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Experiments and spatiotemporal stability analysis are carried out to study the global
oscillations in laminar low-density round jets with parabolic velocity profiles. The
experimental results of laminar low-density jets with parabolic velocity profiles exhibit
global axisymmetric oscillations. The spatiotemporal stability results based on base
profiles from numerical simulations are consistent with the present experimental results.
These results differ from the prediction of stability study by Coenen et al. (Phys. Fluids,
vol. 20, 2008, p. 074104). They reported that the low-density jets with near parabolic
velocity profiles show global helical oscillations. It is observed that the method used
by Coenen et al. is not able to predict the nature of global oscillations observed in
experiments for low-density jets with near parabolic profiles. The present spatiotemporal
stability results demonstrate that the base flows from Navier–Stokes equations are required
to predict the critical conditions observed in experiments for low-density jets with near
parabolic velocity profiles. The breakdown distance of globally unstable low-density jets
scales with (Re − Rec)

−1/2 (Rec is the critical Reynolds number), consistent with the
scaling law obtained from the nonlinear global mode of the Ginzburg–Landau equation.

Key words: absolute/convective instability, jets, free shear layers

1. Introduction

Low-density jets and their stability have been a topic of interest for many years due to one
of the archetypes of flows having global oscillations. The globally unstable low-density
jet has two distinct features, viz. narrow peaks in the frequency spectrum due to the
appearance of regular periodic structure in the jet and a dramatic mixing in the near field,
compared with the globally stable jet (Sreenivasan, Raghu & Kyle 1989; Monkewitz et al.
1990; Kyle & Sreenivasan 1993; Hallberg & Strykowski 2006).
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Based on the experimental studies, it is now understood that the significant parameters
controlling the global oscillatory state in low-density jets are the jet Mach number (M), the
jet Reynolds number (Re), the non-dimensional momentum thickness of the inlet velocity
profile (D/θ0, where D is a nozzle diameter), the ratio of jet to ambient density (S) and
the ambient coflow or counterflow (Sreenivasan et al. 1989; Monkewitz et al. 1990; Kyle
& Sreenivasan 1993; Hallberg et al. 2007; Zhu, Gupta & Li 2017). The early work of
Monkewitz & Sohn (1988) demonstrated that the global oscillations in low-density jets
are related to the absolute instability of low-density jets. Subsequent stability studies
investigated the effect of parameters (M, Re, D/θ0, and coflow or counterflow) on the
absolute instability of low-density jets (Monkewitz & Sohn 1988; Jendoubi & Strykowski
1994; Lesshafft & Huerre 2007; Nichols, Schmid & Riley 2007; Srinivasan, Hallberg &
Strykowski 2010). Direct numerical simulation (DNS) and large eddy simulation (LES)
of low-density jets using synthetic inlet velocity and density profiles have reproduced the
experimental results qualitatively (Lesshafft et al. 2006; Lesshafft, Huerre & Sagaut 2007;
Nichols et al. 2007; Foysi, Mellado & Sarkar 2010; Boguslawski, Tyliszczak & Wawrzak
2016). Stability and DNS studies showed that the baroclinic torque is responsible for the
global oscillations in low-density jets (Lesshafft & Huerre 2007; Lesshafft et al. 2007).
Experimental studies demonstrated that the global oscillations in low-density jets could be
altered using coflow (Hallberg et al. 2007) and acoustic excitation (Hallberg & Strykowski
2008; Li & Juniper 2013).

Experimental studies on rectangular low-density jets using helium–air mixtures exhibit
global oscillations below the critical density ratio of 0.7 (Raynal et al. 1996), whereas
the critical density ratio for hot air jets injected into a cold air surrounding is 0.9
(Yu & Monkewitz 1993). Raynal et al. (1996) demonstrated using synthetic velocity
and density base profiles (hyperbolic tangent profiles) that the absolute growth rate
increases with a decrease in the relative distance between the inflection points of the
velocity and density profile and reaches a maximum when the inflection points coincide.
The relative distance between the inflection points is larger for helium jets than hot
jets, and they hypothesized that this might be a reason for the lower critical density
ratio for the helium–air jets compared with the hot jets. Similar results are observed
for round low-density jets (Nichols et al. 2007; Srinivasan et al. 2010). Based on
sensitivity studies, Lesshafft & Marquet (2010) showed that the absolute instability of
a jet is enhanced by (i) a strong velocity gradient in the low-velocity region of the
shear layer and (ii) a step-like density variation near the maximum shear. They showed
that homogeneous jets (S = 1) could also be absolutely unstable for specific velocity
profiles.

Coenen and co-workers (Coenen, Sevilla & Sánchez 2008; Coenen & Sevilla 2012)
carried out spatiotemporal stability studies on low-density jets using base flows close to
the experimental conditions. They have used the laminar axisymmetric boundary layer
equations to obtain the jet inlet velocity profiles and their downstream evolution. The
inviscid stability results (Coenen et al. 2008) based on the boundary layer base flows
predicted that the critical density ratio of low-density jets with D/θ0 ≈ 20 is 0.9, which
is higher than the maximum critical density ratio of 0.7 reported from model profiles
(hyperbolic tangent profiles). The viscous stability results showed that the critical density
ratio of hot jets is higher than the isothermal helium–air jets indicating that the hot jets
are more unstable than the helium–air jets, which is consistent with experimental results
(Coenen & Sevilla 2012). Large eddy simulations of hot jets with the Blasius inlet velocity
profiles are in better agreement with experimental results than the hot jets with hyperbolic
inlet velocity profiles (Boguslawski et al. 2016).

941 A44-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.328


Global oscillations in low-density round jets

Inlet condition Flow field

Paper Stability Jet type Velocity Density/ Velocity Density/
Temperature Temperature

Monkewitz & Sohn (1988) Local Hot — — Model C–B relation
Lesshafft et al. (2006, 2007) Local Hot Model C–B relation BL solution C–B relation
Nichols et al. (2007) Local Hot Model C–B relation N–S mean N–S mean
Coenen et al. (2008) Local Hot BL solution Model BL solution BL solution
Coenen & Sevilla (2012) Local Light BL solution Actual BL solution BL solution

-do- Local Hot BL solution Model BL solution BL solution
Coenen et al. (2017) Global Light BL solution Actual N–S base N–S base
Present study Local Light BL solution Actual N–S base N–S base

Table 1. Summary of base state velocity and density (light jets)/temperature (hot jets) profiles used in stability
studies on low-density jets. The BL solution and C–B relation denote profiles from the boundary layer equations
and the Crocco–Busemann relation, respectively, whereas the N–S base and N–S mean denote base flow and
mean flow from the Navier–Stokes equations, respectively.

Studies by Raynal et al. (1996), Coenen et al. (2008), Lesshafft & Marquet (2010) and
Coenen & Sevilla (2012) demonstrated that D/θ , which is an integral parameter of the
velocity/density profile, is an inadequate parameter for the stability characteristics. The
precise shapes of the velocity and density profiles are essential for computing the stability
characteristics accurately. Most of the stability studies in the literature use synthetic/model
velocity and density profiles as a base state, and in numerical simulations (DNS), synthetic
velocity and density profiles are used as the inlet conditions to simulate low-density
jets. The synthetic velocity and density profiles are either given independently or related
through the Crocco–Busemann relation in the above studies. A summary of the base state
velocity and density profiles (inlet and flow field) used in the stability of low-density jets
is given in table 1.

The theory for predicting a nonlinear global mode and its characteristics from a
local spatiotemporal stability analysis is favourably compared with experimental results
(Chomaz 2004, 2005). The criteria for the onset of a nonlinear global mode and its
frequency depends on the nature of the absolutely unstable region observed in the local
analysis. A pocket of the absolutely unstable region away from the nozzle exit was shown
to excite a nonlinear global mode, and at critical conditions, the corresponding global
frequency matches with the absolute frequency (ω0,i) of the location where the absolute
growth rate changes from a negative to positive (Lesshafft et al. 2006). The absolutely
unstable region bounded by the nozzle exit required a minimum length of the absolutely
unstable region to sustain a nonlinear global mode, and at critical conditions, the frequency
of global oscillations is equal to the absolute frequency at the nozzle exit (Lesshafft et al.
2006, 2007; Coenen & Sevilla 2012).

The spatiotemporal stability results of Coenen et al. (2008) showed that the absolute
growth rate of the helical mode is higher than the axisymmetric mode for low-density jets
with near parabolic velocity profiles (D/θ0 ≈ 15). The range of D/θ0 at which the helical
mode is predicted to be dominant over the axisymmetric mode from the stability analysis is
lower than the range of D/θ0 studied in experiments (Kyle & Sreenivasan 1993; Hallberg
& Strykowski 2006). Global stability analysis (Coenen et al. 2017) and DNS (Lendínez
2018) of low-density jets with parabolic velocity profiles (D/θ0 = 15) predicted that the jet
is globally unstable for the axisymmetric mode. Note that only axisymmetric modes were
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considered in the global stability analysis and DNS. Hence, it is not known whether the
helical mode is globally unstable for low-density jets with parabolic velocity profiles. Satti
& Agrawal (2006) investigated the role of gravity in helium jets (both buoyant and inertial
jets) by numerical simulations using the unsteady axisymmetric laminar Navier–Stokes
equations. They showed that the inertial helium jet with the parabolic velocity profile at
Re = 1600 (Re = ρ∗

j U∗
j D/μ∗

j , where ρ∗
j , U∗

j and μ∗
j are dimensional density, velocity and

dynamic viscosity at the nozzle exit centreline, respectively) exhibits global oscillations.
The Reynolds number of this globally unstable jet is much lower than the critical Reynolds
number (Re ≈ 3370) predicted by the global stability analysis (Coenen et al. 2017) and
the critical Reynolds number (Re ≈ 2300) from the DNS (Lendínez 2018). Recently,
based on experimental studies, Ren & Li (2018a,b) reported global helical oscillations
in low-density jets with thick shear layers. They observed that global helical oscillations
are weaker than the global axisymmetric oscillations. Unfortunately, only the abstract
of this work is available, and there is no information available regarding the range
of parameters (Re, S and D/θ0) at which the global helical oscillations are possible.
This experimental result supports the spatiotemporal stability result of Coenen et al.
(2008).

1.1. Motivation and objective
The available stability and numerical results in the literature related to low-density jets
with parabolic velocity profiles are not consistent with each other. All the experimental
studies on low-density jets in the literature deal with inlet velocity profiles far from
parabolic (Sreenivasan et al. 1989; Monkewitz et al. 1990; Kyle & Sreenivasan 1993;
Hallberg & Strykowski 2006; Li & Juniper 2013; Zhu et al. 2017). To the best of the
authors’ knowledge, there is no systematic experimental study available in the literature
related to low-density jets with near parabolic velocity profiles apart from the work of
Ren & Li (2018a,b), where only the abstract is available. Even in isothermal jets, limited
experimental studies are available on jets with parabolic profiles in the literature (Ito &
Seno 1979; Tucker & Islam 1986; Lai 1991; Kozlov et al. 2008) due to the requirement of
a long nozzle length for generating the parabolic velocity profile at the nozzle exit (Joshi
& Vinoth 2018). In most practical applications, the injector length is long enough for the
velocity profile at the injector/nozzle exit to approach the fully developed parabolic profile
(D/θ0 ≈ 15).

The objectives of this work are (i) to perform experiments on laminar low-density
round jets with parabolic and near parabolic velocity profiles to understand the
characteristics of global oscillations, and (ii) to perform local spatiotemporal stability
analysis on base profiles from the Navier–Stokes equations to complement the
experimental results and clarify the contradicting stability results available in the
literature.

The paper is organized as follows. Details about local stability analysis such
as governing equations, linearized stability equations and numerical procedures to
compute the stability results are discussed in § 2. The description of the experimental
set-up, measurement methods and data processing details are given in § 3. The
experimental results are discussed in § 4. The stability results and its comparison
with the present experiments as well as with the literature are discussed in § 5.
Conclusions are given in § 6. Appendix A contains the procedure for hotwire
calibration. Appendix B gives the linearized perturbation equations and boundary
conditions.
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2. Local linear stability analysis

2.1. Governing equations
The low-Mach-number approximation of the calorically perfect compressible Navier–
Stokes equations are used to model low-density jets. This approximation suppresses the
density change due to compressibility effects but accounts for the density change due to the
temperature change and mixing of species. These equations are formally derived using the
asymptotic expansion of non-dimensional primitive variables in ε = γ M2 and imposing
ε → 0. More details about the derivation can be found in Mcmurtry, Riley & Metcalfe
(1989), Nichols et al. (2007) and Chandler (2011). In the present study an isothermal
helium–air mixture is injected into a quiescent ambient. The non-dimensional form of
the isothermal low-Mach-number version of governing equations (mass, momentum and
species) are given as (Bharadwaj & Das 2017)

∂ρ

∂t
+ ∇ · (ρ u) = 0, (2.1)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p +
(

S
Re μr

) {
∇ · [μ(∇u + ∇uT)] − 2

3
∇(μ∇ · u)

}

+(1 − ρ)
1

Fr2 êx, (2.2)

ρ

(
∂Y
∂t

+ u · ∇Y
)

= 1
ReSc

∇ · (ρ∇Y), (2.3)

where u, ρ, p, μ, Y are non-dimensional velocity vector (ux, ur and uθ in x, r and θ

direction), density, pressure, viscosity and mass fraction of helium, respectively, and the
corresponding reference scales used for non-dimensionalisation are velocity at the jet exit
centreline (U∗

j ), ambient density (ρ∗∞), ambient pressure (p∗∞), ambient viscosity (μ∗∞)
and mass fraction of helium at the jet exit (Yj), respectively. The nozzle diameter (D)
is used as the reference length scale. Note that we use (.)∗ for dimensional quantities
with the exceptions of L (length of the nozzle), D (nozzle diameter) and θ (momentum
thickness). The êx denotes the unit vector in the streamwise direction. The gravity
acts opposite to the streamwise direction. The non-dimensional parameters appearing
in the governing equations (2.1)–(2.3) are Reynolds number Re = ρ∗

j U∗
j D/μ∗

j , Froude
number Fr = U∗

j /
√

g∗D, density ratio S = ρ∗
j /ρ∗∞, Schmidt number Sc = μ∗

j /(ρ
∗
j D∗)

and viscosity ratio μr = μ∗
j /μ

∗∞. The term g∗ and D∗ are acceleration due to gravity
and binary mass diffusive coefficient between air and helium, respectively. In this study,
D∗ is assumed to be constant. The number of independent variables are reduced using the
relation among ρ, μ and Y . The state equation with an isothermal and isobaric condition
provides the relation between the mass fraction of helium and the density, Y(ρ) (2.4), and
the Wilke’s formula (Wilke 1950) relates the viscosity with the mass fraction, μ(Y) (2.5),

Y =
1
ρ

− 1

1
S

− 1
, (2.4)

μ = μ12

1 +
[
(1/Yj) − Y

Y

]
φ12

+ 1

1 +
[

Y
(1/Yj) − Y

]
φ21

, (2.5)
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φ12 = MM12

[
1 + √

μ12

(
1

MM12

)1/4
]2

√
8(1 + MM12)

, φ21 = 1
MM12

[
1 +

√
1

μ12
(MM12)

1/4
]2

√
8

(
1 + 1

MM12

) ,

(2.6a,b)

where MM is molecular mass. The terms φ12 and φ21 are constants and a function of
μ12 = μ∗

He/μ
∗
A and MM12 = MM∗

He/MM∗
A. The subscripts He and A denote helium and

air, respectively.

2.2. Linearized stability equations
In linear instability the flow variables are decomposed into base flow quantities and
perturbations as q = q̄ + ε q̃, with ε � 1. In this study, q = [u, p, ρ, μ, Y]T, q̄ =
[ū, p̄, ρ̄, μ̄, Ȳ]T and q̃ = [ũ, p̃, ρ̃, μ̃, Ỹ]T. The decomposed flow variables are substituted
in the governing equations and relations (2.1)–(2.5), and applying base flow equations
and neglecting the higher-order terms result in linearized perturbed equations (2.7)–(2.9)
having three dependent variables (ũ, p̃, ρ̃) and relations (2.10) and (2.11) to connect μ̃ and
Ỹ with ρ̃,

∂ρ̃

∂t
+ ∇ · (ρ̄ũ + ρ̃ū) = 0, (2.7)

ρ̄
∂ũ
∂t

+ ρ̄(ū · ∇ũ + ũ · ∇ū) + ρ̃ū · ∇ū

= −∇p̃ + S
μrRe

∇ ·
[
μ̄(∇ũ + ∇ũT) + μ̃(∇ū + ∇ūT)

]

−2
3

S
μrRe

[∇(μ̄∇ · ũ) + ∇(μ̃∇ · ū)
] − ρ̃

Fr2 êx, (2.8)

ρ̄
∂Ỹ
∂t

+ ρ̄(ū · ∇Ỹ + ũ · ∇Ȳ) + ρ̃ū · ∇Ȳ = 1
Re Sc

∇ · (ρ̄∇Ỹ + ρ̃∇Ȳ), (2.9)

Ỹ =

⎡
⎢⎢⎣

− 1
ρ̄2

1
S

− 1

⎤
⎥⎥⎦ ρ̃ = F̄ρ̃, (2.10)

μ̃ =
[

μ12S12φ12(S12 − 1)

[S12(1 − φ12) + (φ12 − S12)ρ̄]2 − S12φ21(S12 − 1)

[S12(1 − φ21) − (S12φ21 − 1)ρ̄]2

]
ρ̃ = H̄ρ̃,

(2.11)

where S12 = ρ∗
He/ρ

∗
A.

In local parallel stability analysis it is assumed that the base flow is homogenous in x
and θ directions, and the base profiles at a given location are assumed to be a function of
r only, i.e. U(r) and ρ̄(r). The perturbations q̃ are assumed in the following form:

q̃(x, r, θ) = q̂(r) exp(i(kx + mθ − ωt)) + c.c. (2.12)

Here ω = ωr + iωi, k = kr + iki and m are non-dimensional complex angular frequency,
non-dimensional complex wavenumber and integer azimuthal wavenumber, respectively,
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and q̂ denotes the amplitude/eigenfunction of perturbations. Substituting (2.12) into
(2.7)–(2.11) results in a linear system of ordinary differential equations for perturbations
(Appendix B.1). The dispersion relation which relates ω and k can be written as

D(k, ω; Rc) = 0, (2.13)

where Rc denotes control parameters, viz. Re, S and Fr. For a given velocity and density
profile, perturbation equations along with boundary conditions (Appendix B.2) describe
an eigenvalue problem. A non-trivial solution exists for a complex pair (ω, k) that satisfies
the dispersion relation (2.13). In temporal analysis the eigenvalue problem is solved for
a complex ω for a given k, and in spatial analysis the eigenvalue problem is solved for a
complex k for a given ω. The eigenvalue problem is solved for both complex ω and k in
spatiotemporal stability analysis, which is applicable for flow with self-excited oscillations
such as wakes, low-density jet and swirling jets.

2.3. Numerical implementation
The perturbation equations (B1)–(B5) along with boundary conditions (Appendix B.2)
are numerically solved using the pseudospectral collocation method (Khorrami, Malik &
Ash 1989; Schmid & Henningson 2001). In this method the perturbation variables are
expressed by Chebyshev polynomial expansion and discretised at collocation points. The
spatial derivatives in the perturbation equations are replaced by differentiation matrices
(Weideman & Reddy 2000). The far-field boundary conditions are enforced at a large but
finite radial location, r∞ 	 1. The following mapping function is used to transform the
collocation points in r̂ ∈ [−1, 1] to the physical domain r ∈ [0, r∞] (Lesshafft & Huerre
2007):

r = rc

[
1 − r̂

1 − r̂2 + 2rc/r∞

]
. (2.14)

The parameter rc redistributes half of the collocation points in 0 � r � rc centred around
r = rc/2. Based on convergence studies, the number of collocation points N = 400 is used
in the present study. Boundary conditions are implemented using the row replacement
method. The above process results in a generalized eigenvalue problem for temporal
stability analysis and a polynomial eigenvalue problem for spatial analysis, which can be
converted to a generalized eigenvalue problem using the linear companion matrix method
(Bridges & Morris 1984). This generalized eigenvalue problem is solved using the QZ
algorithm in Matlab. Spurious eigenvalues are identified and removed using methods
proposed by Müller & Kleiser (2008).

The absolute/convective nature of a flow can be obtained from a response of the flow
to an impulsive forcing at a given position and time. The flow is stable if the response
decays in all reference frames. If the flow is unstable, the disturbance grows in any one
of the frames of reference. If the flow is unstable in a frame of reference other than
the laboratory frame, it is called convectively unstable, and if the flow is unstable in
the laboratory frame, it is called absolutely unstable. The absolute/convective nature of
the flow is characterised by the absolute growth rate (ω0,i) of the dominant valid saddle
in the complex k plane in the laboratory frame, i.e. ω0,i > 0 and ω0,i < 0 denote the
absolutely and the convectively unstable flow, respectively (Huerre & Monkewitz 1985,
1990; Huerre & Rossi 1998; Huerre 2002). The location of saddle points and its (k0, ω0)
values can be obtained by either temporal or spatial stability analysis using complex
k and ω, respectively (Schmid & Henningson 2001). The temporal stability analysis is
used to obtain saddles in the k plane, and spatial stability analysis is used to check the
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validity of the saddles based on Briggs–Bers conditions (Huerre & Rossi 1998; Schmid &
Henningson 2001). The dominant saddle is tracked along the streamwise direction using
the three-point method (Deissler 1987; Meliga, Sipp & Chomaz 2008). The spatiotemporal
stability code is validated with the results of Jendoubi & Strykowski (1994), Srinivasan
et al. (2010) and Coenen et al. (2008, 2017).

3. Experimental details

3.1. Experimental set-up
The experimental set-up used to study low-density jets is schematically shown in figure 1.
The low-density jets are created by premixing helium and nitrogen gases in a mixing
chamber to ensure proper mixing of gases before entering the settling chamber, in
proportion to the required density ratio (S = ρ∗

j /ρ∗∞). The gas mixture is passed into a
stainless steel cylindrical vertical settling chamber of height 200 mm and diameter 60 mm
through four equidistant radial inlets of diameter 8 mm located near the bottom of the
settling chamber. This arrangement ensures uniform inflow into the settling chamber.
The flow is conditioned in the settling chamber using a honeycomb structure and three
wire meshes; one placed before and two after the honeycomb structure. An axisymmetric
constant area seamless stainless steel tube of diameter (D) 4 mm with a wall thickness of
1 mm is used as a nozzle to generate jets. The tube is flush mounted with a plate, and this
arrangement is fixed at the top of the settling chamber. The flow from the settling chamber
enters the tube through a sharp-edged contraction (90◦ angle) with an area contraction ratio
of 234 : 1 (figure 1). Many studies in the literature have used a sharp-edged contraction
at the nozzle inlet to study the dynamics of jets (Ito & Seno 1979; Zaman & Seiner
1990; Mi, Nobes & Nathan 2001; Grandchamp & Van Hirtum 2013; Lemanov et al.
2020). A tube with a length to diameter ratio (L/D) of 175 is used to generate jets with
parabolic velocity profiles. This L/D ratio is sufficient to produce laminar fully developed
parabolic velocity profiles at the tube exit for up to Re ≈ 6000 (Joshi & Vinoth 2018).
In addition to the tube of L/D = 175, two more tubes with L/D = 8 and 36 are also
used to generate jets with inlet velocity profiles of D/θ0 > 15. The range of parameters
studied in these experiments are: Re � 4600, 0.138 � S � 0.34 and 15 � D/θ0 � 35. The
buoyancy and compressible effects have negligible influence on jet dynamics due to the
small Richardson number (Ri = g∗D(ρ∗∞ − ρ∗

j )/ρ∗
j U∗2

j < 2.4 × 10−4) and Mach number
(M = U∗

j /c∗
j < 0.13), respectively.

3.2. Measurement methods
The global jet dynamics is studied through the high-speed schlieren flow visualization. A
Z-type schlieren arrangement (Settles 2001) is used, with two spherical mirrors of diameter
203.2 mm (8′′) and focal length of 1219.2 mm (48′′), set 4 m apart at an angle of 2◦ to the
central axis. Light from a white light LED (Luminous CBT-140) passed through a 1 mm
pinhole placed at the focus of the first mirror. Images are focused using a planoconvex
lens of 500 mm focal length and acquired using a high-speed camera (Phantom v1210)
at 60 000 fps, which is more than 10 times the frequency of interest, for a resolution of
256 × 640 pixels with an exposure of 6 μs for 1 s.

A hotwire anemometer (Dantec StreamWire Pro CTA) with a single sensor normal wire
probe (55P11) is used to measure mean velocity profiles and velocity fluctuations. An
automated traverse with a linear resolution of 0.625 μm is mounted on a separate frame
next to the experimental set-up and used to traverse the hotwire probe across the nozzle
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Figure 1. Schematic diagram of the experimental set-up.

diameter in steps of 50 μm to obtain the velocity profiles. Data are collected for 8 s after the
wait of 2 s at each location and acquired using a NI-PXIe-6366 with a BNC-2110 connector
box through a PXIe-8820 embedded controller. The velocity profiles at the nozzle exit are
measured by a calibrated hotwire at 0.125D downstream from the nozzle exit using pure
air. The low-velocity corrections are applied to the hotwire calibration using the method
described in Appendix A, which is an improvement of the method proposed by Johnstone,
Uddin & Pollard (2005). An uncalibrated hotwire probe is placed in the jet centreline at
a distance of 1.0D from the nozzle exit to study the jet dynamics. Data are collected at
a sampling rate of 60 kHz for 5 s, which are subdivided into multiple records to which
Fourier transform is applied separately, and results are averaged to obtain the frequency
spectrum.

4. Experimental results

4.1. Inlet flow condition
The normalised mean exit velocity (U = U∗/U∗

j ) along the radial direction (r = r∗/D)
from the nozzle with L/D = 8 and L/D = 175 is shown in figure 2(a). The exit velocity
profiles from the nozzle with L/D = 175 closely match with the parabolic profile (D/θ0 =
15) up to Re ≈ 4200, after which the velocity profiles are not laminar. This transition
Reynolds number is similar to the transition Reynolds number observed in the literature for
a pipe flow with parabolic velocity profiles (Wygnanski & Champagne 1973; Wygnanski,
Sokolov & Friedman 1975; Zaman & Seiner 1990; Grandchamp & Van Hirtum 2013). The
top-hat velocity profiles are observed for the nozzle with L/D = 8. The velocity profiles
from the nozzle with L/D = 8 are self-similar in the boundary layer coordinates (r∗/δ,
where δ is boundary layer thickness) and closely match the Blasius profile (figure 2b).
This result indicates that the sharp inlet of the nozzle does not influence the nozzle exit
velocity profiles. This result is consistent with the literature (Kashi & Haustein 2018),
where it is reported that the nozzle exit velocity profiles are not influenced by a sharp
inlet if L/(D Reav) > 0.0015 (Reav is Reynolds number based on average velocity and
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Figure 2. (a) Normalized mean velocity profiles with radial distance, (b) comparison of velocity profiles
with the Blausis profile, (c) non-dimensional momentum thickness (D/θ0) variation with the square root of
the Reynolds number, and (d) normalized velocity fluctuations. The dashed lines in (a) are profiles from the
solutions of the boundary layer equations inside an axisymmetric pipe, and the continuous line in (a) is from
the parabolic velocity profile. The data are taken at the nozzle exit (x = 0.125) using a hotwire anemometer
with air as the jet fluid (S = 1).

nozzle diameter). For the maximum average Reynolds number (Reav = 2300) studied in
the present experiments, the above condition gives L/D = 3.45, which is lower than the
minimum L/D (L/D = 8) used in the present study.

The self-similar laminar boundary layer profile (Blasius profile) is invariant, so the
laminar velocity profile at the nozzle exit can be uniquely represented by D/θ0. The
non-dimensional momentum thickness D/θ is calculated using (4.1),

θ

D
=

∫ ∞

0
U(r) (1 − U(r)) dr. (4.1)

The velocity profiles are measured close to the nozzle exit (x = 0.125) using the hotwire
anemometer. The experimentally measured velocity profiles of a jet near the nozzle exit
have a shear layer due to an interaction with ambient air in addition to the shear layer from
the nozzle surface. In order to eliminate the free shear layer effect, previous studies (Kyle
& Sreenivasan 1993; Raynal et al. 1996; Hallberg & Strykowski 2006; Zhu et al. 2017)
restricted the integration limit in the momentum thickness calculation to the radial location
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where the non-dimensional velocity (U) is 0.1 or 0.2. This method will overestimate the
value of D/θ0. For example, the parabolic profile at a nozzle exit has the theoretical
value of D/θ0 = 15, whereas using the cutoffs of non-dimensional velocity (U) up to 0.1
and 0.2 give D/θ0 = 15.28 and 16.13, respectively. Even though the reported minimum
D/θ0 value in the experiments of Hallberg & Strykowski (2006) (D/θ0 = 16) and Zhu
et al. (2017) (D/θ0 = 14.3) are almost equal or lower than the D/θ0 of laminar parabolic
velocity profile, respectively, the actual velocity profiles in those experiments may not
be parabolic at the nozzle exit due to relatively short nozzle/injector length (L/D � 48).
Note that the D/θ0 reported in those experiments used the cutoff of the radial location
corresponding to the non-dimensional velocity (U) of 0.2. The momentum thickness at
the nozzle exit (D/θ0) is an important parameter that influences the global oscillation in
low-density jets. So, computing the D/θ0 accurately from the experimental nozzle exit
velocity profiles is essential for understanding and comparing the results with stability and
numerical simulations. In order to compute the D/θ0 accurately in the present study, the
experimental nozzle exit velocity profiles are fitted from the collection of profiles obtained
from solving the boundary layer equations inside the axisymmetric pipe (Joshi & Vinoth
2018). The dashed lines in figure 2(a) represent the fitted velocity profiles. The momentum
thickness is computed by integrating the fitted velocity profile up to the nozzle radius. The
momentum thickness (D/θ0) of the fitted velocity profiles of the nozzle with L/D = 8
and 36 show a linear and nonlinear variation with Re1/2, respectively (figure 2c). The
variation of D/θ0 is nonlinear with Re1/2 when the velocity profile changes from parabolic
to non-parabolic. The nozzle with L/D = 175 has D/θ0 = 15 for the range of Reynolds
studied. Unlike the velocity profile, the density profile at the nozzle exit always has a
discontinuous change from the constant jet density (ρ∗

j ) inside the nozzle to the constant
ambient density (ρ∗∞) at the nozzle radius.

The normalized velocity fluctuations (u∗
rms/U∗

j ) as a function of radial position at the
nozzle exit are shown in figure 2(d) for the nozzle with L/D = 8 and L/D = 175. The
fluctuations at the jet centreline are less than 2.0 % which is approximately one order
higher than the previous low-density jet experiments (Sreenivasan et al. 1989; Kyle &
Sreenivasan 1993; Hallberg & Strykowski 2006). The nozzles in the present study have a
sharp edge at the inlet, contributing to the higher disturbances in the flow. The velocity
fluctuations in the present study (<2 %) are of the same order of the velocity fluctuations
reported in Grandchamp & Van Hirtum (2013) and Lemanov et al. (2020). Kyle &
Sreenivasan (1993) studied the influence of centreline velocity fluctuations, which is varied
from 0.3 % to 5.5 %, on global oscillations by using screens in the nozzle throat and
reported that the behaviour of global oscillations is almost independent of the velocity
fluctuations.

4.2. Global oscillation and its mode shape
The schlieren visualisations of low-density jets from the nozzle with L/D = 175 are shown
in figure 3(a) and supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.
328. At low Reynolds numbers, the low-density jet is globally stable but convectively
unstable. In this regime, the jet is relatively steady near the nozzle exit, whereas some
oscillations are seen far from the nozzle exit (supplementary movie 1). The width of the
jet remains almost constant, and the transition to turbulence or break down occurs far
from the nozzle exit (x > 12). With an increase in Reynolds number, there is a qualitative
change in the behaviour of low-density jets, i.e. the jets become globally unstable. The
globally unstable low-density jet shows regular vortex formation from the nozzle exit.
This vortex travels downstream for some distance and breaks down abruptly, resulting in a
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Figure 3. Schlieren visualisation of global oscillations in helium jet (S = 0.138) from the nozzle with (a)
L/D = 175 and (b) L/D = 8.

considerable jet spread after the breakdown. This breakdown location moves towards the
nozzle exit with an increase in Reynolds number.

The schlieren images of low-density jets from the nozzle with L/D = 8 are shown in
figure 3(b) and supplementary movie 2 to understand the qualitative differences with the
low-density jets with D/θ0 = 15. Low-density jets with top-hat velocity profiles have lower
critical Reynolds numbers, intense oscillations, a smaller transition/breakdown distance
and a higher jet spread than low-density jets with D/θ0 = 15. The shorter breakdown
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Figure 4. Frequency spectrum of the time series from the hotwire anemometer located at x = 1.0 and r = 0
for (a) Re = 3654, S = 0.138 and D/θ0 = 15, and (b) Re = 2357, S = 0.138 and D/θ0 = 26.7.

distance indicates that the growth rate of disturbance is higher for globally unstable
low-density jets with top-hat velocity profiles than low-density jets with D/θ0 = 15. One
of the reasons for a higher jet spread in low-density jets with top-hat velocity profiles is
the occurrence of side jets which can be seen in supplementary movie 2. No side jets
are observed in the globally unstable low-density jets with D/θ0 = 15 for the range of
parameters (Re and S) studied in the present experiments.

The frequency spectra from the time series of hotwire measurements show a sharp
narrowband peak after the onset of oscillations (figure 4). The dominant fundamental
frequency remains constant with the downstream distance from the jet inlet to the
breakdown location, confirming the global oscillation. The frequency spectra from the
low-density jets with top-hat velocity profiles show subharmonics, indicative of vortex
pairing (Kyle & Sreenivasan 1993), for some parameter range (figure 4b). There are no
subharmonics observed for the globally unstable low-density jets with D/θ0 = 15. The
increments of Reynolds number used in the present experiments are higher than the
hysteresis Reynolds number range or the bistable region observed in the recent experiments
of Zhu et al. (2017). Due to this, it is impossible to identify the Hopf bifurcation type
(supercritical or subcritical) in low-density jets from the present experiments.

From the schlieren visualisation (figure 3 and supplementary movies 1 and 2), it can be
concluded that the shape of the globally unstable mode is axisymmetric. If a low-density
jet is globally unstable then an axisymmetric global oscillation is observed for all the cases
studied in the experiments, irrespective of S, Re and D/θ0. The same results are observed
in the spatiotemporal stability analysis in the present study (§§ 5.2 and 5.3).

The present results are consistent with the previous experimental studies on low-density
jets with inlet velocity profiles far from parabolic, exhibiting axisymmetric global
oscillations (Monkewitz & Sohn 1988; Kyle & Sreenivasan 1993; Hallberg & Strykowski
2006). However, the current experimental results for the low-density jets with D/θ0 = 15
differ from the stability results of Coenen et al. (2008). They predicted that the helical
mode of global oscillation might occur in low-density jets with near parabolic velocity
profiles (D/θ0 ≈ 15) for S < 0.5 from the spatiotemporal instability analysis. The possible
reasons for the discrepancy of Coenen et al. (2008) results are discussed in § 5.5.
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Figure 5. The variation of global oscillation Strouhal number (St) with (a) Reynolds number and (b) nozzle
exit momentum thickness for various density ratios.

4.2.1. Onset and frequency of global oscillations
The variation of Strouhal number (St = f ∗D/U∗

j ) with Reynolds number (Re) and D/θ0
are shown in figures 5(a) and 5(b), respectively. Note that for nozzles with L/D = 8 and
36, D/θ0 increases with an increase in Reynolds number for a given L/D. The nozzle
with L/D = 175 has D/θ0 = 15 for the range of Reynolds number studied in the present
experiments.

The Strouhal number increases with an increase in density ratio, irrespective of
Reynolds number and D/θ0. For a given Reynolds number, the Strouhal number is a
function of D/θ0 (figure 5a). The Strouhal number of the low-density jet with D/θ0 = 15
(L/D = 175) is almost independent of the Reynolds number. For a given density ratio, the
Strouhal number increases with an increase in D/θ0, irrespective of the Reynolds number
(figure 5b). These results indicate that D/θ0 and density ratio significantly influence the
Strouhal number and the effect of Reynolds number on Strouhal number seems to be
small in the range of parameters studied in the experiments. Figure 6 shows the onset
of global oscillations in the Re − D/θ0 space for different density ratios. For a given
density ratio, the critical Reynolds number increases with a decrease in D/θ0. The critical
Reynolds number increases with an increase in density ratio for a constant D/θ0, and
the critical density ratio increases with an increase in D/θ0 for a constant Reynolds
number. The critical Reynolds numbers from the present experiments reasonably match the
experimental results of Hallberg & Strykowski (2006). The above results indicate that the
higher disturbance levels in the present experiments are not significant enough to influence
the critical Reynolds number of low-density jets.

The Strouhal number of the axisymmetric mode predicted by the linear bi-global
stability analysis (Coenen et al. 2017) and the DNS (Lendínez 2018) for the low-density
jet with D/θ0 = 15 are 0.136 and 0.145, respectively, which are comparable with the
experimental results (St ≈ 0.138). The critical Reynolds number predicted from the linear
global stability analysis (Re ≈ 3370) and the DNS (Re ≈ 2300) is higher and lower than
the experimental results (Re = 2844), respectively. Numerical simulation of an isothermal
helium jet with D/θ0 = 15 using an unsteady axisymmetric laminar solver at Re = 1600
by Satti & Agrawal (2006) shows global oscillation. This Reynolds number is much
lower than the critical Reynolds number from the experiments. It is expected that the
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Figure 6. The onset of global oscillations in low-density jets. The jets are globally unstable for parameters
right side of the critical points.

critical Reynolds number from the experiment might be lower than the linear stability
analysis and numerical simulations due to the presence of noise in the experiments, which
can prematurely trigger the transition from a globally stable state to a globally unstable
state. The reason for predicting the lower critical Reynolds number from the numerical
simulations (Satti & Agrawal 2006; Lendínez 2018) compared with the experimental
results for low-density jets with D/θ0 = 15 is not clear. Further studies are required to
understand this behaviour which is beyond the scope of this paper.

4.2.2. Comparison with scaling laws
In this section the experimental results are compared with scaling laws derived from
theoretical and experimental studies. In the nonlinear spatiotemporal theory, if the base
flow is nonlinearly absolute, any impulse perturbation in the flow creates a front that
moves towards the nozzle exit and forms a nonlinear global mode. According to the
theory, the healing length, which is defined as the distance for the perturbation amplitude
of the nonlinear global mode to reach 99 % of the saturation amplitude, scales with
(Re − Rec)

−0.5 which is derived from the Ginzburg–Landau amplitude equation (Couairon
& Chomaz 1999). This scaling is valid for a nonlinear global mode in parallel and
weakly non-parallel flows (Chomaz 2004, 2005). Experimental (Goujon-Durand, Jenffer
& Wesfreid 1994; Zielinska & Wesfreid 1995; Wesfreid, Goujon-Durand & Zielinska
1996) and numerical studies (Chomaz 2004) demonstrated that the healing length of a
nonlinear global mode in a weakly non-parallel wake flow follows this scaling.

From the DNS studies of low-density jets (Nichols et al. 2007), it can be observed
that the vorticity fluctuations initially grow exponentially and then saturate after some
distance. The jet spread increases dramatically approximately after this location. So, the
jet breakdown location can be considered where the disturbance amplitude of a nonlinear
global mode saturates. The jet breakdown distance or healing length in a globally unstable
low-density jet is defined as the distance from the nozzle exit to the location where the
jet spread increases suddenly (figure 3). In the present study the jet breakdown location
is measured from schlieren images. The axial location where the cross-sectional (along
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Figure 7. Comparison of experimental results with scaling laws for (a) the variation of healing length
(Couairon & Chomaz 1999), (b) the frequency of global oscillations (Hallberg & Strykowski 2006).

y-axis) mean pixel intensity of the average schlieren image starts increasing is considered
as the jet breakdown location. This jet breakdown distance or healing length decreases
with an increase in Reynolds number and scales with (Re − Rec)

−0.5 for low-density jets
from the nozzle with L/D = 8 and L/D = 175 (figure 7a). Even though the proportional
constant is a function of nozzle inlet conditions, this scaling will be useful for predicting
the jet breakdown distance. This result extends the validity of the Ginzburg–Landau
model, from which this scaling law is derived, to the low-density jet, which has a nonlinear
global mode in the weakly non-parallel flow.

Hallberg & Strykowski (2006) proposed a universal scaling for global oscillation
frequencies in low-density jets. The present experimental results are recast in the universal
scaling form and are shown in figure 7(b). Except for the data from L/D = 8 with
S = 0.138, the scaling slope does not match the universal scaling. This may be explained
by analysing the proportionality constants in the scaling law, which are: (i) the relation
between vortex speed and nozzle exit jet velocity, (ii) the relation between D/λ (λ is the
wavelength of the vortex) and D/θ0, and (iii) the relation between frequency and density
ratio. A plausible reason for this deviation could be that the value of these constants may
not be universal but depend on the detailed shape of velocity and density profiles near the
nozzle exit, which depend on nozzle geometry details and inlet conditions at the nozzle
exit.

5. Linear stability results

5.1. Base state profiles
Base profiles for the spatiotemporal stability analysis are obtained from solving the steady,
laminar, axisymmetric version of governing equations (2.1)–(2.5) using ANSYS Fluent.
The methodology used to obtain the base flow is similar to Bharadwaj & Das (2017). The
governing equations are solved in an axisymmetric domain using a structured grid, and its
schematic diagram with boundary conditions is shown in figure 8. The velocity profile with
a given D/θ0 and a constant mass fraction profile of helium corresponding to the density
of the helium–air mixture are imposed at the inlet. The velocity profile for the inlet is
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Figure 8. Schematic diagram of the computational domain with boundary conditions used for simulating
base flows.

selected from the axisymmetric pipe profiles, which are obtained from solving the laminar
incompressible boundary layer equations inside an axisymmetric pipe (Joshi & Vinoth
2018). The pressure outlet condition, which extrapolates the interior’s flow variables, is
specified at far-field boundaries and the domain exit. No-slip is specified on the nozzle
wall, and the axis of symmetry is imposed on the axis. Note that the nozzle/tube has
zero wall thickness in the simulations. The gravity force is acting opposite to the flow
direction. The viscosity of the helium–air mixture is computed using the relation given
by Wilke (1950), and the mass diffusive coefficient between air and helium is assumed
to be a constant. The steady base profiles are computed using a pressure-based coupled
solver with the pseudo-transient method. The second-order upwind scheme is used for
the discretization of pressure and momentum terms. These equations are solved until the
residual drops below 10−6.

The domain size of (30D × 6D) (x and r directions) is used in the present study. The
number of nodes used before and after the nozzle exit are (210 × 166) and (262 × 216),
respectively. The domain size and the number of nodes, which are clustered near the nozzle
exit, are selected based on convergence studies. The base flow solution methodology is
validated with the laminar plume results of Bharadwaj & Das (2017). The laminar base
state profiles (velocity and density) of low-density jets with D/θ0 = 15, Re = 3600, S =
0.138, and D/θ0 = 32.2, Re = 3520, S = 0.338 are shown in figure 9. In laminar flows
the main source for the jet spread is molecular diffusion, due to which the laminar
profiles (velocity and density) evolve slowly along the flow direction. The spread of the
density profiles is relatively higher compared with the velocity profiles. These results are
consistent with the base flows reported in Coenen et al. (2017).

5.2. Spatiotemporal stability results near the nozzle exit
The velocity and density profiles from the numerical simulations are used as base states
for the spatiotemporal stability analysis. Figure 10 shows the solution of the dispersion
relation in the complex k plane for S = 0.138, D/θ0 = 15 and Re = 3600 at the location
very near the nozzle exit (x = 0.01). Each line in the figure is a solution to the spatial
eigenvalue problem for a given ωi with varying ωr. Spatial branches are classified based
on the location of the entire spatial branch for ωi > ωi,max, where ωi,max is the maximum
growth rate in temporal stability analysis. The branches are classified as k+ and k− if
they are located above and below the kr-axis. In the present study, a single k+ branch is
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Figure 9. Base flow velocity (a,c) and density profiles (b,d) at various streamwise locations for
Re = 3600, D/θ0 = 15 and S = 0.138 (a,b), and Re = 3520, D/θ0 = 32.2 and S = 0.338 (c,d).

observed along with many k− branches. Even though many saddles are formed near the
−ki-axis, only the first two saddles (S1 and S2) and three spatial branches k+, k−

1 and k−
2

are shown in figure 10.
Initially, all the spatial branches are well separated for a large ωi. With a decrease

in ωi, the k+ branch pinches with k−
1 to form saddle S1 (see figure 10a). For a further

decrease in ωi, the merged k−
1 branch pinches with k−

2 to form saddle S2. According to
the Briggs–Bers criterion, the valid saddle forms by pinching k+ and k− spatial branches
(Huerre & Monkewitz 1990; Huerre & Rossi 1998). Based on the above criteria, S1 is
the only valid saddle, and other saddles which occur below, including S2 are invalid. The
absolute growth rate of S1 is positive (ω0,i > 0), i.e. the axisymmetric mode is absolutely
unstable. In the case of helical mode (m = 1), the formation of S1 and S2 show similar
behaviour in the complex k plane compared with the axisymmetric mode, i.e. S1 is the
valid saddle (figure 10b). The main difference is that the helical mode S1 is convectively
unstable (ω0,i < 0). Based on the above results, it can be concluded that the spatiotemporal
behaviour of the jet at this location is dominated by the axisymmetric mode, which is
absolutely unstable. Similar results are observed for all low-density jets at this location
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Figure 10. Saddle points in the complex k-plane of (a) axisymmetric mode (m = 0) and (b) helical mode
(m = 1), for S = 0.138, Re = 3600, D/θ0 = 15 and x = 0.01.

irrespective of S, Re and D/θ0, i.e. if the low-density jet is absolutely unstable then the
dominant mode is axisymmetric.

The eigenfunctions corresponding to S1 of the axisymmetric mode are shown in
figure 11. The pressure eigenfunction (p̂) has a maximum value at the centreline and
decreases gradually with an increase in the radial direction, whereas the streamwise
velocity eigenfunction (ûx) has a local peak in the shear layer with a non-zero value at
the jet centreline. The behaviour of these eigenfunctions is consistent with the jet column
mode reported in the literature (Jendoubi & Strykowski 1994; Srinivasan et al. 2010;
Demange, Chazot & Pinna 2020a). Similar results are observed for all absolutely unstable
low-density jets, irrespective of S, Re and D/θ0. Lesshafft & Huerre (2007) reported that
the nature of the dominant saddle’s eigenfunction changes with an increase in velocity
profile momentum thickness of low-density jets. The eigenfunction of the dominant saddle
of thin shear layer jets shows the jet column mode, and in the case of thick shear layer jets,
it is the mixed mode (combination of jet column mode and shear layer mode). This result
contrasts with the present study, where the nature of the mode (jet column mode) is the
same irrespective of D/θ0. The main difference is that the present study used profiles from
the numerical simulations as a base state, whereas they used base states from solving the
boundary layer equations with the model velocity and density profiles in the inlet (table 1).

5.3. Streamwise variation of stability results
In weakly developing flows, where the instability wavelength (λ) is much less than the
length scale of the base flow (L ∼ [(1/θ)(dθ/dx)]−1), there exists a close relationship
between the local stability characteristics from different streamwise locations (x) and the
global dynamics of the flow (Huerre & Monkewitz 1990; Huerre & Rossi 1998). In the
present study the ratio ε1 = λ/L is high near the nozzle exit (ε1 ∼ 0.7 for D/θ0 = 30
and ε1 ∼ 0.1 for D/θ0 = 15) and decreases away from the nozzle exit. The value of
ε1 decreases with a decrease in D/θ0. Even though the base flow variation near the
nozzle exit is not weakly parallel for high D/θ0, the local spatiotemporal stability studies
on low-density jets, which is similar to the present study, favourably predict the global
dynamics observed in experiments (Coenen & Sevilla 2012). In addition to that, the studies
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Figure 11. Eigenfunctions (axial velocity ûx, radial velocity ûr , density ρ̂ and pressure p̂) of the dominant
axisymmetric mode (S1 saddle) for S = 0.138, Re = 3600, D/θ0 = 15 and x = 0.01.

on the wake of a cylinder (Pier 2002) and sphere (Pier 2008) have also shown favourable
results, even the base flow variation is not weakly non-parallel near the solid body. In
order to obtain the global stability characteristics from the local stability characteristics,
the streamwise evolution of stability is discussed in this section.

The absolute growth rate (ω0,i) variation of the axisymmetric (m = 0) and helical
mode (m = 1) with the streamwise direction (x) are shown in figures 12(a) and 12(b),
respectively, for S = 0.138 and D/θ0 = 15. These results are obtained by tracking S1 along
the streamwise direction using the three-point method. It is observed that the nature of S1 is
the jet column mode, irrespective of streamwise distance. The absolute growth rate shows
a non-monotonous behaviour with the streamwise distance, i.e. the absolute growth rate
curve has a maximum. The location of the maximum growth rate occurs near the nozzle
exit, which is almost independent of Reynolds number (figure 12a,b). Note that there is
a discontinuity in the absolute growth rate curve slope near the nozzle exit (x ≈ 0.02).
The reason for the discontinuity is not known as there is no appreciable difference in
the profiles (velocity and density) near the location where the discontinuity is observed.
Similar behaviour, i.e. discontinuity in absolute growth rate curve near the nozzle exit, can
also be seen in figure 3 of Coenen & Sevilla (2012).

At a low Reynolds number (Re = 1900), the absolute growth rate is negative for all
streamwise locations (figure 12a). With an increase in Reynolds number, the absolute
growth curve first becomes marginally unstable (ω0,i = 0) at x ≈ 0.2, and then a pocket
of the absolutely unstable (ω0,i > 0) region occurs, i.e. the absolutely unstable region is
bounded by the convectively unstable region in both upstream and downstream directions.
For a further increase in Reynolds number, the region of the absolutely unstable region
grows, and the upstream portion of the pocket of the absolutely unstable region reaches the
nozzle exit. Subsequently, the length of the absolute region (labs = xac; xac is the location
where the instability changes from absolute to convective) bounded by the nozzle exit
increases with an increase in Reynolds number. The absolute growth rate curves of the
helical mode (m = 1) show similar non-monotonous behaviour, but they are convectively
unstable (figure 12b). These results indicate that the axisymmetric mode is the dominant
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Figure 12. Streamwise variation (x) of the absolute growth rate (ω0,i) of (a) axisymmetric mode (m = 0) and
(b) helical mode (m = 1) for S = 0.138 and D/θ0 = 15 at different Reynolds number.

absolutely unstable mode for S = 0.138 and D/θ0 = 15, which may trigger a global
axisymmetric oscillation.

Based on the stability results from the parameter space studied in this work, it can
be concluded that irrespective of S, Re and D/θ0, the global oscillation in low-density
jets shows an axisymmetric nature. As discussed in § 4.2, this result is consistent with
the present experimental results. This result is also consistent with the experimental
(Monkewitz et al. 1990; Kyle & Sreenivasan 1993; Hallberg & Strykowski 2006) and
stability studies (Lesshafft et al. 2006, 2007; Lesshafft & Huerre 2007; Nichols et al. 2007;
Coenen et al. 2008; Coenen & Sevilla 2012) on low-density jets with velocity profiles far
from parabolic, which show global axisymmetric oscillations. Stability studies by Coenen
et al. (2008) predicted that low-density jets with near parabolic velocity profiles might
show a helical mode of global oscillations, which is different from the present stability
and experimental results.

The evolution of the axisymmetric absolute growth rate with the streamwise distance
of S = 0.338 and D/θ0 = 31.3 for various Reynolds number is shown in figure 13(a).
The absolute growth rate shows a monotonous decrease with the streamwise distance.
With an increase in Reynolds number, the absolute growth rate at the nozzle exit
first become marginally unstable (ω0

0,i = ω0,i(x = 0) = 0) and then, the length of the
absolutely unstable region bounded by the nozzle exit (xac) increases. Figure 13(b) shows
the effect of density ratio on the axisymmetric absolute growth rate variation with the
streamwise distance for Re = 4000 and D/θ0 = 15. The shape/variation of the absolute
growth rate curve with the streamwise direction depends on the density ratio. The absolute
growth rate curve shows a non-monotonous behaviour for S = 0.138 and 0.15, whereas it
shows a monotonous decrease with the streamwise direction for S = 0.2. Detailed analysis
of base profiles, such as the inflection point in velocity profiles, the slope of the density
profile gradient near to the velocity inflection point, the distance between the inflection
point in velocity and density profiles (Raynal et al. 1996; Lesshafft & Marquet 2010;
Demange et al. 2020a), do not reveal possible reasons for the non-monotonous behaviour
of absolute growth curves. Nevertheless, from the stability results, it can be summarised
that the non-monotonous behaviour of the absolute growth rate is observed for density
ratio S � 0.16, irrespective of D/θ0.
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Figure 13. Streamwise variation (x) of the axisymmetric absolute growth rate (ω0,i). (a) Effect of Reynolds
number for S = 0.338 and D/θ0 = 31.3, and (b) effect of density ratio for Re = 4000 and D/θ0 = 15.

A monotonous decrease of the axisymmetric absolute growth rate curves with the
maximum at the nozzle exit was reported for low-density jets where the base flow profiles
were obtained from solving the boundary layer equations with a synthetic velocity and
density profile at the nozzle exit (Lesshafft et al. 2005, 2006, 2007). Studies that used
the boundary layer equations to obtain the inlet profiles and its evolution with streamwise
direction (base flow profiles) reported non-monotonous absolute growth rate curves for
m = 0 only in low-density jets with thin shear layers (Coenen et al. 2008; Coenen & Sevilla
2012), whereas the absolute growth rate curves of m = 1 show a monotonous decrease,
irrespective of D/θ0 (Coenen et al. 2008). In summary, studies that did not use actual
velocity and density profiles as the base flow show a different nature of absolute growth
rate curves compared with the present study. From these results, it can be inferred that the
nature of the absolute growth rate curve, whether it is monotonous or non-monotonous,
depends on the shape of base flow velocity and density profiles.

All the stability results presented in this paper are obtained using the linearised stability
equations with constant viscosity and negligible buoyancy. Note that apart from appearing
in the stability equations, the transport property (viscosity) and buoyancy also affect the
base flow profiles, which indirectly influence the stability characteristics of the jet. In the
present study all the base flow simulations included the effect of variable viscosity and
buoyancy. The inclusion of variable viscosity terms in the stability equations for a given
base state has a very less stabilizing effect than the constant viscosity case, and there is
almost no effect on the absolute growth rate by including the buoyancy term in the stability
equations (not shown). The above results give justification for neglecting the effect of
variable viscosity and buoyancy in the stability computation reported in this paper.

5.4. Comparison with experimental results
This section compares local spatiotemporal stability results with the experimental results
to understand the selection criteria for destabilising a nonlinear global mode. The effect
of Reynolds number on the absolute growth rate at the nozzle exit, ω0

0,i, and the maximum
absolute growth rate, ωmax

0,i , of the axisymmetric mode, is shown in figure 14(a) for S =
0.138 and D/θ0 = 15. The corresponding experimental critical condition is shown in the
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Figure 14. (a) The variation of the absolute growth rate of the axisymmetric mode at the nozzle exit, ω0
0,i,

and maximum absolute growth rate, ωmax
0,i , with Reynolds number for S = 0.138 and D/θ0 = 15, and (b) the

variation of the absolute growth rate of the axisymmetric mode at the nozzle exit, ω0
0,i, with density ratio for

Re = 4000 and D/θ0 = 15. The dashed line denotes the experimental critical condition.

S L/D D/θ0 Re labs C λ0 Re0

0.138 175 15.0 2844 0.43 0.05 3.13 2350
0.138 36 16.0 2621 0.74 0.13 3.35 1628
0.138 8 20.6 1313 0.99 0.23 4.11 698
0.150 175 15.0 3968 0.50 0.05 2.74 3248
0.242 8 27.4 2492 1.30 0.45 3.30 655
0.338 8 32.2 3520 1.15 0.43 3.16 845

Table 2. Comparison of spatiotemporal stability parameters (length of the absolutely unstable region, labs;
absolute wavelength at the nozzle exit, λ0; the constant (C) in the criterion proposed by Chomaz, Huerre &
Redekopp 1988) at the experimental critical conditions (S, D/θ0 and Re) along with Reynolds number (Re0)
corresponds to the marginal absolute growth rate at the nozzle exit.

figure as a dashed line. The maximum absolute growth rate is marginally unstable (ωmax
0,i =

0) at Re ≈ 2140, and a pocket of the absolutely unstable region appears at 2140 � Re �
2350, whereas the absolute growth rate at the nozzle exit becomes marginally unstable at
Re ≈ 2350 (figure 14a). The experimental critical Reynolds number (Re ≈ 2844) is higher
than the Reynolds number corresponding to the marginal stability of both ω0

0,i and ωmax
0,i .

From the above results, it can be inferred that the nonlinear global mode is destabilised
after a minimum length of the absolutely unstable region labs (table 2). Figure 14(b) shows
the effect of density ratio on the axisymmetric absolute growth rate at the nozzle exit
(ω0

0,i) for Re = 4000 and D/θ = 15 along with the experimental critical density ratio. The
density ratio (S ≈ 0.15) required to excite the global mode in experiments is lower than
the density ratio (S ≈ 0.2) corresponding to the marginal absolute instability at the nozzle
exit (ω0

0,i = 0). Similar results, i.e. the requirement of a minimum length of the absolutely
unstable region to sustain the nonlinear global mode, are observed for all the cases studied
in the present work, irrespective of whether the absolutely unstable region is bounded by
the nozzle exit or the occurrence of a pocket of the absolutely unstable region (table 2).
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Contrary to the results in the literature (Lesshafft et al. 2006), the occurrence of a pocket
of an absolutely unstable region does not destabilise a nonlinear global mode. The present
results are consistent with the studies where the nozzle exit bounds the absolutely unstable
region. In this scenario, a minimum length of the absolutely unstable region is required
to trigger the nonlinear global mode (Pier et al. 1998; Pier & Huerre 2001; Lesshafft
et al. 2006; Coenen & Sevilla 2012). Compared with Lesshafft et al. (2006) results, the
pocket of the absolutely unstable region observed in the present study is very small and
occurred near the nozzle exit. In addition, the pocket of an absolutely unstable region is
observed only for a small range of Reynolds numbers. The present results suggest that the
size and location of a pocket of an absolutely unstable region and the range of Reynolds
number of its occurrence are also essential factors to excite the global mode. It can be
concluded that the occurrence of a pocket of an absolutely unstable region itself cannot
sustain the global mode if its characteristics are similar to the present study. A similar
conclusion can be inferred from the results of Coenen et al. (2017). In their study, the
global stability analysis predicted that the critical/marginal stability condition occurs at
Rem ≈ 380 for S = 0.143 and D/θ0 = 24.3. For the corresponding conditions (S = 0.143
and D/θ0 = 24.3), a pocket of an absolutely unstable region might have occurred in the
spatiotemporal stability analysis much below the critical Reynolds number predicted by
the global stability analysis (refer to figures 9 and 10 of Coenen et al. 2017).

The literature reported two different conditions for the minimum length requirement of
an absolutely unstable region to trigger the nonlinear global mode. Based on the studies
using the Ginzburg–Landau equation, the minimum absolutely unstable region (labs)
required to trigger the nonlinear global mode is given as labs = C/

√
σ0, where σ0 = ω0

0,i
and C is a constant (Chomaz et al. 1988; Couairon & Chomaz 1999). In low-density jets,
Coenen & Sevilla (2012) reported that the value of C is not a constant but a function of
density ratio (C = 0.85 for S = 0.14 and C = 0.41 for S = 0.5). These values are different
from the value (C = 3.57) obtained from the Ginzburg–Landau equation (Chomaz et al.
1988). The present results also show that the values of C are not constant (C ≈ 0.05 for
D/θ0 = 15 and 0.13 � C � 0.45 for higher D/θ0) and closer to Coenen & Sevilla (2012)
(table 2).

The second condition is that the minimum length of the absolutely unstable region
should be of the order of one absolute wavelength at the nozzle exit, λ0 = 2π/k0,r(x = 0),
where k0,r(x = 0) is the real part of the absolutely unstable wavenumber at the nozzle
exit. This phenomenological criterion was proposed by Lesshafft et al. (2006) based
on numerical simulations of hot jets and confirmed by other studies (Bolaños-Jiménez
et al. 2011; Demange et al. 2020b). In the present study the length of the absolutely
unstable region (labs) required to sustain the global mode is much smaller than the absolute
wavelength at the nozzle exit (λ0) (table 2).

According to the stability theory, the frequency of a nonlinear global mode at the critical
conditions is equal to the absolute frequency at the nozzle exit (Chomaz 2005). The
absolute Strouhal numbers at the nozzle exit, St0 (St0 = ω0,r(x = 0)/2π), corresponding
to the experimental critical conditions are compared with the experimental Strouhal
numbers, St, in table 3. The relative differences between these Strouhal numbers are in
the range of 11 %–16 %, which are similar to the results reported by Lesshafft et al. (2005)
and Coenen & Sevilla (2012). Sensitivity analysis from the global stability revealed that
the region near the nozzle exit has a strong influence on the growth rate of a global mode
(Coenen et al. 2017). In the present study the nozzle lip thickness was not included in
the base flow simulations, which might have caused a subtle difference in the base flow
profiles near the nozzle exit, and this might be a possible reason for the deviation observed
in the marginal frequency of global oscillations compared with experiments. In summary,
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S L/D D/θ0 Re St St0
(St − St0)

St
× 100

0.138 175 15.0 2844 0.138 0.119 14
0.138 36 16.0 2621 0.146 0.129 12
0.138 8 20.6 1313 0.183 0.163 11
0.150 175 15.0 3968 0.146 0.122 16
0.242 8 27.4 2492 0.293 0.252 14
0.338 8 32.2 3520 0.358 0.310 13

Table 3. Global frequencies from experiments (St), the absolute frequency at the nozzle exit (St0)
corresponds to the experimental critical conditions and the relative difference between them.

it can be concluded that the local spatiotemporal stability analysis can reasonably predict
the frequency of global oscillations at critical conditions using the absolute frequency at
the nozzle exit.

We conclude this section with a discussion regarding the possible implications of high
level disturbances at the nozzle exit on low-density experimental results. Global frequency
response studies on low-density jets with D/θ0 = 15 by Lendínez (2018) demonstrated that
m = 1 has the largest gain for both optimal and uniform forcing conditions compared with
m = 0 and m = 2. The difference between the gains of m = 1 and m = 0 increases with an
increase in Reynolds number, and these differences reach at least ten orders near the critical
Reynolds number (refer to figure 3.6 of Lendínez 2018). The effect of the nozzle geometry
and the region of forcing on the global frequency response also showed the same results,
i.e. m = 1 has higher gains than m = 0 and m = 2 for both optimal and uniform forcing.
Based on the above results, we can plausibly conclude that the high disturbance level
at the nozzle exit (possibly an axisymmetric nature of disturbance due to axisymmetric
geometry) in the present experiments may not have affected the axisymmetric nature of
the global oscillations in the low-density jets with D/θ0 = 15. The favourable comparison
of the spatiotemporal stability results, which assumes disturbance is infinitesimal, with
the low-density jet experiments with high disturbance levels at the nozzle exit showed
that the axisymmetric nature of global oscillations in low-density jets with D/θ0 = 15
is independent of disturbance level (at least up to the disturbance level in the present
experiments).

5.5. Comparison with literature
This section compares the present results with the literature dealing with the stability
analysis of low-density jets with near parabolic inlet velocity profiles (Coenen et al. 2008;
Coenen & Sevilla 2012). These studies have used base flows from the boundary layer
equations. In order to compare our results, we have also computed base flows from the
boundary layer equations similar to Coenen et al. (2008) and Coenen & Sevilla (2012).
Note that we have used the mean velocity at the nozzle exit (U∗

m) and the nozzle radius (R)
as the characteristic velocity and characteristic length scale, respectively, in this section to
compare the results with Coenen et al. (2008) and Coenen & Sevilla (2012). The Reynolds
number based on the above reference scales is Rem = ρ∗

j U∗
m R/μ∗

j .
Coenen et al. (2008) reported that low-density jets with near parabolic velocity profiles

might exhibit a helical global oscillation based on the spatiotemporal stability analysis.
This result is contrary to the present experimental and stability results. In this section
we will explore the possible reasons for this discrepancy. Brief details about the methods
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used by Coenen et al. (2008) for stability analysis are given here for understanding the
discussion in this section. They have used a low-Mach-number version of the inviscid
stability equation with pressure perturbation as a dependent variable. They have used
two methods to compute the stability characteristics of low-density jets using the above
equation. In the first method, the base flows (velocity and density) of low-density jets from
the boundary layer equations are used with appropriate boundary conditions at the jet
axis and far-field to compute absolute growth rates (ω0,i) at different axial locations. This
method is hereafter referred to as the ‘conventional method’ in this section.

In the second method, they have computed the stability characteristic of low-density jets
at the jet inlet (x = 0) using nozzle exit profiles as given by

0 � r � 1 : U = U(r), ρ = S and r > 1 : U = 0, ρ = 1. (5.1a,b)

These velocity profiles are obtained by solving the boundary layer equations inside an
axisymmetric pipe. These profiles have zero velocity outside the nozzle radius (r > 1) and
discontinuity in the slope at the nozzle radius. The inlet jet density profiles are assumed
to be a step function, i.e. the density is constant inside and outside the nozzle but changes
suddenly at r = 1. In order to overcome the difficulties of handling the profiles with slope
discontinuity, they restricted the flow domain to 0 � r � 1 and applied the boundary
conditions at r = 1 from the analytical solution of the stability equation in the far-field.
The second method used by Coenen et al. (2008), which includes base state (velocity and
density profiles with 0 � r � 1), stability equation (low-Mach-number inviscid stability
equations), and boundary conditions from the analytical solution at r = 1, is hereafter
referred to as the ‘CSS08 method’ in this section.

Based on the conventional method, they have reported that ω0,i of m = 0 and m = 1
decreases monotonically with the axial distance for D/θ0 � 170. In the above scenario,
the marginal absolute instability condition is determined by ω0,i at x = 0, so it is sufficient
to compute ω0,i at x = 0 to find critical conditions. They have reported that ω0,i by the
conventional method at X → 0 (X = x∗/(R Rem)) matches with ω0,i from the CSS08
method and, as a consequence, have reported most of the results based on ω0,i of the
CSS08 method including the dominance of a helical mode over an axisymmetric mode in
low-density jets with near parabolic velocity profiles.

It is known from the analytical work of Kambe (1969) that the axisymmetric mode
is neutrally stable in the inviscid temporal stability and stable in the viscous temporal
stability for constant density jets with a parabolic velocity profile surrounded by a fluid
at rest. The CSS08 method is similar to the method used by Kambe (1969) in terms of
the velocity profile and the application of the boundary conditions. The result of Kambe
(1969) promotes the question of the efficacy of the CSS08 method for low-density jets
with near parabolic velocity profiles because the maximum temporal growth rate bounds
the absolute growth rate.

In order to understand the validity of the CSS08 method for low-density jets with
near parabolic velocity profiles, absolute growth rates from the conventional method
at X = 10−5 are compared with the CSS08 method for different D/θ0 (figure 15). The
conventional method predicts that ω0,i of m = 0 is always higher than the m = 1 for all
D/θ0 including D/θ0 = 15. This result is consistent with the present viscous stability
results using the numerical base flows (§ 5.3) and experimental results (§ 4.2), i.e. the
global oscillation is axisymmetric for low-density jets with D/θ0 = 15. The absolute
growth rate of m = 0 from the CSS08 method is almost the same as the conventional
method for large D/θ0. The difference between the absolute growth rates increases for a
decrease in D/θ0, and this difference increases drastically when D/θ0 → 15 (figure 15).
Note that ω0,i of m = 0 by the CSS08 method reaches almost zero for D/θ0 → 15, and it
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ω0,i
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Figure 15. Comparison of absolute growth rates from the conventional method at X = 10−5 with the CSS08
method for S = 0.138.

is less than ω0,i of m = 1. These results suggest that the global oscillation in low-density
jets with D/θ0 = 15 might be helical, which is inconsistent with the results from the
conventional method, the present stability analysis and the experiments.

From the above results, it can be inferred that the main reason for the discrepancy is the
assumption that ω0,i from the CSS08 method is equal to the ω0,i from the conventional
method at X → 0. The present analysis clearly shows that this assumption is not valid for
D/θ0 → 15. The very small absolute growth rate of m = 0 for D/θ0 → 15 in the CSS08
method is due to the use of velocity and density profiles that lack inflection points and
the implementation of boundary conditions at r = 1. In summary, the CSS08 method may
not be able to predict the results as observed in experiments for low-density jets with
near parabolic velocity profiles (thick shear layer jets), but it may give qualitatively correct
results, such as the most dominant mode for low-density jets with velocity profiles far from
parabolic.

Coenen & Sevilla (2012) studied the onset of global oscillations in low-density jets by
viscous spatiotemporal stability analysis using base profiles obtained from the boundary
layer equations. They reported that, for Rem = 1000 (Re = 4000), the marginal absolute
growth rate at the nozzle exit (ω0

0,i = 0) occurs at S ≈ 0.45 for the jet with D/θ0 = 15
(figure 4b in Coenen & Sevilla 2012). This critical density ratio is much higher than
the present stability result (S ≈ 0.2, see figure 14b) and the present experimental critical
density ratio (S ≈ 0.15) for Rem = 1000. The difference between the current study and
Coenen & Sevilla (2012) is only in the base profiles. In order to understand the effect of
base flow on viscous spatiotemporal stability results, the comparison of ω0,i from viscous
spatiotemporal stability using base profiles from the boundary layer equations and the
Navier–Stokes equations (numerical simulation) is shown in figure 16(a) for the jet with
S = 0.3, Rem = 1000 and D/θ0 = 15. The stability analysis using base profiles from the
numerical simulation shows that the jet is convectively unstable for m = 0 and m = 1.
In contrast, the stability analysis with boundary layer base profiles shows that the jet is
absolutely unstable for m = 0 near the nozzle exit and convectively unstable for m = 1.
The above results indicate that the difference between the profiles from the boundary
layer equations and the numerical base profiles (Navier–Stokes equations) are significant
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Figure 16. (a) Absolute growth rate from the viscous spatiotemporal stability analysis using base profiles
from the boundary layer equations (BL) and the Navier–Stokes equations (N–S), and (b) base density profiles
from the boundary layer equation (BL) and the Navier–Stokes equations (N–S) for S = 0.3, Rem = 1000 and
D/θ0 = 15.

enough to cause considerable change in the absolute growth rates, resulting in different
critical density ratios for low-density jets with near parabolic velocity profiles.

This is an interesting result because it is expected that the profiles from the boundary
layer equations and the Navier–Stokes equations are almost identical at these critical
Reynolds numbers. The comparison of base profiles from the boundary layer equations
and the Navier–Stokes equations reveals that the velocity profiles are almost the same (not
shown), but density profiles show considerable differences in the near field (figure 16b).
The density profiles from the Navier–Stokes equations show a higher spread than the
density profiles from the boundary layer equations near the nozzle exit, and these
differences decrease with an increase in the axial direction. Unlike the profiles from the
boundary layer equations, the streamwise development of profiles from the Navier–Stokes
equations does not scale (especially density profiles) with the Reynolds number near the
nozzle exit, where the flow becomes absolutely unstable. Note that Coenen & Sevilla
(2012) results reasonably agree with Hallberg & Strykowski (2006) experiments for
low-density jets with inlet profile far from parabolic. These results suggest that base
profiles from boundary layer equations are sufficient for low-density jets with inlet velocity
profiles far from parabolic. However, in the case of low-density jets with near parabolic
inlet profiles, base profiles from the Navier–Stokes equations are required to predict the
experimental critical conditions.

6. Summary and conclusion

Experimental and stability studies are carried out to study the global oscillations in
low-density jets with parabolic velocity profiles. High-speed schlieren visualisations
and hotwire measurements are carried out to capture low-density jets’ global and local
dynamics. The spatiotemporal stability analysis is carried out using base flows from
numerical simulations and the boundary layer equations.

Experimental results show that the global oscillations in low-density jets are
axisymmetric irrespective of D/θ0. This result is consistent with the present
spatiotemporal stability analysis with base states from numerical simulations and
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the boundary layer equations. The present result is different from the prediction of
spatiotemporal stability by Coenen et al. (2008) which reported the global helical
oscillations in low-density jets with near parabolic velocity profiles. The present study
shows that the method used by Coenen et al. (2008) (spatiotemporal stability analysis
using profiles only inside the nozzle along with enforcing boundary conditions at the
nozzle wall) may predict the experimental results for the jets with velocity profiles far
from parabolic but not for the jets with near parabolic velocity profiles.

The breakdown location of the globally unstable low-density jet can be considered as
the location where the disturbance amplitude of a nonlinear global mode saturates. The
breakdown length or healing length of the globally unstable low-density jets scales with
(Re − Rec)

−1/2. This is a significant result in the sense that apart from the wake flow, this
is the other flow situation (to the best of the authors’ knowledge) where the healing length
of a nonlinear mode in the weakly non-parallel flow satisfies the scaling derived from the
Ginzburg–Landau model.

Unlike low-density jets with higher D/θ0 where the side jets are observed for a specific
range of parameters, no side jets are observed in globally unstable low-density jets with
D/θ0 = 15. There are many hypotheses available in the literature for the formation of
the side jets in a globally unstable jet, such as the secondary instability of a vortex ring
similar to the Widnall instability (Monkewitz et al. 1989; Monkewitz & Pfizenmaier 1991),
the formation of secondary streamwise vortices between primary vortex rings (Brancher,
Chomaz & Huerre 1994), the absolute secondary instability (Nichols et al. 2008) and
the secondary non-modal instability (Lopez-Zazueta, Fontane & Joly 2016). However, the
physical mechanism responsible for the side jets in a globally unstable jet is not clear.
The low-density jet with D/θ0 = 15 can be used to test the conjecture/hypothesis for the
existence/non-existence of the side jets.

Contrary to the reported results (Lesshafft et al. 2006), the present study found that
an occurrence of a pocket of the absolutely unstable region need not always destabilise a
nonlinear global mode. The emergence of a nonlinear global mode possibly depends on
the characteristics of the pocket of the absolutely unstable region, such as the size, location
and the range of parameter (Reynolds number) it occurs. The present stability results show
that there is a minimum length of the absolutely unstable region required to destabilise a
nonlinear global mode, irrespective of whether the absolutely unstable region is bounded
by the nozzle exit or the occurrence of a pocket of the absolutely unstable region for a
specific range of parameters. At critical conditions, the required minimum length of the
absolutely unstable region is much smaller than the absolute wavelength at the nozzle exit.
These results are also different from the literature, where it is reported that the minimum
length should be of the order of the absolute wavelength at the nozzle exit (Lesshafft
et al. 2007). The marginal absolute frequency at the nozzle exit favourably matches
the experimental global frequency at the critical conditions. The present spatiotemporal
stability results demonstrate that the base flows from the Navier–Stokes equations are
required to predict the critical conditions observed in experiments for low-density jets
with near parabolic velocity profiles.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.328.
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Appendix A. Calibration of hotwire anemometry

In the present study the velocity profiles are measured using a single sensor normal hotwire
probe (55P11). The hotwire anemometer responds to the velocity and density of the flow.
Hence, to avoid the effects of density variation, the velocity profiles are measured in an air
jet at the same Reynolds number. The hotwire probe is kept one diameter downstream of
the nozzle exit at the jet centreline for calibration. The velocity profile at the nozzle exit is
non-uniform due to the growth of the boundary layer inside the nozzle. Due to non-uniform
velocity at the nozzle exit, the hotwire probe placed at the jet centreline measures velocity
higher than the mean velocity measured from the mass flow rate. In order to obtain the
correct velocity from the hotwire measurements, Johnstone et al. (2005) proposed an
iterative procedure. This procedure corrects the velocity by comparing the actual volume
flow rate with the volume flow rate from the velocity profile measured at the nozzle exit.
The probe, which is kept close to the nozzle exit, measures the free shear layer due to
an interaction between the jet and the surrounding in addition to the boundary layer from
the nozzle exit. This may cause inaccuracies in the above procedure. In the present study
the laminar velocity profile from a pipe flow is fitted to the measured velocity profile
to eliminate the velocity due to free shear. The laminar velocity profiles are obtained by
solving the boundary layer equations inside an axisymmetric pipe (Joshi & Vinoth 2018).
The steps followed in the iterative procedure to calibrate the hotwire using non-uniform
exit velocity profiles are given below.

(i) Measure the voltage at the jet centreline for each flow rate and compute the
calibration velocity from the flow rate.

(ii) Obtain the calibration curve for the hotwire anemometer from the voltage and
velocity data from (i), using a fourth-order polynomial curve fit.

(iii) For each calibration velocity, measure the velocity profile across the nozzle exit
by measuring the voltage at each radial location across the nozzle exit using the
calibration data from step (i).

(iv) Approximate the measured velocity profile at the nozzle exit from the collection
of velocity profiles obtained from solving the boundary layer equations inside an
axisymmetric pipe to eliminate the effect of the free shear layer.

(v) Calculate the volume-averaged mean flow velocity, Up, by integrating the velocity
profile obtained from (iv)
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(vi) Calculate the correction factor c = Uf /Up, where Uf is the actual mean flow velocity
obtained from the flow meter.

(vii) Multiply each calibration velocity in (i) by the corresponding correction factor to
obtain the updated velocity.

(viii) Repeat steps (ii) to (vii) until results converge within the specified tolerance.

Appendix B. Linearized perturbation equations and boundary conditions

B.1. Linearized perturbation equations
Continuity equation,

dρ̄

dr
ûr + ρ̄

r
ûr + ρ̄

dûr

dr
+ im

ρ̄

r
ûθ + ikρ̄ûx + ikUρ̂ − iωρ̂ = 0. (B1)

Radial (r) momentum equation,

S
μrRe

[
4
3

μ̄

r2 ûr + μ̄
m2

r2 ûr + 2
3r

dμ̄

dr
ûr − 4

3
μ̄

d2ûr

dr2 + k2μ̄ûr − 4
3

dμ̄

dr
dûr

dr
− 4

3r
μ̄

dûr

dr

]

+ ikρ̄Uûr − iρ̄ωûr + S
μrRe

[
7
3

im
μ̄

r2 ûθ + 2
3

im
r

dμ̄

dr
ûθ − 1

3
imμ̄
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dûθ
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]

+ S
μrRe

[
2
3

ik
dμ̄

dr
ûx − 1

3
ikμ̄

dûx

dr

]
+ dp̂

dr
+ H̄S

μrRe

[
−ik

dU
dr

ρ̂

]
= 0. (B2)

Azimuthal (θ ) momentum equation,

S
μrRe

[
− im

r
dμ̄

dr
ûr − 7

3
im
r2 μ̄ûr − 1

3
imμ̄

r
dûr

dr

]
+ S

μrRe

[
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3

μ̄ m2

r2 ûθ + 1
r

dμ̄

dr
ûθ

+ μ̄

r2 ûθ − μ̄

r
dûθ
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d2ûθ
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dûθ
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+ k2μ̄ûθ

]

+ ikρ̄Uûθ + S
μrRe

[
mk
3r

μ̄ûx

]
+ im

r
p̂ − iρ̄ωûθ = 0. (B3)

Axial (x) momentum equation,

ρ̄
dU
dr

ûr + S
μrRe

[
−ik

dμ̄

dr
ûr − ik

3
μ̄

dûr

dr
− ik

3r
μ̄ûr
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ûθ
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+ ikρ̄Uûx
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dr
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dr
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dr2 + 4
3

k2μ̄ûx − μ̄

r
dûx

dr

]
+ ikp̂ − iωρ̄ûx

+ 1
Fr2 ρ̂ + SH̄

μrRe

[
−d2U

dr2 ρ̂ − 1
r

dU
dr

ρ̂ − dU
dr

dρ̂

dr

]
+ S

μrRe

[
−dU

dr
dH̄
dr

ρ̂

]
= 0. (B4)

Species transport equation,

ρ̄
dȲ
dr

ûr − 1
ReSc

[
d2Ȳ
dr2 ρ̂ + 1

r
dȲ
dr

ρ̂ + dȲ
dr

dρ̂

dr

]

+ F̄
ReSc

[
m2ρ̄

r2 ρ̂ − dρ̄

dr
dρ̂

dr
+ k2ρ̄ρ̂ − ρ̄

d2ρ̂

dr2 − ρ̄

r
dρ̂
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]
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− 1
ReSc

[
dρ̄

dr
dF̄
dr

ρ̂ + ρ̄
d2F̄
dr2 ρ̂ + ρ̄

r
dF̄
dr

ρ̂ + 2ρ̄
dF̄
dr

dρ̂

dr

]
+ ikF̄ρ̄Uρ̂ − iωρ̄F̄ρ̂ = 0.

(B5)

B.2. Boundary condition
Boundary conditions for the perturbation equations are specified at the axis and far-field.
The perturbations must decay in the far-field for all m (Khorrami et al. 1989),

r → ∞, (ûr, ûθ , ûx, p̂, ρ̂) = 0 for all m (B6)

and in the axis (r = 0), boundary conditions are obtained by vanishing azimuthal
dependence of velocity, pressure and density perturbation. In addition to the above, the
continuity equation is enforced on the axis for m = 1 (Khorrami et al. 1989). The resulting
boundary conditions at r = 0 are

r = 0;

⎧⎪⎨
⎪⎩

(ûr, ûθ ) = 0; (ûx, p̂, ρ̂) are finite, m = 0,

(ûx, p̂, ρ̂) = ûr + iûθ = 0, 2û′
r + iû′

θ = 0, |m| = 1,

(ûr, ûθ , ûx, p̂, ρ̂) = 0, |m| > 1.

(B7)

where, the symbol (.)′ denotes differentiation with r. The explicit expression for ûx, p̂ and
ρ̂ at m = 0 can be obtained by expanding the radial momentum, axial momentum and
species transport equation (B2), (B4), (B5) around r = 0 using Taylor series (Lesshafft &
Huerre 2007). In the limit r → 0,

r = 0; û′
x = ρ̂′ = 0, p̂′ = 2Sμ̄ û′′

r /(μrRe), m = 0. (B8)
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