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Abstract Let k be a field, let k∗ = k \ {0} and let C2 be a cyclic group of order 2. We compute all of
the braided monoidal structures on the category of k-vector spaces graded by the Klein group C2 × C2.
For the monoidal structures we compute the explicit form of the 3-cocycles on C2 × C2 with coefficients
in k∗, while, for the braided monoidal structures, we compute the explicit form of the abelian 3-cocycles
on C2 × C2 with coefficients in k∗. In particular, this will allow us to produce examples of quasi-Hopf
algebras and weak braided Hopf algebras with underlying vector space k[C2 × C2].
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1. Introduction

For a field k and a group G it is well known that the category of G-graded vector spaces
VectG is a monoidal category. Now consider monoidal structures on VectG with the
same tensor product, unit object k, and the natural unit constraints, but with different
associativity constraints. These monoidal structures are in bijective correspondence with
the normalized 3-cocycles on G with coefficients in k∗ = k \ {0}. In the case where G is
abelian, the braided monoidal structures on VectG are in bijective correspondence with
abelian 3-cocycles. These are normalized 3-cocycles together with a so-called R-matrix.
Isomorphism classes of braided monoidal structures are then classified by the cohomology
group H3

ab(G, k∗), which is isomorphic to the group of quadratic forms QF(G, k∗) by a
result of Eilenberg and Mac Lane [10–13].

Associative algebras in VectG with one of these monoidal structures are usually not
associative in the usual sense. Notable examples include Cayley–Dickson algebras and
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Clifford algebras: in [1,3], Albuquerque and Majid show that they are associative alge-
bras in a suitable symmetric monoidal category of graded vector spaces. Other examples
are given by superalgebras. These are algebras in VectC2 or, more generally, associa-
tive algebras in the category of anyonic vector spaces VectCn with a suitable monoidal
structure.

In the case where G is a cyclic group, the classification of braided monoidal struc-
tures on VectG is presented in [15,16]. The monoidal structures on VectZ are all triv-
ial, and the braided monoidal structures are given by the R-matrices Rα : Z × Z → k∗,
Rα(x, y) = αxy, with α ∈ k∗. For a finite cyclic group, we have H3(Zn, k∗) ∼= µn(k), the
group of nth roots of 1. The cohomology class corresponding to q ∈ µn(k) is represented
by the normalized 3-cocycle

φq(x, y, z) =

{
1 if y + z < n,

qx if y + z � n
for all x, y, z ∈ {0, 1, . . . , n − 1}. (1.1)

The braidings on VectZn are represented by abelian cocycles (φνn ,Rν) with ν ∈ k∗ such
that νn2

= ν2n = 1, where R(x, y) = νxy for all x, y ∈ {0, . . . , n − 1}. Note that the case
G = Z3 has also been handled in [2, Propositions 6 and 7].

We continue the classification of braided monoidal structures on VectG. As we have
explained, the cyclic case has been covered completely. In what follows, we complete
the classification in the easiest remaining case, that is, the case where G is the Klein
group, the product C2 × C2 of two cyclic groups of order 2. Using techniques from
homological algebras, we can describe H3(C2 × C2, k

∗) (see Proposition 2.3). However,
for explicit monoidal structures we need explicit formulae for the cocycles. In § 3 we
reduce this problem to the computation of so-called happy 3-cocycles and then, after
some computations, we find out the explicit form of these elements (see Theorem 3.5). It
turns out that there are three types of normalized happy 3-cocycles, which are denoted
by φX , ha and gb, respectively (X ⊆ (C2 × C2) \ {e} and a, b ∈ k∗).

The abelian cocycles are computed in § 4. Using the Eilenberg–Mac Lane theorem we
can compute H3

ab(C2 × C2, k
∗) but, again, we want to compute the explicit formulae

for the R-matrices. When k does not contain a primitive fourth root of unit, there are
eight non-isomorphic braidings on VectC2×C2 , all of them having the trivial cocycle as
an underlying 3-cocycle (see Proposition 4.3). If k has a primitive fourth root of unity i,
then we have 24 additional non-isomorphic braidings with underlying cocycles φX , with
|X| = 2 (see Proposition 4.4). In this case, H3

ab(C2 × C2, k
∗) ∼= C4 × C4 × C2. In both

cases, there are only four non-isomorphic symmetric monoidal structures.
The importance of having an explicit formula for the cocycles and R-matrices is illus-

trated in § 5, where we construct explicit examples of quasi-Hopf algebras and weak
braided Hopf algebras. Quasi-Hopf algebras are obtained by explicitly determining some
Harrison 3-cocycles corresponding to some 3-cocycles on Cn and C2 ×C2, while the weak
braided Hopf algebras are built on k[Cn] (respectively, k[C2 × C2]) with the help of a
coboundary abelian 3-cocycle on Cn (respectively, on C2 × C2). Note that the latter are
commutative and cocommutative weak braided Hopf algebras in VectCn (or, respectively,
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VectC2×C2), which are symmetric monoidal categories with braided monoidal structures
defined by a so-called 2-cochain on Cn (respectively, on C2 × C2).

2. Preliminary results

2.1. Braided monoidal categories

A monoidal category is a category C together with a functor ⊗ : C × C → C, called
the tensor product, an object 1

¯
∈ C called the unit object, and natural isomorphisms

a : ⊗ ◦ (⊗ × Id) → ⊗ ◦ (Id× ⊗) (the associativity constraint), l : ⊗ ◦ (1
¯

× Id) → Id (the
left unit constraint) and r : ⊗ ◦ (Id×1

¯
) → Id (the right unit constraint). In addition, a

has to satisfy the pentagon axiom, and l and r have to satisfy the triangle axiom. We
refer the interested reader to [17,19] for a detailed discussion. In what follows, for any
object X ∈ C we will identify 1

¯
⊗ X ∼= X ∼= X ⊗ 1

¯
using lX and rX .

The switch functor τ : C × C → C × C is defined as τ(X, Y ) = (Y, X). A braiding on a
monoidal category C is a natural isomorphism c : ⊗ → ⊗ ◦ τ , satisfying certain axioms
(see, for example, [17,19]). If cX,Y = c−1

Y,X for all X, Y ∈ C, then we call C a symmetric
monoidal category.

We are mainly interested in the case where C = VectG, the category of vector spaces
graded by a group G. We will write G multiplicatively, and denote by e the unit element
of G. Recall that a G-graded vector space is a vector space V together with a direct
sum decomposition V =

⊕
g∈G Vg. An element v ∈ Vg is called homogeneous of degree

g, and we write |v| = g ∈ G. For two G-graded vector spaces V and W , a k-linear map
f : V → W is said to preserve the grading if f(Vg) ⊆ Wg for all g ∈ G. VectG is the
category of G-graded vector spaces and grade-preserving k-linear maps.

2.2. Monoidal structures on VectG

For two G-graded vector spaces V and W , V ⊗ W is again a G-graded vector space,
with (V ⊗ W )g :=

⊕
στ=g Vσ ⊗ Wτ . If the k-linear maps f : V → V ′ and g : W →

W ′ are grade preserving, then f ⊗ g is also grade preserving, hence we have a functor
⊗ : VectG × VectG → VectG. k is a G-graded vector space, with ke = k and kg = 0
for all G � g �= e. The problem is now to describe monoidal structures on VectG, with
⊗ as tensor product and k as the unit object. It is known that these correspond to
3-cocycles φ on G with coefficients in k∗. To solve this problem, we need to give the
possible associativity and unit constraints.

To this end, let us first recall the definition of group cohomology. Let Kn(G, k∗) be
the set of maps from Gn to k∗. Kn(G, k∗) is a group under pointwise multiplication. We
have maps ∆n : Kn(G, k∗) → Kn+1(G, k∗). ∆2 and ∆3 are given by the formulae

∆2(g)(x, y, z) = g(y, z)g(xy, z)−1g(x, yz)g(x, y)−1,

∆3(f)(x, y, z, t) = f(y, z, t)f(xy, z, t)−1f(x, yz, t)f(x, y, zt)−1f(x, y, z).

It is well known that

Bn(G, k∗) = Im ∆n−1 ⊆ Zn(G, k∗) = Ker(∆n).
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The nth cohomology group is defined as Hn(G, k∗) = Zn(G, k∗)/Bn(G, k∗), and two
elements of Hn(G, k∗) are called cohomologous if they lie in the same equivalence class.
The elements of Z3(G, k∗) are called 3-cocycles, and the elements of B3(G, k∗) are called
3-coboundaries. φ ∈ K3(G, k∗) is a 3-cocycle if and only if

φ(y, z, t)φ(x, yz, t)φ(x, y, z) = φ(xy, z, t)φ(x, y, zt) for all x, y, z ∈ G. (2.1)

A 3-cocycle φ is called normalized if φ(x, e, z) = 1 for all x, z ∈ G.

Lemma 2.1. If φ is a normalized 3-cocycle, then φ(e, y, z) = φ(x, y, e) = 1 for all
x, y, z ∈ G. A coboundary ∆2(ψ) is normalized if and only if ψ(e, x) = ψ(z, e) for all
x, z ∈ G. Then ψ is called a normalized 2-cochain on G.

Proof. Taking z = e in (2.1), we find that φ(x, y, e) = 1. Taking y = e, we find that
φ(e, z, t) = 1. The proof of the second statement is straightforward. �

Monoidal structures on VectG are in bijective correspondence to the elements of
Z3(G, k∗). Given a 3-cocycle φ, the corresponding associativity constraint is given by
the formula

aV,W,Z((v ⊗ w) ⊗ z) = φ(|v|, |w|, |z|)v ⊗ (w ⊗ z)

for G-graded vector spaces V , W and Z, and v ∈ V , w ∈ W and z ∈ Z homogeneous.
The unit constraints are given by the formulae

rV (v ⊗ 1) = φ(|v|, e, e)v, lV (1 ⊗ v) = φ(e, e, |v|)−1v.

If φ is normalized, then the unit constraints are trivial. Two monoidal structures on
VectG give isomorphic monoidal categories if and only if their corresponding 3-cocycles
are cohomologous. In order to solve our problem, it therefore suffices to compute the
3-cocycles that represent the elements of H3(G, k∗). Actually, we can restrict attention
to normalized cocycles.

Lemma 2.2. Every 3-cocycle φ is cohomologous to a normalized 3-cocycle.

Proof. Take y = z = e in (2.1). Then we find φ(x, e, t) = φ(e, e, t)φ(x, e, e). In particu-
lar, it follows that φ(e, e, e) = 1 (take x = t = e). Then consider the map g : G × G → k∗,
g(x, y) = φ(e, e, y)−1φ(x, e, e), and compute that

∆2(g)(x, e, y) = g(e, y)g(x, y)−1g(x, y)g(x, e)−1

= φ(e, e, y)−1φ(e, e, e)φ(e, e, e)φ(x, e, e)−1

= φ(x, e, y)−1.

It then follows that φ∆2(g) is normalized. �

Let B3
n(G, k∗) and Z3

n(G, k∗) be the subgroups of B3(G, k∗) and Z3(G, k∗) consisting
of normalized elements. We then have a well-defined group morphism

Z3
n(G, k∗)/B3

n(G, k∗) � φ̂ 	→ φ̄ ∈ Z3(G, k∗)/B3(G, k∗)

that is surjective by Lemma 2.2. It is easy to see that it is also injective, and therefore

H3(G, k∗) = Z3
n(G, k∗)/B3

n(G, k∗).
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2.3. Braided monoidal structures on VectG

The next problem is to describe all braided monoidal structures on VectG, with ⊗ as
the tensor product and k as the unit object. Such a braiding can only exist in the case
where G is abelian. In this case, these structures are in bijective correspondence with
so-called abelian 3-cocycles in G [15,16]. An abelian 3-cocycle is a pair (φ,R), where φ

is a normalized 3-cocycle and R : G × G → k∗ is a map satisfying

R(xy, z)φ(x, z, y) = φ(x, y, z)R(x, z)φ(z, x, y)R(y, z), (2.2)

φ(x, y, z)R(x, yz)φ(y, z, x) = R(x, y)φ(y, x, z)R(x, z) (2.3)

for all x, y, z ∈ G. If we take x = y = e in (2.2) and y = z = e in (2.2), then we
immediately obtain that

R(e, z) = R(x, e) = 1. (2.4)

We call φ the underlying 3-cocycle, and R the R-matrix. The corresponding monoidal
structure is defined by φ, and the braiding is described by the formula

cV,W (v ⊗ w) = R(|v|, |w|)w ⊗ v

for all V, W ∈ VectG and v ∈ V and w ∈ W homogeneous. It is easy to show that the
formulae (2.2) and (2.3) express the commutativity of the hexagonal diagrams in the
definition of a braiding.

Take ψ : G × G → k∗ satisfying ψ(e, x) = ψ(y, e) for all x, y ∈ G, so that ∆2(ψ) is
normalized. Consider the map

Rψ : G × G → k∗, Rψ(x, y) = ψ(x, y)−1ψ(y, x).

Then (∆2(ψ),Rψ) is an abelian 3-cocycle called an abelian 3-coboundary. The sets
Z3

ab(G, k∗) of abelian 3-cocycles and B3
ab(G, k∗) of abelian 3-coboundaries are abelian

groups under pointwise multiplication, and H3
ab(G, k∗) is defined as the quotient

Z3
ab(G, k∗)/B3

ab(G, k∗). Two braided monoidal structures on VectG are isomorphic if
and only if their corresponding abelian 3-cocycles are cohomologous. Finally, observe
that (φ,R) ∈ Z3

ab(G, k∗) defines a symmetric monoidal structure on VectG if and only if
R(x, y)R(y, x) = 1 for all x, y ∈ G.

2.4. Some homological algebra

We can compute certain cohomology groups using techniques from homological algebra.
For r, s ∈ N0, let (r, s) be the greatest common divisor of r and s. Denote by µr(k) the
group of rth units in k, and by k∗(r) := {αr | α ∈ k}. We also denote by Cs the cyclic
group of order s written multiplicatively, and by Zr we denote the cyclic group of order
r, written additively this time.

Proposition 2.3. Let k be a field and let r, s ∈ N0. Then

H3(Cr, k
∗) = µr(k),

H3(Cr × Cs) = k∗/k∗(r,s) × µr(k) × µs(k) × µ(r,s)(k).

}
(2.5)
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Proof. We have the following consequence of the universal coefficient theorem (see,
for example, [21, Exercise 6.1.5]):

Hn(G, k∗) ∼= Ext1
Z
(Hn−1(G, Z), k∗) × HomZ(Hn(G, Z), k∗), (2.6)

where Hn(G, Z) = TorZG
n (Z, Z) is the nth homology group of G with values in Z.

(i) We apply (2.6) in the case where n = 3 and G = Cr
∼= Zr. From [21, Example 6.2.3],

we recall that

H0(Cr, Z) = Z, H2n−1(Cr, Z) = Zr, H2n(Cr, Z) = 0,

for n � 1. It follows immediately that

Ext1
Z
(H2(Cr, Z), k∗) = 0 and HomZ(H3(Cr, Z), k∗) = HomZ(Cr, k

∗) = µr(k),

proving the first formula in (2.5).

(ii) It follows from the Künneth formula (see, for example, [21, Proposition 6.1.13])
that

Hn(G × H, Z) ∼=
∏

p+q=n

Hp(G, Z) ⊗Z Hq(H, Z)

×
∏

p+q=n−1

TorZ

1 (Hp(G, Z), Hq(H, Z)).

Now, for any positive integers p, q we have

Hp(Cr, Z) ⊗Z Hq(Cs, Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zr ⊗Z Zs
∼= Z(r,s) for p, q odd,

Z ⊗Z Zs
∼= Zs for p = 0 and q odd,

Zr ⊗Z Z ∼= Zr for p odd and q = 0,

0 otherwise

and

TorZ

1 (Hp(Cr, Z), Hq(Cs, Z)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TorZ

1 (Zr, Zs) = Z(r,s) for p, q odd,

TorZ

1 (Z, Zs) = 0 for p = 0 and q odd,

TorZ

1 (Zr, Z) = 0 for p odd and q = 0,

0 otherwise.

Substituting these formulae into the Künneth formula, we find that

H2(Cr × Cs, Z) = Z(r,s) and H3(Cr × Cs, Z) = Zr × Zs × Z(r,s).

It is well known that
Ext1

Z
(Z(r,s), k

∗) = k∗/k∗(r,s)

(see, for example, [20, Theorem 7.17]) and that

HomZ(Zr × Zs × Z(r,s), k
∗) = µr(k) × µs(k) × µ(r,s)(k).

The second formula in (2.5) then follows after we apply (2.6). �
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2.5. The Eilenberg–Mac Lane theorem

The Eilenberg–Mac Lane theorem gives a description of H3
ab(G, k∗) for an arbitrary

abelian group G. A function Q : G → k∗ between abelian groups G, k∗ is called a
quadratic form when Q(x−1) = Q(x) and

Q(xyz)Q(x)Q(y)Q(z) = Q(xy)Q(xz)Q(yz) (2.7)

for all x, y, z ∈ G. The set of quadratic forms on G with values in k∗ is denoted by
QF(G, k∗). It is easy to see that the pointwise product of two quadratic forms is again a
quadratic form, so QF(G, k∗) is an abelian group.

Theorem 2.4 (Eilenberg and Mac Lane [10–13,18]). Let G be an abelian group
and (φ,R) ∈ H3

ab(G, k∗). Then Q : G → k∗ given by Q(x) = R(x, x) for all x ∈ G is a
quadratic form on G with values in k∗. It is called the trace of the abelian 3-cocycle
(φ,R). Furthermore, trace induces a group isomorphism EM: H3

ab(G, k∗) → QF(G, k∗).

We refer the reader to [15, p. 35, Theorem 12] for a proof of the Eilenberg–Mac Lane
theorem.

3. Computation of the 3-cocycles on the Klein group

The Klein group is the non-cyclic group of order 4, C2×C2. It follows from Proposition 2.3
that

H3(C2 × C2, k
∗) ∼= k∗/k∗(2) × µ2(k) × µ2(k).

In order to be able to describe the monoidal structures on the category of vector spaces by
the Klein group, we need the cocycles explicitly. This explicit form will also be required
in § 4, where we will compute the abelian 3-cocycles. In this section we compute the
cocycles manually.

We will work over a field k of characteristic not equal to 2. In what follows, we write
G = C2 × C2 = {e, σ, τ, ρ}, with στ = τσ = ρ and σ2 = τ2 = e.

3.1. The normalized coboundaries

Consider g : C2 × C2 → k∗. If ∆2(g) is a normalized coboundary, then g is determined
completely by the following data (see Lemma 2.1):

g(σ, σ) = a1, g(τ, τ) = a2, g(ρ, ρ) = a3,

g(σ, τ) = b1, g(τ, ρ) = b2, g(ρ, σ) = b3,

g(τ, σ) = b4, g(σ, ρ) = b5, g(ρ, τ) = b6,

g(x, 1) = c, g(1, x) = c

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

for all x ∈ G. All other values of g are equal to 1. Normalized coboundaries thus depend
on the choice of 10 parameters a1, a2, a3, b1, b2, b3, b4, b5, b6, c ∈ k∗. For later use, we list
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some of the values of ∆2(g):

∆2(g)(σ, σ, σ) = ∆2(g)(τ, τ, τ) = ∆2(g)(ρ, ρ, ρ) = 1, (3.2)

∆2(g)(σ, σ, τ) = b1b5a
−1
1 c−1, ∆2(g)(ρ, ρ, σ) = b2b6a

−1
3 c−1,

∆2(g)(τ, σ, σ) = b−1
4 b−1

3 a1c, ∆2(g)(σ, τ, σ) = b−1
1 b−1

3 b4b5,

∆2(g)(σ, τ, ρ) = b−1
1 b2a1a

−1
3 , ∆2(g)(τ, ρ, σ) = b−1

2 b3a2a
−1
1 ,

∆2(g)(ρ, σ, τ) = b−1
3 b1a3a

−1
2 , ∆2(g)(τ, σ, ρ) = b−1

4 b5a2a
−1
3 ,

∆2(g)(σ, ρ, τ) = b−1
5 b6a1a

−1
2 , ∆2(g)(ρ, τ, σ) = b−1

6 b4a3a
−1
1 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

3.2. The cocycle relations

Taking x = y = z = t = σ in (2.1), we find that φ(σ, σ, σ)2 = 1. Thus,

εσ = φ(σ, σ, σ) = ±1. (3.4)

We have similar formulae for ετ = φ(τ, τ, τ) and ερ = φ(ρ, ρ, ρ). Since every coboundary
takes the value 1 at (σ, σ, σ), (τ, τ, τ) and (ρ, ρ, ρ), we see that εσ, ετ and ερ stay invariant
if we replace φ by a cohomologous cocycle.

Lemma 3.1. Any normalized 3-cocycle φ satisfies the relations

φ(ρ, τ, τ) = ετφ(σ, τ, τ), (3.5)

φ(τ, τ, ρ) = ετφ(τ, τ, σ), (3.6)

φ(τ, ρ, τ)φ(τ, σ, τ) = ετ , (3.7)

φ(σ, τ, τ)φ(σ, σ, τ)φ(σ, ρ, τ) = 1, (3.8)

φ(τ, σ, τ)φ(σ, τ, σ)φ(σ, ρ, τ) = φ(ρ, σ, τ)φ(σ, τ, ρ), (3.9)

φ(σ, τ, τ)φ(τ, τ, σ) = φ(ρ, τ, σ)φ(σ, τ, ρ), (3.10)

εσφ(τ, ρ, σ)φ(σ, τ, ρ) = φ(ρ, ρ, σ)φ(σ, τ, τ), (3.11)

φ(τ, ρ, τ)φ(σ, σ, τ)φ(σ, τ, ρ) = φ(ρ, ρ, τ)φ(σ, τ, σ), (3.12)

φ(τ, ρ, ρ)φ(σ, σ, ρ)φ(σ, τ, ρ) = ερ. (3.13)

These relations remain valid after we apply a permutation of (σ, τ, ρ).

Proof. All the formulae follow directly from the cocycle relation (2.1). We subse-
quently take x = σ, y = z = t = τ (3.5); x = y = z = τ , t = σ (3.6); y = σ,
x = z = t = τ (3.7) (applying (3.5)); x = y = σ, z = t = τ (3.8); x = z = σ, y = t = τ

(3.9); x = t = σ, y = z = τ (3.10); x = t = σ, y = τ , z = ρ (3.11); x = σ, y = t = τ ,
z = ρ (3.12); x = σ, y = τ , z = t = ρ (3.13). �

Lemma 3.2. Let φ be a normalized cocycle and write

p = φ(σ, τ, ρ)φ(τ, ρ, σ)φ(ρ, σ, τ), q = φ(ρ, τ, σ)φ(σ, ρ, τ)φ(τ, σ, ρ).

Then
p = q = εσετερ = ±1. (3.14)
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Proof. We compute

p = φ(σ, τ, ρ)φ(τ, ρ, σ)φ(ρ, σ, τ)
(3.11)
= εσφ(ρ, ρ, σ)φ(σ, τ, τ)φ(ρ, σ, τ)

(3.5),(3.6)
= εσερετφ(ρ, ρ, τ)φ(ρ, τ, τ)φ(ρ, σ, τ)

(3.8)
= εσετερ.

In a similar way, we prove that q = εσετερ. �

3.3. Reduction to happy cocycles

A normalized 3-cocycle φ is called even (respectively, odd) if p = 1 (respectively,
p = −1). φ is called happy if φ(x, y, z) = p whenever x, y and z are pairwise distinct and
not equal to 1.

Proposition 3.3. Every 3-cocycle φ is cohomologous to a happy normalized 3-cocycle.

Proof. It follows from Lemma 2.2 that we can assume that φ is normalized. Let g be
defined as in (3.1), with a1 = a2 = a3 = 1, b1 = b5 = p, b2 = φ(σ, τ, ρ)−1, b3 = φ(ρ, σ, τ),
b4 = φ(τ, σ, ρ), b6 = φ(σ, ρ, τ)−1 and c = 1. Applying (3.3), we find immediately that
φ∆2(g) is happy. �

3.4. Description of the happy cocycles

Assume that φ : G × G × G → k∗ is happy and normalized. This means that it satisfies
the following properties:

(i) φ(x, y, z) = 1 if one of the three entries is 1;

(ii) εx = φ(x, x, x) = ±1 for all x ∈ {σ, τ, ρ};

(iii) φ(x, y, z) = p = εσετερ if (x, y, z) is a permutation of (σ, τ, ρ).

The cocycle relations (3.8)–(3.13) then simplify as follows:

φ(σ, τ, τ)φ(σ, σ, τ) = p, (3.15)

φ(τ, σ, τ)φ(σ, τ, σ) = p, (3.16)

φ(σ, τ, τ)φ(τ, τ, σ) = 1, (3.17)

εσ = φ(ρ, ρ, σ)φ(σ, τ, τ), (3.18)

pφ(τ, ρ, τ)φ(σ, σ, τ) = φ(ρ, ρ, τ)φ(σ, τ, σ), (3.19)

φ(τ, ρ, ρ)φ(σ, σ, ρ) = pερ. (3.20)

Proposition 3.4. Let φ : G × G × G → k∗ be happy and normalized. Then φ is a
3-cocycle if and only if (3.5)–(3.7) and (3.15)–(3.17) (and their permuted versions) are
satisfied. In other words, the cocycle relations (3.18)–(3.20) follow from the other cocycle
relations.

https://doi.org/10.1017/S0013091509001746 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001746


622 D. Bulacu, S. Caenepeel and B. Torrecillas

Proof. One implication is clear. Conversely, suppose now that (3.5)–(3.7) and
(3.15)–(3.17) are satisfied. We show that (3.18)–(3.20) hold. Indeed, we have

φ(ρ, ρ, σ)φ(σ, τ, τ)
(3.5),(3.6)

= ερφ(ρ, ρ, τ)ετφ(ρ, τ, τ)
(3.15)
= ερετp = εσ,

pφ(τ, ρ, τ)φ(σ, σ, τ)
(3.7),(3.15)

= pετφ(τ, σ, τ)−1pφ(σ, τ, τ)−1

(3.16),(3.5)
= φ(σ, τ, σ)pφ(ρ, τ, τ)−1

(3.15)
= φ(σ, τ, σ)φ(ρ, ρ, τ),

φ(τ, ρ, ρ)φ(σ, σ, ρ)
(3.5)
= ερφ(σ, ρ, ρ)φ(σ, σ, ρ)

(3.15)
= pερ,

and this completes the proof. �

Theorem 3.5. Let φ be a happy normalized 3-cocycle. φ is completely determined
by εσ, ετ , ερ, a = φ(τ, σ, σ) and b = φ(σ, τ, σ). More precisely, we have

a = φ(τ, σ, σ) = pφ(σ, τ, τ)

= pφ(τ, τ, σ)−1 = φ(σ, σ, τ)−1

= εσφ(ρ, σ, σ) = pεσφ(σ, ρ, ρ)

= εσφ(σ, σ, ρ)−1 = pεσφ(ρ, ρ, σ)−1

= pετφ(ρ, τ, τ) = ετφ(τ, ρ, ρ)

= pετφ(τ, τ, ρ)−1 = ετφ(ρ, ρ, τ)−1,

b = φ(σ, τ, σ) = pεσφ(ρ, σ, ρ)

= pετφ(τ, ρ, τ) = pφ(τ, σ, τ)−1

= εσφ(σ, ρ, σ)−1 = ετφ(ρ, τ, ρ)−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21)

Proof. Recall first that some of the cocycle conditions simplify if φ is happy. Using
these simplified cocycle relations, we compute

φ(τ, τ, σ)−1(3.15)
= pφ(τ, σ, σ) = pa,

φ(σ, τ, τ)
(3.17)
= φ(τ, τ, σ)−1

(3.15)
= pφ(τ, σ, σ) = pa,

φ(σ, σ, τ)−1(3.15)
= pφ(σ, τ, τ) = a,

φ(ρ, σ, σ)
(3.5)
= εσφ(τ, σ, σ) = aεσ,

φ(ρ, τ, τ)
(3.5)
= ετφ(σ, τ, τ) = paετ ,

φ(σ, σ, ρ)
(3.6)
= εσφ(σ, σ, τ) = a−1εσ,
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φ(τ, τ, ρ)
(3.6)
= ετφ(τ, τ, σ)

(3.15)
= pa−1ετ ,

φ(σ, ρ, ρ)
(3.15)
= pφ(σ, σ, ρ)−1 = paεσ,

φ(τ, ρ, ρ)
(3.15)
= pφ(τ, τ, ρ)−1 = aετ ,

φ(ρ, ρ, σ)
(3.15)
= pφ(ρ, σ, σ)−1 = pa−1εσ,

φ(ρ, ρ, τ)
(3.15)
= pφ(ρ, τ, τ)−1 = a−1ετ ,

φ(τ, σ, τ)
(3.16)
= pφ(σ, τ, σ)−1 = pb−1,

φ(τ, ρ, τ)
(3.7)
= ετφ(τ, σ, τ)−1 = pετ b,

φ(ρ, τ, ρ)
(3.16)
= pφ(τ, ρ, τ)−1 = ετ b−1,

φ(ρ, σ, ρ)
(3.7)
= ερφ(ρ, τ, ρ)−1 = ερετ b = pεσb,

φ(σ, ρ, σ)
(3.7)
= εσφ(σ, τ, σ)−1 = εσb−1,

as we claimed, so our proof is complete. �

The maps φ described in Theorem 3.5 are indexed by the parameters εσ, ετ , ερ ∈
{−1, 1} and a, b ∈ k∗. It is a routine computation to verify that they all satisfy (3.5)–(3.7)
and (3.15)–(3.17), hence, they are all 3-cocycles by Proposition 3.4. This tells us that
there is a bijection from the subgroup Z3

h(C2 × C2, k
∗) of Z3(C2 × C2, k

∗) consisting of
happy normalized cocycles to the set C3

2 × (k∗)2.
Let H1 be the subset of Z3

h(C2 × C2, k
∗) for which the corresponding parameters a and

b are equal to 1. This is also the subset of Z3
h(C2 × C2, k

∗) consisting of cocycles φ for
which φ(τ, σ, σ) = φ(σ, τ, σ) = 1. It is then clear that H1 is a subgroup of Z3

h(C2 × C2, k
∗)

consisting of eight elements:

H1 = {φX | X ⊆ {σ, τ, ρ}}.

φ∅ is the trivial 3-cocycle and, for a non-empty subset X of {σ, τ, ρ}, φX is the 3-cocycle
defined as follows: εx = −1 if and only if x ∈ X. The multiplication on H1 is the following:

φXφY = φX∆Y ,

where X∆Y = (X \ Y ) ∪ (Y \ X) is the symmetric difference of the sets X and Y . φX

is an even cocycle if and only if |X| is even. It follows that H1 ∼= C2 × C2 × C2.
Since a normalized cocycle takes the value 1 if one of the three entries is equal to e,

we can view them as functions {σ, τ, ρ}3 → k∗. From the description in Theorem 3.5, it
follows that the eight cocycles in H1 are invariant under permutation: φX ◦ s = φX for
all X ⊂ {σ, τ, ρ} and s ∈ S3.

Let {Pe, Pσ, Pτ , Pρ} be the basis of k[G]∗ ∼= kG dual to the basis {e, σ, τ, ρ} of k[G].
Then the following elements of kG×G×G ∼= k[G]∗ ⊗ k[G]∗ ⊗ k[G]∗ are invariant under
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permutations:

X =
∑
s∈S3

Ps(σ) ⊗ Ps(τ) ⊗ Ps(ρ),

Xx = Px ⊗ Px ⊗ Px, x ∈ {σ, τ, ρ},

Xx,y = Px ⊗ Py ⊗ Py + Py ⊗ Px ⊗ Py + Py ⊗ Py ⊗ Px, x �= y ∈ {σ, τ, ρ}.

Viewed as maps G × G × G → k∗, these can also be described as follows:

X(x, y, z) =

{
1 if {x, y, z} = {σ, τ, ρ},

0 otherwise,

Xσ(x, y, z) =

{
1 if x = y = z = σ,

0 otherwise,

and Xσ,τ (x, y, z) = 1 if one element of (x, y, z) equals σ and the two others equal τ , and
Xσ,τ (x, y, z) = 0 otherwise.

Also observe that the X, Xx and Xx,y are orthogonal. From Theorem 3.5, we now
deduce the following formulae for the elements of H1,

φ{σ} = 1 − 2(Xσ + Xσ,τ + Xρ,τ + Xρ,σ + X),

φ{τ} = 1 − 2(Xτ + Xσ,ρ + Xτ,ρ + Xσ,τ + X),

φ{ρ} = 1 − 2(Xρ + Xσ,τ + Xρ,τ + Xσ,ρ + X),

φ{σ,τ} = 1 − 2(Xσ + Xτ + Xρ,τ + Xτ,ρ + Xρ,σ + Xσ,ρ),

φ{σ,ρ} = 1 − 2(Xσ + Xρ + Xρ,σ + Xσ,ρ),

φ{τ,ρ} = 1 − 2(Xτ + Xρ + Xρ,τ + Xτ,ρ),

φ{σ,τ,ρ} = 1 − 2(Xσ + Xτ + Xρ + Xρ,σ + Xσ,τ + Xτ,ρ + X).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

For any b ∈ k∗, let gb be the cocycle that we obtain taking a = 1, εσ = ετ = ερ = 1 in
Theorem 3.5. We have

gb(x, y, z) =

⎧⎪⎨
⎪⎩

b if (x, y, z) ∈ {(σ, τ, σ), (ρ, σ, ρ), (τ, ρ, τ)},

b−1 if (x, y, z) ∈ {(τ, σ, τ), (σ, ρ, σ), (ρ, τ, ρ)},

1 otherwise.

(3.23)

For any a ∈ k∗, let ha be the cocycle that we obtain taking b = 1, εσ = ετ = ερ = 1 in
Theorem 3.5. Thus,

ha(x, y, z) =

⎧⎪⎨
⎪⎩

a if e �= x �= y = z �= e,

a−1 if e �= x = y �= z �= e,

1 otherwise.

It is clear that

H2 = {gb | b ∈ k∗} and H3 = {ha | a ∈ k∗}
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are subgroups of Z3
h(C2 × C2, k

∗). Therefore, Z3
h(C2 × C2, k

∗) = H1 × H2 × H3, and we
have the following result.

Corollary 3.6. We have an isomorphism of abelian groups

Z3
h(C2 × C2, k

∗) ∼= C2 × C2 × C2 × k∗ × k∗.

It is easy to see that hagb is invariant under permutation if and only if a = b = −1.
Observe also that

h−1g−1 = 1 − 2(Xρ,σ + Xσ,ρ + Xσ,τ + Xτ,σ + Xτ,ρ + Xρ,τ ),

h−1g−1φ{σ,τ} = 1 − 2(Xσ + Xτ + Xτ,ρ + Xρ,τ ).

The subgroup H̃ of Z3
h(C2 × C2, k

∗) consisting of cocycles invariant under permutation
is the subgroup generated by H1 and h−1g−1, and it follows from Corollary 3.6 that
H̃ ∼= C4

2 .
H3(C2 × C2, k

∗) is an epimorphic image of Z3
h(C2 × C2, k

∗). We need to figure out
which happy normalized cocycles are coboundaries.

Proposition 3.7. If X �= ∅, then φX is not a coboundary. ha is a coboundary for
every a ∈ k∗. gb is a coboundary if and only if b has a square root in k∗.

Proof. The first statement follows from the fact that φ(x, x, x) = 1 for every x if φ is
a normalized coboundary (see (3.2)).

ha can be written as a coboundary in two different ways: take g : C2 × C2 → k∗ as in
(3.1), with bi = 1, for i = 1, . . . , 6, a1 = a2 = a3 = a and c = 1, or c = a, and all the ai

and bi equal to 1. It follows from (3.3) that ∆2(g) is happy, and that ∆2(g)(τ, σ, σ) = a

and ∆2(g)(σ, τ, σ) = 1. Applying Theorem 3.5, we see that ∆2(g) = ha.
Assume that b = d2, and consider g : C2 × C2 → k∗ as in (3.1), now with

a1 = a2 = a3 = b4 = b5 = b6 = d, b1 = b2 = b3 = 1, c = 1.

It follows from (3.3) that ∆2(g) is happy, and that

∆2(g)(τ, σ, σ) = 1 and ∆2(g)(σ, τ, σ) = d2 = b.

Theorem 3.5 tells us that ∆2(g) = gb, so gb is a coboundary.
Conversely, if gb is a coboundary, then gb = ∆2(g), with g : C2 × C2 → k∗ given by

(3.1), for some a1, a2, a3, b1, b2, b3, b4, b5, b6, c ∈ k∗. From (3.3) and the description of gb,
it follows that

1 = gb(σ, σ, τ) = b1b5a
−1
1 c−1, 1 = gb(τ, σ, ρ) = b−1

4 b5a2a
−1
3 ,

1 = gb(ρ, ρ, σ) = b3b6a
−1
3 c−1, 1 = gb(σ, ρ, τ) = b−1

5 b6a1a
−1
2 .

From the first two formulae it follows that b1 = a1a2a
−1
3 b−1

4 c, and combining the other
two formulae we obtain that b3 = a1a

−1
2 a3b

−1
5 c. Using (3.3), we now find that

b = gb(σ, σ, τ) = b−1
1 b−1

3 b4b5

= a−1
1 a−1

2 a3b4c
−1a−1

1 a2a
−1
3 b5c

−1b4b5

= (a−1
1 b4b5c

−1)2

is a square in k∗. �
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Corollary 3.8. We have

H3(C2 × C2, k
∗) = C2 × C2 × C2 × k∗/k∗(2), where k∗(2) = {α2 | α ∈ k∗}.

Corollary 3.9. If every element of k has a square root (for example, if k is algebraically
closed), then H3(C2 × C2, k

∗) = C2 × C2 × C2.

So a non-strict monoidal structure on VectC2×C2 is defined by the one of the 3-cocycles
defined in (3.22), or by a 3-cocycle as in (3.23) with b ∈ k∗ \ k∗(2). All the remaining
monoidal structures of VectC2×C2 are monoidal isomorphic to the strict monoidal struc-
ture of VectC2×C2 .

All our computations are over fields of characteristic different from 2; they can be
extended easily to the case where char(k) = 2. Then all εx = 1, and we obtain the
following result.

Proposition 3.10. Let k be a field of characteristic 2. Then

H3(C2 × C2, k
∗) = k∗/k∗(2).

If every element of k has a square root, then H3(C2 × C2, k
∗) = 1.

Remark 3.11. Let C2 = {e, α}. If the characteristic of k is different from 2, then
Z3(C2, k

∗) contains two cocycles. The non-trivial cocycle φ takes the value −1 at (α, α, α)
and 1 elsewhere. Otherwise stated,

φ = 1 − 2Pα ⊗ Pα ⊗ Pα

if {Pe, Pα} is the basis of k[C2]∗ dual to {e, α}.
Now we have three Hopf algebra morphisms t1, t2, t3 : k[C2]∗ → k[C2 × C2]∗. These are

given by the formulae

t1(Pe) = Pe + Pσ, t1(Pα) = Pτ + Pρ,

t2(Pe) = Pe + Pτ , t2(Pα) = Pσ + Pρ,

t3(Pe) = Pe + Pρ, t3(Pα) = Pτ + Pσ.

The ti induce group morphisms ti : Z3(C2, k
∗) → Z3(C2 × C2, k

∗). Now we easily see that

t1(φ) = 1 − 2(Pτ + Pρ) ⊗ (Pτ + Pρ) ⊗ (Pτ + Pρ) = φ{τ,ρ},

t2(φ) = 1 − 2(Pσ + Pρ) ⊗ (Pσ + Pρ) ⊗ (Pσ + Pρ) = φ{σ,ρ},

t3(φ) = 1 − 2(Pτ + Pσ) ⊗ (Pτ + Pσ) ⊗ (Pτ + Pσ) = h−1g−1φ{σ,τ}.

If k contains a square root i of −1, then h−1g−1 is a coboundary, and

[t1(φ)][t2(φ)] = [t3(φ)] in H3(C2 × C2, k
∗).
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4. Computation of the abelian cocycles on the Klein group

4.1. Computation of the quadratic forms

Throughout this section we assume that char(k) �= 2. In order to describe the braidings
of VectC2×C2 , we have to compute H3

ab(C2 × C2, k
∗) (see § 2.3). To this end, we will make

use of the Eilenberg–Mac Lane theorem (see § 2.5). We compute QF(C2 × C2, k
∗).

Lemma 4.1. Q : C2 × C2 → k∗ is a quadratic form if and only if

(i) Q(e) = 1,

(ii) Q(σ)4 = Q(τ)4 = Q(ρ)4 = 1,

(iii) Q(σ)2Q(τ)2Q(ρ)2 = 1.

Proof. Assume first that Q is a quadratic form. Part (i) follows after we take x =
y = z = e in (2.7). For (ii), take x = y = z = σ in (2.7). Since σ3 = σ and σ2 = e, it
follows that Q(σ)4 = 1. For (iii), take x = y = σ and ρ = τ in (2.7). Then we find that
Q(σ)2Q(τ)2 = Q(ρ)2. Multiplying both sides by Q(ρ)2, we find (iii).

Conversely, assume that Q satisfies conditions (i)–(iii). Then Q(x−1) = Q(x) is auto-
matically satisfied, since x = x−1 for all x ∈ C2 × C2. To prove (2.7), we distinguish
several cases.

Case 1 (e ∈ {x, y, z}, say x = e). Then (2.7) reduces to

Q(yz)Q(y)Q(z) = Q(y)Q(z)Q(yz),

which is satisfied.

Case 2 (e �∈ {x, y, z}).

(a) |{x, y, z}| = 1: x = y = z. (2.7) reduces to Q(x)4 = Q(e)3 = 1.

(b) |{x, y, z}| = 2, say x = y = σ, z = τ . (2.7) reduces to

Q(τ)Q(σ)2Q(τ) = Q(e)Q(ρ)Q(ρ).

(c) |{x, y, z}| = 3, say x = σ, y = τ , z = ρ. (2.7) reduces to

Q(e)Q(σ)Q(τ)Q(ρ) = Q(ρ)Q(τ)Q(σ).

�
Assume first that k contains i, a primitive fourth root of 1. Then Q is a quadratic form

if and only if Q(e) = 1, Q(σ), Q(τ), Q(ρ) ∈ {±1,±i} and Q(σ)Q(τ)Q(ρ) = ±1. Then
QF(C2 × C2, k

∗) has 32 elements, which are summarized in Table 1.
Thus QF(C2 × C2, k

∗) is the abelian group consisting of I, A, B, C, AB, AC, BC,
ABC; Ej , AEj , BEj , CEj , ABEj , ACEj , BCEj , ABCEj , j = 1, 2, 3, with relations

A2 = B2 = C2 = I, E2
1 = BC, E2

2 = AC, E2
3 = AB,

E1E2 = CE3, E1E3 = BE2, E2E3 = AE1,

}
(4.1)
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Table 1. The 32 elements of QF(C2 × C2, k
∗).

I A B C AB AC BC ABC

Q(σ) 1 1 1 −1 1 −1 −1 −1
Q(τ) 1 1 −1 1 −1 1 −1 −1
Q(ρ) 1 −1 1 1 −1 −1 1 −1

E1 AE1 BE1 CE1 ABE1 ACE1 BCE1 ABCE1

Q(σ) i i i −i i −i −i −i
Q(τ) i i −i i −i i −i −i
Q(ρ) 1 −1 1 1 −1 −1 1 −1

E2 AE2 BE2 CE2 ABE2 ACE2 BCE2 ABCE2

Q(σ) i i i −i i −i i −i
Q(τ) 1 1 −1 1 −1 1 −1 −1
Q(ρ) i −i i i −i −i i −i

E3 AE3 BE3 CE3 ABE3 ACE3 BCE3 ABCE3

Q(σ) 1 1 1 −1 1 −1 −1 −1
Q(τ) i i −i i −i i −i −i
Q(ρ) i −i i i −i −i i −i

for all j = 1, 2, 3. Hence QF(C2 × C2, k
∗) ∼= C4 × C4 × C2, because it is an abelian group

of order 32 that contains precisely seven elements of order two and all the other non-trivial
elements have order four.

If k does not contain a fourth root of 1, then we clearly have

QF(C2 × C2, k
∗) = {I, A, B, C, AB, AC, BC, ABC} ∼= C2 × C2 × C2.

This describes QF(C2 × C2, k
∗) ∼= H3

ab(C2 × C2, k
∗). Our aim is now to compute explic-

itly the abelian cocycles corresponding to the 32 quadratic forms.

4.2. Computation of the abelian cocycles

We will say that a 3-cocycle φ ∈ Z3(C2 × C2, k
∗) is abelian if it is the underlying

cocycle of an abelian cocycle (φ,R) ∈ Z3
ab(C2 × C2, k

∗), or, equivalently, if π−1(φ) �= ∅,
where π : H3

ab(C2 × C2, k
∗) → H3(C2 × C2, k

∗) is induced by the projection on the first
component.

Lemma 4.2. For b ∈ k∗, gb is an abelian 3-cocycle if and only if gb is coboundary as
a 3-cocycle.
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Proof. Assume that gb is an abelian 3-cocycle via a certain map R : G × G → k∗.
Taking x = y = σ and z = τ in (2.2), we find that

R(e, τ)gb(σ, τ, σ) = gb(σ, σ, τ)R(σ, τ)2gb(τ, σ, σ).

By (3.23) we obtain b = R(σ, τ)2, and so gb is a coboundary 3-cocycle on C2 × C2 (see
Proposition 3.7). �

Our next aim is to compute π−1(φ∅). This allows us to compute π−1(φ) for every
coboundary φ.

Proposition 4.3. The subgroup π−1(φ∅) of H3
ab(C2 × C2, k

∗) is isomorphic to C2 ×
C2 × C2. Its elements are of the form [(1,R)], with R given by the following data:

R(x, x) = µx with µ2
x = 1 for all x ∈ {σ, τ, ρ},

R(σ, τ) = 1, R(τ, σ) = µσµτµρ, R(σ, ρ) = µσ,

R(ρ, σ) = µτµρ, R(τ, ρ) = µσµρ, R(ρ, τ) = µτ .

Moreover, EM(π−1(φ)) is the subgroup of QF(C2 × C2, k
∗) generated by A, B and C.

Proof. Let (1,R) be an abelian cocycle. The relations (2.2) and (2.3) reduce to

R(xy, z) = R(x, z)R(y, z) and R(x, yz) = R(x, y)R(x, z) (4.2)

for all x, y, z ∈ C2 × C2. This means that R is a bilinear map. Observe that

Bil(C2
2 × C2

2 , k∗) ∼= Hom(C2
2 , (C2

2 )∗) ∼= End(C2
2 ) = C4

2 .

Here (C2
2 )∗ is the character group of C2

2 , and the characters take values in {1,−1}. It
follows that R takes values in {1,−1}, and there are 16 different maps for R. These are
completely determined by the values

R(σ, σ) = µσ, R(τ, τ) = µτ ,

R(ρ, ρ) = µρ, R(σ, τ) = α ∈ {1,−1}.

Indeed, the other values of R follow from the bilinearity of R:

R(σ, ρ) = R(σ, σ)R(σ, τ) = αµσ,

R(ρ, τ) = R(σ, τ)R(τ, τ) = αµτ ,

R(ρ, σ) = R(ρ, τ)R(ρ, ρ) = αµτµρ,

R(τ, σ) = R(σ, σ)R(ρ, σ) = αµσµτµρ,

R(τ, ρ) = R(σ, ρ)R(ρ, ρ) = αµσµρ.

Now let R and R− be two bilinear forms that reach the same values at (σ, σ), (τ, τ) and
(ρ, ρ), and assume that R(σ, τ) = 1 = −R−(σ, τ). Then R and R− are cohomologous
as abelian 3-cocycles on C2 × C2. To see this, take g : C2 × C2 → k∗ as in (3.1) with
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Table 2. The eight abelian 3-cocycles with trivial underlying 3-cocycle.

EM(1, R) I A B C AB AC BC ABC

R(σ, σ) 1 1 1 −1 1 −1 −1 −1
R(τ, τ) 1 1 −1 1 −1 1 −1 −1
R(ρ, ρ) 1 −1 1 1 −1 −1 1 −1
R(σ, τ) 1 1 1 1 1 1 1 1
R(τ, σ) 1 −1 −1 −1 1 1 1 −1
R(σ, ρ) 1 1 1 −1 1 −1 −1 −1
R(ρ, σ) 1 −1 −1 1 1 −1 −1 1
R(τ, ρ) 1 −1 1 −1 −1 1 −1 1
R(ρ, τ) 1 1 −1 1 −1 1 −1 −1

Otherwise 1 1 1 1 1 1 1 1

a1 = a2 = a3 = b4 = b5 = b6 = −1 and b1 = b2 = b3 = c = 1. Then one can easily verify
that

∆2(g) = 1

and
R(x, y) = g(x, y)−1g(y, x)R−(x, y) for all x, y ∈ C2 × C2.

It is easy to see that the images under EM of the eight bilinear forms that take the
value 1 at (σ, τ) are I, A, B, C, AB, AC, BC and ABC. It then follows from the
Eilenberg–Mac Lane theorem (Theorem 2.4) that these eight bilinear forms represent
different cohomology classes in H3

ab(C2 × C2, k
∗). �

In Table 2 we present the eight abelian cocycles representing the elements of π−1(φ).
Note that the braidings associated to I, AB, AC and BC are symmetries on VectC2×C2 .
Indeed, by (4.2) it follows that

R−1(x, y) = R(x−1, y) = R(x, y) for all x, y ∈ C2 × C2,

so VectC2×C2 is symmetric monoidal if and only if R(x, y) = R(y, x) for all x, y ∈ C2×C2.
Now Table 2 shows that only I, AB, AC and BC satisfy this condition.

We still have to compute the abelian 3-cocycles in π−1(φX), with X a non-empty
subset of {σ, τ, ρ}.

Proposition 4.4. Let X ⊆ {σ, τ, ρ} be a non-empty subset. Then φX is an abelian
3-cocycle if and only if it is even and k contains a primitive fourth root of 1.

Proof. Assume that (φX ,R) is abelian for a certain R and define µx := R(x, x) for
all x ∈ {σ, τ, ρ}. Taking x = y = z in (2.2) or (2.3), we get µ2

x = εx for all x ∈ {σ, τ, ρ}.
If we take x = z �= y in (2.2), we obtain

R(xy, x) = φX(x, y, x)µxR(y, x) for all x �= y
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from {σ, τ, ρ}. Thus, according to (3.21) we have

R(ρ, σ) = µσR(τ, σ),

R(τ, ρ) = µρερετR(σ, ρ),

R(σ, τ) = µτεσερR(ρ, τ).

⎫⎪⎬
⎪⎭ (4.3)

We obtain the same relations if we take y = z �= x in (2.2). For x = y �= z in (2.2) we
obtain φX(x, z, x) = φX(x, x, z)R(x, z)2φX(z, x, x), and therefore, by (3.21) we deduce
that

R(σ, τ)2 = 1, R(σ, ρ)2 = εσ, R(τ, σ)2 = p,

R(τ, ρ)2 = εσερ, R(ρ, σ)2 = ερετ , R(ρ, τ)2 = ετ .

}
(4.4)

Moving to (2.3), for z = x �= y we obtain φX(x, y, x)R(x, xy) = µxR(x, y), so

R(σ, ρ) = µσR(σ, τ), εσR(σ, τ) = R(σ, ρ)µσ, pR(τ, ρ) = R(τ, σ)µτ ,

pετR(τ, σ) = R(τ, ρ)µτ , pεσR(ρ, τ) = R(ρ, σ)µρ, ετR(ρ, σ) = R(ρ, τ)µρ.

}
(4.5)

The same relations are obtained if we take x = y �= z among {σ, τ, ρ} in (2.3), while for
y = z �= x we obtain φX(x, y, y)φX(y, y, x) = R(x, y)2φX(y, x, y). This yields

R(σ, τ)2 = p, R(σ, ρ)2 = ετερ, R(τ, σ)2 = 1,

R(τ, ρ)2 = ετ , R(ρ, σ)2 = εσ, R(ρ, τ)2 = εσερ.

}
(4.6)

From the first equalities in (4.4) and (4.6) it follows that p = 1, and so φX is necessarily
even. Also, there exists x ∈ {σ, τ, ρ} such that εx = −1, so the equation µ2

x = −1 has a
solution in k, and k contains a primitive fourth root of 1.

Conversely, if φX is even and k contains a primitive fourth root of 1, then φX is
completely determined by µx, x ∈ {σ, τ, ρ}, and α := R(σ, τ) ∈ {±1} (see the first
relation in (4.6)). Actually, combining the relations in (4.3)–(4.6), we must have

R(x, x) = µx with µ2
x = εx for all x ∈ {σ, τ, ρ},

R(σ, τ) = α ∈ {±1}, R(τ, σ) = αερµσµτµρ, R(σ, ρ) = αµσ,

R(ρ, σ) = αετµτµρ, R(τ, ρ) = αεσµσµρ, R(ρ, τ) = αµτ .

⎫⎪⎬
⎪⎭ (4.7)

Likewise, if R is defined by (4.7), then it can be easily checked that all the relations in
(4.3)–(4.6) are satisfied, and so (2.2) and (2.3) are verified. �

Remark 4.5. Consider an abelian 3-cocycle (φX ,R), and assume that the correspond-
ing braided monoidal structure is symmetric. If X �= ∅, then there exists x ∈ X such that
εx = −1 and R(x, x) = µx = ±i by (4.7). Then R(x, x)−1 = −R(x, x), contradicting the
fact that the monoidal structure is symmetric. We conclude that X = ∅, and VectC2×C2

admits only four types of symmetric monoidal structures, namely the ones corresponding
to the abelian 3-cocycles I, AB, AC and BC (see Table 2 for the description of these
cocycles).
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Table 3. The abelian 3-cocycles with underlying 3-cocycle φ{σ,τ}.

EM(φ{σ,τ}, R) E1 AE1 BE1 CE1 ABE1 ACE1 BCE1 ABCE1

R(σ, σ) i i i −i i −i −i −i
R(τ, τ) i i −i i −i i −i −i
R(ρ, ρ) 1 −1 1 1 −1 −1 1 −1
R(σ, τ) 1 1 1 1 1 1 1 1
R(τ, σ) −1 1 1 1 −1 −1 −1 1
R(σ, ρ) i i i −i i −i −i −i
R(ρ, σ) −i i i −i −i i i −i
R(τ, ρ) −i i −i i i −i i −i
R(ρ, τ) i i −i i −i i −i −i

Otherwise 1 1 1 1 1 1 1 1

Table 4. The abelian 3-cocycles with underlying 3-cocycle φ{σ,ρ}.

EM(φ{σ,ρ}, R) E2 AE2 BE2 CE2 ABE2 ACE2 BCE2 ABCE2

R(σ, σ) i i i −i i −i −i −i
R(τ, τ) 1 1 −1 1 −1 1 −1 −1
R(ρ, ρ) i −i i i −i −i i −i
R(σ, τ) 1 1 1 1 1 1 1 1
R(τ, σ) 1 −1 −1 −1 1 1 1 −1
R(σ, ρ) i i i −i i −i −i −i
R(ρ, σ) i −i −i i i −i −i i
R(τ, ρ) 1 −1 1 −1 −1 1 −1 1
R(ρ, τ) 1 1 −1 1 −1 1 −1 −1

Otherwise 1 1 1 1 1 1 1 1

The abelian 3-cocycles in Proposition 4.4 with α = 1 represent the same elements in
H3

ab(C2 × C2, k
∗) as the ones with α = −1. For this, take g as in the proof of Proposi-

tion 4.3 to show that they are cohomologous as abelian 3-cocycles. The abelian 3-cocycles
obtained from α = 1 are not cohomologous because of the Eilenberg–Mac Lane theorem.

If k does not contain a primitive fourth root of unity, then π−1(ΦX) = ∅ for X �= ∅,
and H3

ab(C2 × C2, k
∗) ∼= C2 × C2 × C2, as described in Proposition 4.3. Now assume that

k contains a primitive fourth root of unity i. The inverse images under π of φX , X =
{σ, τ}, {σ, ρ}, {τ, ρ}, each contain eight elements. Their explicit description is given in
Proposition 4.4, and is summarized in Tables 3–5.

Remark 4.6. This remark is a continuation of Remark 3.11. It is easy to show that
Q : C2 × C2 → k∗ is a quadratic form if and only if Q(e) = 1 and Q(α)4 = 1. Assuming
that k has a primitive fourth root of 1, we have that QF(C2, k

∗) = C4 ∼= H2
ab(C2, k

∗).
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Table 5. The abelian 3-cocycles with underlying 3-cocycle φ{τ,ρ}.

EM(φ{τ,ρ}, R) E3 AE3 BE3 CE3 ABE3 ACE3 BCE3 ABCE3

R(σ, σ) 1 1 1 −1 1 −1 −1 −1
R(τ, τ) i i −i i −i i −i −i
R(ρ, ρ) i −i i i −i −i i −i
R(σ, τ) 1 1 1 1 1 1 1 1
R(τ, σ) 1 −1 −1 −1 1 1 1 −1
R(σ, ρ) 1 1 1 −1 1 −1 −1 −1
R(ρ, σ) 1 −1 −1 1 1 −1 −1 1
R(τ, ρ) i −i i −i −i i −i i
R(ρ, τ) i i −i i −i i −i −i

Otherwise 1 1 1 1 1 1 1 1

The four cocycles in H2
ab(C2, k

∗) are

(1, 1), (1,R2), (φ,R3), (φ,R4),

with

R2 = 1 − 2Pα ⊗ Pα, R3 = 1 − (1 − i)Pα ⊗ Pα, R4 = 1 − (1 + i)Pα ⊗ Pα.

(1, 1) and (1,R2) give symmetries on VectC2 ; the two others give braided non-symmetric
monoidal structures. Now it is easy to calculate that

t1(1,R2) = (1, AB), t2(1,R2) = (1, AC), t3(1,R2) = (1, BC),

and these are precisely the non-trivial symmetric abelian cocycles. In a similar way, we
can compute that

t1(φ,R3) = (φ{τ,ρ}, E3), t1(φ,R4) = (φ{τ,ρ}, ABE3),

t2(φ,R3) = (φ{σ,ρ}, E2), t2(φ,R4) = (φ{σ,ρ}, ACE2).

t3(φ,R3) and t3(φ,R4) are cohomologous to (φ{σ,τ}, E1) and (φ{σ,τ}, ABE1).

5. Some applications

5.1. Quasi-Hopf algebra structures

We will examine the following classification problem. Let H be a commutative, cocom-
mutative, finite-dimensional Hopf algebra: in our case, let H = k[Cn] or k[C2×C2], where
Cn is the cyclic group of order n. Classify, up to gauge equivalence, all quasi-bialgebra
structures on H. Recall briefly that a quasi-bialgebra is a unital associative algebra
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endowed with a coalgebra structure that is coassociative up to conjugation by a reasso-
ciator Φ ∈ H ⊗H ⊗H. For a complete definition we invite the reader to consult [17,19].
Note that a quasi-bialgebra structure on a commutative Hopf algebra H is completely
determined by such a reassociator, that is, a normalized Harrison 3-cocycle Φ on H. Fur-
thermore, the quasi-bialgebra (H, Φ) is gauge equivalent to (H, 1⊗ 1⊗ 1) if and only if Φ

is a coboundary. Since every Harrison 3-cocycle is equivalent to a normalized 3-cocycle,
it follows that our problem is equivalent to computing the third Harrison cohomology
group H3

Harr(H, k, Gm). For the definition and generalities on Harrison cohomology, we
refer the interested reader to [8, § 9.2].

If k contains a primitive nth root of unity (or, respectively, has characteristic not 2),
then the Hopf algebras k[Cn] and k[C2 × C2] are isomorphic to their dual Hopf algebras.
This means that, for G = Cn or C2 × C2,

H3
Harr(k[G], k, Gm) ∼= H3

Harr(k[G]∗, k, Gm) ∼= H3(G, k∗),

and we are reduced to computing group cohomology.

Proposition 5.1. Let Cn = 〈c〉 be the cyclic group of order n written multiplicatively
and let k be a field containing a primitive nth root of unit ξ. Then all the normalized
Harrison 3-cocycles Φ ∈ k[Cn] ⊗ k[Cn] ⊗ k[Cn] are of the form

Φl = 1 − 1
n2 (1 − cl) ⊗

n−1∑
i,j=0

(1 − nδi,j)(ξj − nδj,0)ci ⊗ cj ,

where l ∈ {0, 1, . . . , n − 1}. In particular, if n = 2, there is a unique non-trivial 3-cocycle
Φ1 = 1 − 2p− ⊗ p− ⊗ p−, where p− = 1

2 (1 − c).

Proof. As mentioned in the introduction, we have a bijection between H3(Cn, k∗) and
the nth roots of 1 in k. So we have a cocycle for every positive integer l ∈ {0, . . . , n − 1}.

Since k contains a primitive nth root of unit ξ, we deduce that the characteris-
tic of k does not divide n (this follows easily from n = (1 − ξ)(1 − ξ2) · · · (1 − ξn−1)).
Suppose Cn = 〈c〉, written multiplicatively, and let {Pe, Pc, . . . , Pcn−1} be the basis
of k[Cn]∗ = kCn dual to the basis {e = 1, c, . . . , cn−1} of k[Cn]. Define f ∈ k[Cn]∗ as
f(ci) = ξi for all 0 � i � n − 1. Then f is a well-defined algebra map and f j(cs) = ξjs

for all 0 � s � n − 1. Furthermore, we know from [9, Exercise 4.3.6] that

Ψ : k[Cn] � cj 	→ f j ∈ k[Cn]∗,

extended linearly, is a Hopf algebra isomorphism. Its inverse is defined by

Ψ−1(Pcj ) =
1
n

n−1∑
s=0

ξ(n−s)jcs for all 0 � j � n − 1.
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We easily compute that
n−1∑
j=0

qjΨ−1(Pcj ) =
1
n

n−1∑
s=0

( n−1∑
j=0

ξlj(ξn−s)j

)
cs

=
1
n

n−1∑
s=0

( n−1∑
j=0

(ξl−s)j

)
cs

=
1
n

n−1∑
j=0

nδl,sc
s

= cl.

Thus, using the definition of φq from (1.1), we have that any normalized 3-cocycle Φ ∈
k[Cn] ⊗ k[Cn] ⊗ k[Cn] is of the form

Φl :=
n−1∑

u,v,s=0

ϕq(cu, cv, cs)Ψ−1(Pcu) ⊗ Ψ−1(Pcv ) ⊗ Ψ−1(Pcs)

=
n−1∑
u=0

Ψ−1(Pcu) ⊗
∑

v+s<n

Ψ−1(Pcv ) ⊗ Ψ−1(Pcs)

+
n−1∑
u=1

quΨ−1(Pcu) ⊗
∑

v+s�n

Ψ−1(Pcv ) ⊗ Ψ−1(Pcs)

= 1 ⊗
∑

v+s<n

Ψ−1(Pcv ) ⊗ Ψ−1(Pcs) + cl ⊗
∑

v+s�n

Ψ−1(Pcv ) ⊗ Ψ−1(Pcs)

= 1 − (1 − cl) ⊗
∑

v+s�n

Ψ−1(Pcv ) ⊗ Ψ−1(Pcs)

= 1 − (1 − cl) ⊗
n−1∑
v=1

n−2∑
t=0

Ψ−1(Pcv ) ⊗ Ψ−1(Pcn+t−v )

= 1 − 1
n2 (1 − cl) ⊗

n−1∑
i,j=0

n−1∑
v=1

n−2∑
t=0

ξ(n−i)v+(n−j)(n+t−v)ci ⊗ cj

= 1 − 1
n2 (1 − cl) ⊗

n−1∑
i,j=0

( n−1∑
v=1

(ξj−i)v

)
ci ⊗

( n−2∑
t=0

(ξ−j)t

)
cj

= 1 − 1
n2 (1 − cl) ⊗

n−1∑
i,j=0

(1 − nδi,j)(ξj − nδj,0)ci ⊗ cj ,

as stated. In the case where n = 2, we calculate
n∑

i,j=0

(1 − 2δi,j)((−1)j − 2δj,0)ci ⊗ cj = 1 ⊗ 1 − 1 ⊗ c − c ⊗ 1 + c ⊗ c

= (1 − c) ⊗ (1 − c)
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to deduce that Φ1 = 1−2p− ⊗p− ⊗p−, as claimed. Note that it is precisely the 3-cocycle
that confers to k[C2] the unique quasi-bialgebra structure that is not twist equivalent to
a Hopf algebra [14]. �

Our next aim is to describe the cocycles in

H3
Harr(k[C2 × C2], k, Gm) ∼= H3(C2 × C2, k

∗)

more explicitly. We use the notation of the previous sections: C2 × C2 = {e, σ, τ, ρ}, with
στ = ρ. There are three Hopf algebra maps k[C2] → k[C2 × C2], so we immediately find
three Harrison 3-cocycles Φx = 1 − 2px

− ⊗ px
− ⊗ px

−, x = σ, τ, ρ, where px
− = 1

2 (1 − x).
One of the isomorphisms

Ψ : k[C2 × C2]∗ ∼= k[C2]∗ ⊗ k[C2]∗ → k[C2] ⊗ k[C2] ∼= k[C2 × C2]

is the following:

Ψ(Pe) = ue = 1
4 (e + σ + τ + ρ), Ψ(Pσ) = uσ = 1

4 (e − σ + τ − ρ),

Ψ(Pτ ) = uτ = 1
4 (e + σ − τ − ρ), Ψ(Pρ) = uρ = 1

4 (e − σ − τ + ρ).

We can use this isomorphism to write down the Harrison cocycles in the basis
{ue, uσ, uτ , uρ}. It is then possible to write the cocycles as sums of monomials, but this
gives long formulae. Some of the cocycles can be written down elegantly. Observing that

Xσ + Xρ + Xρ,σ + Xσ,ρ = (Pσ + Pρ) ⊗ (Pσ + Pρ) ⊗ (Pσ + Pρ) (5.1)

and

Ψ(Pσ + Pρ) = uσ + uρ = 1
2 (e − σ), (5.2)

we see that
Ψ(φ{σ,ρ}) = 1 − 2pσ

− ⊗ pσ
− ⊗ pσ

− = Φσ.

In a similar way, we can show that Ψ(φ{σ,ρ}) = Φτ and Ψ(h−1g−1φ{σ,τ}) = Φρ. If −1 has
a square root in k, then it follows that Φρ is cohomologous to ΦσΦτ . Note that these
observations are consistent with Remark 3.11.

5.2. Weak braided Hopf algebra structures

The definition of a weak Hopf algebra can be found in [5]. For the definition of a weak
braided Hopf algebra in a symmetric monoidal category, we refer the interested reader
to [4, 6]. We recall the following construction of weak braided Hopf algebras in VectG

from [6].
Let F : G × G → k∗ be a normalized 2-cochain (see Lemma 2.1), with pointwise inverse

F−1. Consider

RF −1 : G × G → k∗, RF −1(x, y) = F (x, y)F (y, x)−1.
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Then
(φF −1 = ∆2(F−1),RF −1)

is a coboundary abelian 3-cocycle on G. Let VectG
F −1 be category VectG equipped with

the braided monoidal structure provided by (∆2(F−1),RF −1).
Let kF [G] be the k-vector space k[G] with multiplication given by the formula

x • y = F (x, y)xy

for all x, y ∈ G. kF [G] is a commutative algebra in VectG
F −1 (see [1, Corollary 2.4]).

If |G| �= 0 in k, then we can define a cocommutative coalgebra structure on k[G] in
VectG

F −1 . kF [G], the k-vector space k[G] with comultiplication and counit given by

∆F (x) =
1

|G|
∑
u∈G

F (u, u−1x)−1u ⊗ u−1x and εF (x) = |G|δx,e for all x ∈ G,

is a cocommutative coalgebra in VectG
F −1 (see [6, Proposition 3.2]). kF

F [G], the vector
space equipped with the algebra and coalgebra structure defined above, is a commutative
and cocommutative weak braided Hopf algebra in VectG

F −1 (see [6, Proposition 4.7]). The
antipode S

¯
is the identity on k[G].

Examples of such braided Hopf algebras are the Cayley–Dickson and Clifford alge-
bras [6,7]. Moreover, they are monoidal Frobenius algebras and monoidal co-Frobenius
coalgebras in the appropriate braided monoidal category of graded vector spaces.

We will now apply this construction to the case where G = Cn and G = C2 × C2,
in order to construct more examples of weak braided Hopf algebras. We begin with a
generalization of [2, Corollary 10], where it is shown that the map φ in Lemma 5.2 is a
3-cocycle and a coboundary in the case where n = 3.

Lemma 5.2. Let Cn = 〈σ〉 be the cyclic group of order n, let k be a field and let q

be an nth root of 1. Then φ(σa, σb, σc) := qabc is a normalized 3-cocycle on Cn. φ is a
coboundary if and only if qn(n−1)/2 = 1.

Proof. The fact that qn = 1 implies that φ is well defined. Indeed, if a = a′ + n,
b = b′ + n and c = c′ + n, then

abc = n3 + (a′ + b′ + c′)n2 + (a′b′ + a′c′ + b′c′)n + a′b′c′,

and so
φ(σa, σb, σc) = qabc = qa′b′c′

= φ(σa′
, σb′

, σc′
).

The 3-cocycle condition reduces to bcd + a(b + c)d + abc = ab(c + d) + (a + b)cd in Z,
which is clearly satisfied. It is also clear that φ is normalized.

If φ is a coboundary, then there exists g : Cn × Cn → k∗ such that

g(σb, σc)g(σa+b, σc)−1g(σa, σb+c)g(σa, σb)−1 = qabc for all a, b, c ∈ Z. (5.3)

Let β := g(σa, 1) = g(1, σb) and αc := g(σ, σc) for all a, b, c ∈ {1, . . . , n − 1}. Taking
a = 1, b = k and c = n − 1 in (5.3), we obtain

g(σk+1, σn−1) = qkg(σk, σn−1)g(σ, σk−1)g(σ, σk)−1 for all k ∈ Z.
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By mathematical induction, it follows that

g(σk, σn−1) = qk(k−1)/2αn−1βα−1
k−1 for all 2 � k � n − 1.

We then have

β = g(1, σn−1) = g(σ(n−1)+1, σn−1)

= qn−1g(σn−1, σn−1)g(σ, σn−2)g(σ, σn−1)−1

= qn−1q(n−1)(n−2)/2αn−1βα−1
n−2αn−2α

−1
n−1

= qn(n−1)/2β,

and we conclude that qn(n−1)/2 = 1.
Conversely, assume that qn(n−1)/2 = 1 and consider

f : Z × Z → Z, f(x, y) = − 1
2 ((x − 1)xy),

g : Cn × Cn → k, g(σa, σb) = qf(a,b).

If a = a′ + n and b = b′ + n, then it can be easily checked that

f(a, b) − f(a′, b′) = −a′n2 − ( 1
2a′(a′ − 1) + a′b′)n − 1

2n2(n − 1) − 1
2n(n − 1)b′.

This relation, together with qn = 1 and qn(n−1)/2 = 1, implies that g is well defined. A
straightforward computation now shows that

f(y, z) − f(x + y, z) + f(x, y + z) − f(x, y) = xyz for all x, y, z ∈ Z,

proving that ∆2(g) = φ, and φ is a coboundary. �

Proposition 5.3. Let k be a field and let q be an nth root of 1 such that qn(n−1)/2 = 1
(which is automatic if n is odd). If Cn = 〈σ〉 is the cyclic group of order n generated
by σ and F : Cn × Cn → k∗ is given by F (σa, σb) = q−(a−1)ab/2 for all 0 � a, b � n − 1,
then k[Cn] is a commutative and cocommutative weak braided Hopf algebra in VectCn

F −1

via the structure

σa • σb = q−(a−1)ab/2σa+b, ∆
¯

(σa) =
1
n

n−1∑
l=0

q(l−1)l(a−l)σl ⊗ σa−l,

for all 0 � a, b � n − 1. The unit is e and the counit is given by ε
¯
(σa) = nδa,0, for all

0 � a � n − 1; the antipode is the identity on k[Cn].

Proof. This follows immediately from Lemma 5.2 and the general construction of
kF

F [G] presented above. We leave the verification of the details to the reader. �

The 2-cochains discussed in Proposition 3.7 can also be applied to construct examples
of weak braided Hopf algebras.

Proposition 5.4. On k[C2 × C2] we have the following commutative and cocommu-
tative weak braided Hopf algebra structure.
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(i) The multiplication table is as follows (a ∈ k∗ is a fixed scalar):

• e σ τ ρ

e e σ τ ρ

σ σ a−1e ρ τ

τ τ ρ a−1e σ

ρ ρ τ σ a−1e

The comultiplication is given by the formulae

∆(e) = 1
4 (e ⊗ e + aσ ⊗ σ + aτ ⊗ τ + aρ ⊗ ρ),

∆(σ) = 1
4 (e ⊗ σ + σ ⊗ e + τ ⊗ ρ + ρ ⊗ τ),

∆(τ) = 1
4 (e ⊗ τ + τ ⊗ e + σ ⊗ ρ + ρ ⊗ σ),

∆(ρ) = 1
4 (e ⊗ ρ + ρ ⊗ e + σ ⊗ τ + τ ⊗ σ),

while the counit is given by ε(e) = 4 and ε(x) = 0 for x ∈ {σ, τ, ρ}. The antipode is the
identity on k[C2 × C2].

(ii) For any d ∈ k∗, the multiplication table is

• e σ τ ρ

e e σ τ ρ

σ σ d−1e ρ d−1τ

τ τ d−1ρ d−1e σ

ρ ρ τ d−1σ d−1e

The comultiplication is given by the formulae

∆(e) = 1
4 (e ⊗ e + dσ ⊗ σ + dτ ⊗ τ + dρ ⊗ ρ),

∆(σ) = 1
4 (e ⊗ σ + σ ⊗ e + τ ⊗ ρ + dρ ⊗ τ),

∆(τ) = 1
4 (e ⊗ τ + τ ⊗ e + dσ ⊗ ρ + ρ ⊗ σ),

∆(ρ) = 1
4 (e ⊗ ρ + ρ ⊗ e + σ ⊗ τ + dτ ⊗ σ),

while the counit ε(e) = 4 and ε(x) = 0 for all x ∈ {σ, τ, ρ} makes k[C2 × C2] a weak
braided Hopf algebra. The antipode is the identity on k[C2 × C2].

Proof. (i) We use the fact that ha is a coboundary for all a ∈ k∗. Actually, if we
take g : C2 × C2 → k∗ defined by bi = 1 for all 1 � i � 6, a1 = a2 = a3 = a and c = 1,
then we have seen that ∆2(g) = ha. Consequently, g is a 2-cochain on C2. A simple
inspection shows us that the claimed structure on k[C2 × C2] from (i) coincides with
that of kg−1

g−1 [C2 × C2], so we are done. Note that we have a weak braided Hopf algebra
in VectC2×C2

g , and that ∆2(g) = ha, while Rg(x, y) = 1 for all x, y ∈ C2 × C2.
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(ii) We proceed as above, but now we take b = d2 for some d ∈ k∗. Then gd is cobound-
ary (see Proposition 3.7). More precisely, if g : C2 × C2 → k∗ is defined as

a1 = a2 = a3 = b4 = b5 = b6 = d and b1 = b2 = b3 = c = 1,

then ∆2(g) = gb = gd2 . We leave it to the reader to check that the second weak braided
Hopf algebra structure from the statement is precisely the one on kg−1

g−1 [C2 × C2]. We only
note that, in this case, we have the braided monoidal structure on VectC2×C2 produced
by g, that is, ∆2(g) = gd2 and

Rg(x, x) = Rg(e, y) = Rg(z, e) = 1, ∀x, y, z ∈ C2 × C2,

Rg(σ, τ) = Rg(τ, ρ) = Rg(ρ, σ) = d,

Rg(τ, σ) = Rg(σ, ρ) = Rg(ρ, τ) = d−1.

�
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