z − ∂〈θ〉t,ϕ,z/∂r
(r ln(η))−1 ,

Nuω = r3[Ra/Pr〈urω〉t,ϕ,z − √
Ra/Pr∂〈ω〉t,ϕ,z/∂r]

2B
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.1)

where ω = uϕ/r is the angular velocity of the fluid, and B is the parameter of the base flow
defined in (3.2a,b). Here, 〈·〉t,ϕ,z represents the temporal-, azimuthal- and axial-averaged
value. In ACRBC without shear, i.e.Ω = 0 or Rig = ∞, Nuh decreases with decreasing η
for a fixed Ra (Wang et al. 2022). Meanwhile, it is known that shear will suppress the heat
transfer efficiency as well (Blass et al. 2020; Zhong et al. 2023). When shear is introduced
in ACRBC, what would be the difference in the relationship of Nu with shear strength
at different η? To make a reasonable comparison of shear strengths for systems with
different η, we still adopt the global Richardson number Rig to represent the shear strength
here.

The variations of the two Nusselt numbers with Rig at different η are illustrated in
figures 11(a) and 11(b) for Ra = 106 and in figures 11(d) and 11(e) for Ra = 107. With the
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Figure 11. Variation of (a,d) Nuh, (b,e) Nuω and (c, f ) γ with Rig at η = 0.3, 0.5, 0.7 and 0.9. The data in the
first row (a–c) are calculated at Ra = 106, while the data in the second row (d–f ) are calculated at Ra = 107.

increase of shear strength (decreasing Rig), Nuh decreases slowly at first and then rapidly
when the flow approaches the marginal state. The value Nuh − 1 in the figures reflects
the extent of heat transfer enhancement compared with heat conduction. This trend holds
for different radius ratios and the two Rayleigh numbers. The transition in the rate of
decline of Nuh can be clearly seen in the logarithmic coordinate system of figures 11(a)
and 11(d), and exactly corresponds to the vanishing of convection rolls, as shown in
figure 9. For example, the rapid decrease of Nuh occurs when Rig < 5 for η = 0.3 and
Rig < 1 for η = 0.7. Therefore, the shear has smaller effects on the heat transfer before the
breaking of the large convection rolls. This means that, for large η with robust convection,
a nearly constant Nuh can hold for a large range of Rig, as can be seen in figures 11(a)
and 11(d).

In the buoyancy-dominated regime of sheared ACRBC, Nuω is smaller than 1, which
means that the drag on the boundaries is smaller than the drag of base flow (Zhong
et al. 2023). For a weak shear, Nuω even becomes negative, indicating that the large
convection rolls push the two cylinders to rotate. Therefore, in figures 11(b) and 11(e),
1 − Nuω is considered, which represents the role of thermal convection in wall motion.
When shear is weak, the values of Nuω are close for different η. With enhanced shear,
1 − Nuω yields the same trend as Nuh − 1, namely decreasing slowly at first and rapidly
afterward. The transition similarly occurs when the convection rolls disappear. Therefore,
the global convection mode holds great significance for both heat and momentum transfer
in sheared ACRBC.

To further investigate the relationship between heat and momentum transfer, we
again adopt the perspective of energy. In the dimensional form, as u∗

ϕ/r
∗ � Ω∗

c in the
buoyancy-dominated regime, the global energy balance of our system can be derived from
(2.1) (Eckhardt et al. 2007; Wang et al. 2022; Zhong et al. 2023)

ε − εlam = σ−2
r Ta(Nuω − 1)+ f (η)Pr−2Ra(Nuh − 1), (4.2)
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where ε = (Ra/Pr)〈(∂iuj + ∂jui)
2〉V,t is the dimensionless mean energy dissipation rate,

εlam is the dimensionless mean energy dissipation rate of the laminar and non-vortical
flow, σr = (1 + η)4/16η2 is the quasi-Prandtl number and f (η) = 2(η − 1)/(1 + η) ln(η)
is a correction factor for the annular geometry. The two terms on the right side represent the
energy injected by shear and buoyancy, respectively. As the momentum Nusselt number
Nuω < 1, the first term on the right side is negative, indicating that the shear consumes
energy and only the buoyancy provides. The ratio γ of the energy consumed by shear and
the energy injected by buoyancy reads

γ = σ−2
r Ta(1 − Nuω)

f (η)Pr−2Ra(Nuh − 1)
= −8η2 ln η(1 − Nuω)
(1 + η)(1 − η)3(Nuh − 1)

PrΩ2. (4.3)

Figures 11(c) and 11( f ) show how γ varies with Rig at different radius ratios for Ra = 106

and 107, respectively. Basically, γ increases with decreasing Rig in an approximate power
law relation. Interestingly, for Ra = 106 and small Rig, the curves representing different
radius ratios, which are separated in the other two figures, collapse together in the γ − Rig
relation, indicating that the energy allocation rules in the flow close to the stable state are
similar for different η. Meanwhile, this implies that Rig is not only applied for the initial
linear instability but also for the fully developed flow field. At larger Rig, the shear is weak
and the convection rolls are strong; γ is larger for smaller η. The reason for this may be
that the nonlinearities of large convection rolls introduce new factors related to η to come
into play, such as the curvature, Coriolis force and the zonal flow (Wang et al. 2022).
Consequently, a single Rig cannot completely describe the effect of different radius ratios
on the heat and momentum transfer of the system. For the cases with Ra = 107, in which
the convection rolls are more intense, the curves representing different η are always slightly
separated. As discussed in § 3, for high Ra, the outward shift of the critical mode and the
confinement of the azimuthal wavelength make the critical Rig vary slightly. Nevertheless,
considering the comprehensive results above, Rig behaves well in characterizing the
overall trend of heat and momentum transfer of sheared ACRBC at different radius
ratios.

5. Conclusion

In the present study, we investigate the effect of the radius ratio on the sheared ACRBC
system by LSA and DNSs. Guided by the description of Zhong et al. (2023), since the
temperature only works as a passive scalar in the shear-dominated regime, we concentrate
on the buoyancy-dominated regime of sheared ACRBC, where the quasi-2-D thermal
convection is gradually suppressed by increasing imposed shear. Through the LSA, we
observe that, as the radius ratio η increases from 0.2 to 0.95, the marginal-state curve
Rac(Ω) shifts along the −Ω direction, which means a smaller Ω is required to stabilize
the flow. Considering the inhomogeneity of the shear strength distribution due to the
geometric asymmetry, a global Richardson number Rig is defined in terms of the most
representative local Richardson number. With the newly defined Rig, the marginal-state
curves under different radius ratios collapse together in the parameter domain (Ra,Rig),
also consistent with the marginal-state curve Rac(Ri) of the wall-sheared RBC in the
streamwise direction. This demonstrates that the stabilization mechanism in the direction
of shear flow is identical for the two systems. In addition, due to the geometrical limitation
of the maximum azimuthal wavelength, the marginal-state curves in sheared ACRBC are
offset from those of the wall-sheared RBC under high-intensity shear.

992 A16-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.543


Radius ratio effect on sheared annular centrifugal RBC

The equivalent aspect ratio of the system at low radius ratios is smaller, which allows
the system to accommodate fewer roll pairs according to the circular roll hypothesis
(Wang et al. 2022). When shear is applied, this causes the convection rolls as well as
the thermal plumes in the system to disappear more quickly, thus allowing the heat
transfer to be drastically suppressed in advance. Meanwhile, the strong asymmetry of
the small radius ratio system causes significant disparity in the quantities of hot and
cold plumes along with temperature elevation in the bulk region, and the imposition of
shear further exacerbates these effects. Interestingly, even if the flow structures differ, the
percentage of buoyant energy consumed by shear varies consistently with Rig for systems
with different radius ratios. This, in turn, indicates that Rig serves as a robust global
parameter.

Moreover, apart from geometric asymmetry, strong shear inhomogeneity can have a
significant impact on the sheared ACRBC of small radius ratios. In instability analysis,
the inhomogeneity of shear leads to the outward displacement of perturbations in
critical modes at high Rayleigh numbers. Meanwhile, it also causes the well-mixed
convection region to shift outward under strong shear, which is reflected by the asymmetric
temperature profiles in the numerical simulations.

By exploring the effect of the radius ratio on the sheared ACRBC system, we
successfully match the stabilization mechanism of sheared ACRBC to that of wall-sheared
RBC and answer the question as to why a stable regime appears in the former. Shear
inhibits the streamwise perturbations and stabilizes the thermal convection, while the
asymmetry of the system and the inhomogeneity of the shear distribution can also
have an important effect on flow characteristics and stability. Moreover, we note that
the global Richardson number we defined for sheared ACRBC works well at a low
Rayleigh number, but it is not a good quantitative description of the instability at high
Rayleigh numbers. How to quantitatively characterize the outward shift of perturbations
and wavelength limitation of the geometry still needs to be explored in the future. In
addition, as the thermal flow in this study is still in the classical regime, extending the
current investigations to the ultimate regime poses an ongoing challenge. Which radius
ratio value is preferable for the ultimate regime study? Does the interaction of shear
and buoyancy change under very strong convection? Despite being limited by the huge
demand for computational resources, this is an interesting question that deserves future
exploration.
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Appendix A. Linear stability analysis details

Below, we provide more details of the LSA. Following (3.1) and (3.2a,b), the flow
field is decomposed into the base flow and perturbation field. Taking the decomposition
into the governing equation (2.1), ignoring the nonlinear term and using the normal
modes form in (3.3), one can get the resulting equation for the radial shape function
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ψ̂(r) = (û(r), p̂(r), θ̂ (r))

(D + r−1)ûr + inr−1ûϕ + ikûz = 0,(
s + inu0

r

)
ûr − 2u0

r
ûϕ = −Dp̂ + Ro−1ûϕ +

√
Pr
Ra

(
∇2ûr − ûr

r2 − 2inûϕ
r2

)

−2(1 − η)

(1 + η)
r

[(
1 + 2u0

Ro−1r

)2

θ̂ + 4θ0

Ro−1r

(
1 + 2u0

Ro−1r

)
ûϕ

]
,

(
s + inu0

r

)
ûϕ +

(
Du0 + u0

r

)
ûr = − in

r
p̂ − Ro−1ûr +

√
Pr
Ra

(
∇2ûϕ − ûϕ

r2 + 2inûr

r2

)
,(

s + inu0

r

)
ûz = −ikp̂ +

√
Pr
Ra

∇2ûz,(
s + inu0

r

)
θ̂ + (Dθ0)ûr = 1√

RaPr
∇2θ̂ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)

where operators D = d/dr and ∇2 = D2 + D/r − n2/r2 − k2 are introduced for
simplification. The equations can be transferred into a generalized eigenvalue problem
with the eigenvalue s (Kang et al. 2017), as

Lψ̂(r) = sBψ̂(r), (A2)

where L and B are the operator matrixes from (A1). The boundary conditions of the
generalized eigenvalue problem come from (2.2), which reads

û(ri) = û(ro) = 0, θ̂ (ri) = θ̂ (ro) = 0. (A3a,b)

Then, this generalized eigenvalue problem is solved by the Chebyshev spectral collocation
method. After discretization on Chebyshev–Gauss–Lobatto collocation points, the
eigenvalue problem is transferred into calculating the generalized eigenvalues and
eigenfunctions of matrixes, which can be easily solved with a small computational
cost (Yoshikawa et al. 2013; Meyer et al. 2015). In our work, the number of
Chebyshev–Gauss–Lobatto collocation points N is set at 512 to guarantee good
convergence. After solving the generalized eigenvalue problem, the temporal growth rate s
is solved as the eigenvalue, and the corresponding perturbation mode ψ̂(r) is solved as the
eigenfunction. The mode with maximum real growth rate σ = real(s) over all wavenumber
sets (n, k) is the most unstable mode; once σ > 0, the flow is unstable and this perturbation
mode grows.

Appendix B. Numerical details

The parameters of the main simulations considered in this work are listed in table 1.
The columns from left to right indicate the Rayleigh number Ra, the radius ratio η,
the non-dimensional rotation velocity difference Ω , the global Richardson number Rig,
the resolution in the radial and azimuthal direction (Nr,Nϕ), the Nusselt number of
heat transfer Nuh and its relative difference of two halves εNuh , the Nusselt number of
momentum transfer Nuω and its relative difference of two halves εNuω and the posterior
check on the maximum grid spacing Δg by the Kolmogorov scale ηK and the Batchelor
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Radius ratio effect on sheared annular centrifugal RBC

No. Ra η Ω Rig Nr Nϕ Nuh εNuh Nuω εNuω Δg/ηK Δg/ηB

1 106 0.3 0 ∞ 128 1024 6.410 0.05 % — — 0.24 0.50
2 106 0.3 0.1 81.76 128 1024 6.501 0.18 % −0.667 0.42 % 0.24 0.50
3 106 0.3 0.2 20.44 128 1024 5.949 0.05 % −0.174 0.19 % 0.23 0.48
4 106 0.3 0.286 10.00 128 1024 5.808 0.80 % 0.202 1.20 % 0.23 0.47
5 106 0.3 0.4 5.11 128 1024 5.312 0.53 % 0.582 1.47 % 0.22 0.46
6 106 0.3 0.404 5.01 128 1024 5.303 1.17 % 0.569 1.71 % 0.22 0.46
7 106 0.3 0.6 2.27 128 1024 2.876 1.21 % 0.812 0.45 % 0.17 0.35
8 106 0.3 0.639 2.00 128 1024 2.521 0.65 % 0.859 1.28 % 0.16 0.33
9 106 0.3 0.8 1.28 128 1024 1.823 0.55 % 0.938 1.39 % 0.13 0.28
10 106 0.3 0.904 1.00 128 1024 1.527 1.52 % 0.969 3.89 % 0.12 0.25
11 106 0.3 1.0 0.82 128 1024 1.318 0.46 % 0.983 1.95 % 0.10 0.21
12 106 0.3 1.167 0.60 129 1025 1.083 3.10 % 0.997 1.80 % 0.07 0.15
13 106 0.3 1.2 0.57 128 1024 1.064 3.30 % 0.998 0.44 % 0.07 0.14
14 106 0.5 0 ∞ 128 1536 7.286 0.47 % — — 0.26 0.53
15 106 0.5 0.05 59.79 128 1536 7.008 0.05 % −1.083 1.97 % 0.25 0.52
16 106 0.5 0.1 14.95 128 1536 6.775 0.79 % −0.390 1.15 % 0.25 0.51
17 106 0.5 0.2 3.74 128 1536 6.285 0.64 % 0.195 1.92 % 0.23 0.48
18 106 0.5 0.3 1.66 128 1536 5.252 2.00 % 0.556 3.72 % 0.21 0.44
19 106 0.5 0.4 0.93 128 1536 2.077 1.27 % 0.915 2.66 % 0.14 0.30
20 106 0.5 0.5 0.60 128 1536 1.257 3.22 % 0.986 4.10 % 0.10 0.21
21 106 0.7 0 ∞ 128 2560 7.453 0.20 % — — 0.26 0.54
22 106 0.7 0.02 81.42 128 2560 7.481 0.64 % −0.753 1.15 % 0.26 0.54
23 106 0.7 0.03 36.19 128 2560 7.368 0.05 % −0.551 0.06 % 0.26 0.53
24 106 0.7 0.05 13.03 128 2560 7.142 0.88 % −0.274 0.69 % 0.25 0.52
25 106 0.7 0.057 10.02 128 2560 7.022 0.77 % −0.243 1.38 % 0.25 0.52
26 106 0.7 0.081 4.96 128 2560 6.779 1.05 % −0.024 1.56 % 0.24 0.50
27 106 0.7 0.1 3.26 128 2560 6.662 0.91 % 0.131 1.42 % 0.24 0.49
28 106 0.7 0.128 1.99 128 2560 6.332 0.53 % 0.342 0.29 % 0.23 0.48
29 106 0.7 0.15 1.45 128 2560 6.142 1.72 % 0.464 1.11 % 0.22 0.46
30 106 0.7 0.17 1.13 128 2560 5.371 0.54 % 0.598 1.00 % 0.21 0.44
31 106 0.7 0.181 0.99 128 2560 4.731 1.41 % 0.675 1.10 % 0.20 0.42
32 106 0.7 0.2 0.81 128 2560 2.171 1.52 % 0.905 1.53 % 0.15 0.31
33 106 0.7 0.23 0.62 128 2560 1.413 1.48 % 0.978 5.44 % 0.12 0.24
34 106 0.7 0.233 0.60 128 2560 1.320 5.98 % 0.982 2.46 % 0.11 0.22
35 106 0.9 0 ∞ 128 7680 7.769 0.07 % — — 0.26 0.55
36 106 0.9 0.007 55.92 128 7680 7.569 0.05 % −0.324 0.02 % 0.26 0.54
37 106 0.9 0.01 27.40 128 7680 7.354 0.27 % −0.254 0.47 % 0.26 0.53
38 106 0.9 0.02 6.85 128 7680 6.997 0.37 % −0.060 1.09 % 0.25 0.51
39 106 0.9 0.03 3.04 128 7680 6.749 0.82 % 0.157 0.27 % 0.24 0.50
40 106 0.9 0.05 1.10 128 7680 5.856 0.04 % 0.562 0.51 % 0.22 0.45
41 106 0.9 0.07 0.56 128 7680 3.557 0.04 % 0.837 0.01 % 0.17 0.36
42 107 0.3 0 ∞ 128 1024 11.644 0.79 % — — 0.51 1.06
43 107 0.3 0.1 81.76 128 1024 10.474 0.71 % −2.755 1.54 % 0.49 1.02
44 107 0.3 0.2 20.44 128 1024 10.523 0.68 % −0.843 1.55 % 0.49 1.01
45 107 0.3 0.4 5.11 128 1024 9.260 1.49 % 0.114 2.59 % 0.46 0.95

Table 1. For caption see next page.
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No. Ra η Ω Rig Nr Nϕ Nuh εNuh Nuω εNuω Δg/ηK Δg/ηB

46 107 0.3 0.6 2.27 128 1024 7.078 0.26 % 0.390 1.11 % 0.41 0.84
47 107 0.3 0.8 1.28 128 1024 2.209 0.23 % 0.895 6.46 % 0.25 0.53
48 107 0.3 1 0.82 128 1024 1.561 2.94 % 0.961 6.70 % 0.20 0.41
49 107 0.3 1.2 0.57 128 1024 1.279 4.30 % 0.989 13.86 % 0.18 0.36
50 107 0.5 0 ∞ 128 1536 13.288 0.36 % — — 0.54 1.12
51 107 0.5 0.05 59.79 128 1536 13.512 0.43 % −2.555 0.62 % 0.54 1.12
52 107 0.5 0.1 14.95 128 1536 12.422 0.57 % −1.552 0.03 % 0.52 1.08
53 107 0.5 0.2 3.74 128 1536 12.199 1.55 % −0.470 2.42 % 0.50 1.04
54 107 0.5 0.3 1.66 128 1536 10.330 1.01 % 0.348 1.37 % 0.48 0.99
55 107 0.5 0.4 0.93 128 1536 7.515 1.09 % 0.503 3.15 % 0.41 0.84
56 107 0.5 0.45 0.74 128 1536 3.119 0.74 % 0.841 0.86 % 0.29 0.61
57 107 0.5 0.5 0.60 128 1536 1.452 12.70 % 0.969 14.48 % 0.19 0.40
58 107 0.7 0 ∞ 128 2560 13.971 0.14 % — — 0.55 1.14
59 107 0.7 0.02 81.42 128 2560 14.402 0.14 % −2.399 1.58 % 0.55 1.15
60 107 0.7 0.05 13.03 128 2560 13.499 0.14 % −1.613 1.18 % 0.53 1.11
61 107 0.7 0.1 3.26 128 2560 12.110 0.03 % −0.235 7.07 % 0.51 1.05
62 107 0.7 0.15 1.45 128 2560 13.525 0.76 % −0.452 1.20 % 0.49 1.02
63 107 0.7 0.2 0.81 128 2560 9.362 0.39 % 0.381 1.80 % 0.44 0.90
64 107 0.7 0.23 0.62 128 2560 5.555 1.31 % 0.665 1.16 % 0.35 0.73
65 107 0.9 0 ∞ 128 7680 14.640 0.16 % — — 0.56 1.16
66 107 0.9 0.007 55.92 128 7680 14.372 0.14 % −1.696 0.81 % 0.55 1.15
67 107 0.9 0.01 27.40 128 7680 14.715 0.02 % −1.357 0.84 % 0.55 1.15
68 107 0.9 0.017 9.48 128 7680 13.922 0.48 % −1.183 0.75 % 0.54 1.12
69 107 0.9 0.03 3.04 128 7680 12.234 0.47 % −0.109 1.01 % 0.51 1.06
70 107 0.9 0.05 1.10 128 7680 11.377 0.76 % 0.360 3.90 % 0.49 1.01
71 107 0.9 0.07 0.56 128 7680 6.450 0.46 % 0.675 0.09 % 0.38 0.79

Table 1. Simulation parameters.

scale ηB. The Kolmogorov scale is estimated by the criterion ηK = (ν/ε)1/4, where ε is
the mean energy dissipation rate calculated by (4.2). The statistical errors are estimated
by the differences between the first half and the second half, as εNuh,ω = |(〈Nuh,ω〉0−T/2 −
〈Nuh,ω〉T/2−T)/(Nuh,ω − 1)|.
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