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Abstract. During the 1980s, numerical simulations showed that dy-
namic growth of a barlike mode in initially axisymmetric, equilibrium
protostars does not lead to prompt binary formation, i.e., fission. In-
stead, such evolutions usually produce a dynamically stable, spinning
barlike configuration. In recent years, this result has been confirmed by
numerous groups using a variety of different hydrodynamical tools, and
stability analyses have convincingly shown that fission does not occur in
such systems because gravitational torques cause nonlinear saturation of
the mode amplitude. Other possible routes to fission have been much
less well scrutinized because they rely upon a detailed understanding of
the structure and stability of initially nonaxisymmetric structures and/or
evolutions that are driven by secular, rather than dynamic processes. Ef-
forts are underway to examine these other fission scenarios.

1. Relevant Results up through the 1980s

In the context of binary star formation, “fission” is the hypothetical process by
which a rotating, equilibrium protostellar core becomes unstable to the sponta-
neous growth of nonaxisymmetric structure which, when fully developed, causes
it to break into two or more pieces. This concept dates back over 100 years
to stability analyses which showed that rapidly rotating, axisymmetric fluid
configurations are unstable to the growth of an ellipsoidal or barlike structure
(Chandrasekhar 1969; Tassoul 1978; Durisen & Tohline 1985). For example,
dynamic instability of a barlike distortion occurs when the ratio of rotational
to gravitational potential energy T//|W| > 0.27. When T/|W| % 0.14, axisym-
metric systems can evolve to lower energy, barlike configurations in the presence
of dissipative mechanisms (e.g., viscosity or gravitational radiation). In this
case, evolution proceeds on a secular time scale that is long compared to the
dynamic time scale. Early stability analyses were unable to determine whether
these types of instabilities would ultimately lead to fission due to the difficulty
of modeling nonlinear-amplitude figure distortions for realistic fluids.

In the 1980s, the development of 3D hydrodynamics codes and advances
in computing technologies made it possible to study the linear and nonlinear
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development of the barlike dynamic instabilities in realistic protostar models
under a variety of physical conditions. In the linear regime, there was general
agreement between the results of these earliest hydrodynamical simulations and
the predictions of linear theory — specifically, on the value of T'/|W| at which
the dynamic barlike instabilities set in and on the growth rates and pattern fre-
quencies of the unstable modes. Most importantly, as first reported by Durisen
et al. (1986), the unstable barlike mode eigenfunction for differentially rotating,
compressible fluids possesses an open, two-armed spiral character which is able
to dynamically redistribute angular momentum via gravitational torques and
thereby prevent the model from undergoing fission. Instead, the simulations
generally produced a centrally located, triaxial (barlike) structure, which was
spinning about its shortest axis and surrounded by a relatively low-mass disk
(or ring) of high specific angular momentum debris. We closed out the 1980s
knowing that the dynamic instability of barlike modes, which can arise naturally
in rapidly rotating, axisymmetric protostars (see Bate 1998 for a recent exam-
ple), does not lead directly to the formation of binary stars. Many researchers
concluded from this that the “fission hypothesis” was dead.

However, because the appropriate numerical tools were not yet available,
we learned little in the 80s about the nonlinear development of secular instabil-
ities or about the structure and stability of rapidly rotating, equilibrium con-
figurations that have steady-state, nonaxisymmetric structures. The latter is
especially important because, as Lebovitz (1987a,b) hypothesized, binary fission
may result from the slow contraction of such configurations.

2. Results from the Past Decade

2.1. Confirmation of Earlier Dynamic Barlike Mode Results

Over the past decade, a number of different groups using a variety of hydrody-
namics codes have studied the onset and development of the dynamic barlike
instability in initially axisymmetric fluid objects, both in the context of star
formation and in the context of the late stages of stellar evolution (see Ima-
mura, Durisen & Pickett 2000, Cazes & Tohline 2000, Durisen et al. 2000, New,
Centrella & Tohline 2000, Brown 2000, Shibata, Baumgarte & Shapiro 2000,
and references therein). Most importantly in the context of this review, these
recent simulations have confirmed the following: (1) The dynamical barmode
instability does not lead to prompt binary fission. (2) The instability usually
leads to the formation of a dynamically stable, barlike structure that is spinning
about its shortest axis and has nontrivial internal flows.

As Imamura et al. (2000) have most clearly demonstrated, prompt binary
fission is prevented because the barlike mode saturates once the time scale for
angular momentum transport by gravitational torques becomes as short as the
growth time for the mode. When the barlike eigenfunction computed by linear
analysis is artificially pushed to a large absolute amplitude, the configuration
takes on the appearance of a common-envelope binary with well-defined circula-
tion patterns isolated about each of the two off-axis density enhancements. But,
in hydrodynamical simulations, the barlike mode amplitude saturates at a value
well below what is required to realize this binary structure. The relative promi-
nence of the final barlike structure depends on the degree of compressibility of
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the gas, on the distribution of angular momentum in the initial axisymmetric
cloud, and on the extent to which shock dissipation is permitted to heat the gas
during an evolution (Durisen et al. 2000). Although the bars that form appear
to be dynamically stable (Cazes & Tohline 2000), it seems clear that they must
continue to evolve on a secular time scale as processes, such as ongoing dissipa-
tion through shocks, force slow changes in their overall structure. It is not yet
clear how long the bar will live in various realistic physical systems.

2.2. Investigation of Lebovitz’s Hypothesis

The evolutionary scenario discussed above begins from a dynamically unstable
initial axisymmetric object. Lebovitz (1987a,b) suggested instead that binary
fission occurs via the slow, quasi-static contraction of inviscid protostars that
have initially triaxial structures. This has been more difficult to examine realisti-
cally because, until recently, we have not had the tools to construct steady-state,
nonaxisymmetric models, let alone follow their slow secular evolution.

Andalib (1998; see also Tohline, Cazes & Cohl 1999) has now developed
an SCF technique that permits the construction of differentially rotating, non-
axisymmetric equilibrium structures with moderately compressible equations of
state (EOS). Models along some of Andalib’s sequences deform smoothly from
an elliptical, to a dumbbell, to a binary state. Shu (these proceedings; see also
Shu et al. 2000) has also demonstrated that a variety of nonaxisymmetric equi-
librium models of isothermal clouds can be constructed analytically. So far,
in both cases, the models are infinitesimally thin; but they suggest that 3D
nonaxisymmetric models with realistic EOS’s may be feasible.

With Lebovitz’s hypothesis specifically in mind, Cazes (1999) recently fol-
lowed the slow contraction of the dynamically stable, steady-state, barlike struc-
ture that resulted from an earlier 3D barlike mode simulation. In order to induce
the bar to contract, Cazes simulated cooling by forcing the polytropic constant
K in his EOS to decrease linearly with time according to K = K,(1 — t/tcool),
with tcoo1 = 4Ppat, Where Py is the initial pattern rotation period of the barlike
shape. This cooling was slow enough that the configuration remained close to
virial equilibrium throughout. As predicted by Lebovitz, the model became more
and more elongated as it cooled. Then, after K had decreased to approximately
half of its original value, the model began to oscillate dynamically between a
centrally condensed, barlike state and a distinctly dumbbell state. In its dumb-
bell state, the model presented a pair of clearly defined off-axis density maxima,
and a velocity field that showed circulation about each density maximum.

As described by Cazes (1999), the bar had reached a point in its evolution
where there were two equally plausible equilibrium configurations into which it
was permitted to settle and that, upon further cooling, the system was likely
to evolve toward a common-envelope binary state (Tohline et al. 1999). On the
other hand, the dumbbell structure described by Cazes resembles in many re-
spects a highly nonlinear-amplitude realization of the standard barlike eigenfunc-
tion (Imamura et al. 2000). Unfortunately, due to computational constraints,
Cazes was unable to follow his cooling evolution further; and, when cooling was
stopped, the model settled into a centrally condensed, rather than a binary con-
figuration. So it is debatable whether Cazes’ model was actually progressing
along a route to fission. Nevertheless, his simulation provides the most tantaliz-
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ing evidence to date that the Lebovitz fission hypothesis may be correct under
some conditions.

3. Work to Be Done

With regard to the dynamic barlike instability, the ultimate fate of the bar
and its surrounding disk of debris is still not clear. To resolve this uncertainty,
relevant heating and cooling processes must be treated correctly; and the dy-
namics of the disk debris must be followed for many dynamical times. Given
that tools are being developed to construct equilibrium models of nonaxisym-
metric objects, we may soon be in a position to evaluate critically the binary
fission hypothesis proposed by Lebovitz. Efforts also need to be made to study
the nonlinear development of the secular barlike instabilities.
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