Appendix A

Conventions, spinors, and currents

A. 1 Conventions

The space-time coordinates $(t, x, y, z)=(t, \vec{x})$ are denoted by a contravariant four-vector (c and \hbar are set equal to 1):

$$
\begin{equation*}
x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, x, y, z) . \tag{A.1}
\end{equation*}
$$

The metric tensor is

$$
\begin{gather*}
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \tag{A.2}\\
p^{\mu}=\left(p_{0}, \vec{p}\right), \quad p_{\mu}=g_{\mu \nu} p^{\nu}=\left(p_{0},-\vec{p}\right) . \tag{A.3}
\end{gather*}
$$

Momentum four-vectors are similarly defined,

$$
\begin{equation*}
p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right), \tag{A.4}
\end{equation*}
$$

and the inner product

$$
\begin{equation*}
p_{1} \cdot p_{2}=p_{1 \mu} p_{2}^{\mu}=\left(E_{1} E_{2}-\vec{p}_{1} \vec{p}_{2}\right) \tag{A.5}
\end{equation*}
$$

We frequently meet products of the totally antisymmetric tensor $\varepsilon_{\alpha \beta \gamma \mu}$ (note $g_{\mu}^{\nu}=\delta_{\mu}^{\nu}$)

$$
\begin{align*}
& \varepsilon_{\alpha \beta \gamma \mu} \varepsilon^{\alpha \beta \gamma \nu}=-6 \delta_{\mu}{ }^{\nu}, \tag{A.6}\\
& \varepsilon_{\alpha \beta \mu \nu} \varepsilon^{\alpha \beta \rho \sigma}=-2\left|\begin{array}{cc}
\delta_{\mu}^{\rho} & \delta_{v}^{\rho} \\
\delta_{\mu}^{\sigma} & \delta_{v}^{\sigma}
\end{array}\right|, \tag{A.7}\\
& \varepsilon_{\alpha \mu \nu \sigma} \varepsilon^{\alpha \lambda \rho \tau}=\left|\begin{array}{lll}
\delta_{\mu}^{\lambda} & \delta_{v}^{\lambda} & \delta_{\sigma}^{\lambda} \\
\delta_{\mu}^{\rho} & \delta_{v}^{\rho} & \delta_{\sigma}^{\rho} \\
\delta_{\mu}^{\tau} & \delta_{v}^{\tau} & \delta_{\sigma}^{\tau}
\end{array}\right| . \tag{A.8}
\end{align*}
$$

A. 2 Dirac matrices and spinors

Anticommutation of γ-matrices:

$$
\begin{gather*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}, \tag{A.9}\\
\gamma^{5} \equiv \mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, \quad\left\{\gamma^{\mu}, \gamma^{5}\right\}=0 . \tag{A.10}
\end{gather*}
$$

The σ-matrix:

$$
\begin{equation*}
\sigma^{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] . \tag{A.11}
\end{equation*}
$$

Reduction of the product of three γ-matrices:

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\rho} \gamma^{\nu}=S^{\mu \rho \nu}+\mathrm{i} \epsilon_{\lambda}^{\mu \nu \rho} \gamma^{\lambda} \gamma_{5} \tag{A.12}
\end{equation*}
$$

with

$$
\begin{equation*}
S^{\mu \rho \nu}=g^{\mu \rho} \gamma^{\nu}+g^{\rho \nu} \gamma^{\mu}-g^{\mu \nu} \gamma^{\rho} . \tag{A.13}
\end{equation*}
$$

A familiar representation of γ-matrices is

$$
\begin{align*}
\gamma^{0} & =\left[\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right], \tag{A.14}\\
\left\{\gamma^{i}\right\}=\gamma & =\left[\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
-\boldsymbol{\sigma} & 0
\end{array}\right], \quad \gamma_{5}=\gamma^{5}=\left[\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right], \tag{A.15}
\end{align*}
$$

where

$$
\boldsymbol{\sigma}^{1}=\left[\begin{array}{ll}
0 & 1 \tag{A.16}\\
1 & 0
\end{array}\right], \quad \boldsymbol{\sigma}^{2}=\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right], \quad \boldsymbol{\sigma}^{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

are the familiar Pauli matrices and

$$
\mathbf{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

is the 2×2 unit matrix.
The spinors u and v satisfy the Dirac equation,

$$
\begin{align*}
& (\not p-m) u(p, s)=0, \tag{A.17}\\
& (\not p+m) v(p, s)=0 . \tag{A.18}
\end{align*}
$$

The normalization of spinors is

$$
\begin{align*}
& \bar{u}(p, s) u(p, s)=2 m, \tag{A.19}\\
& \bar{v}(p, s) v(p, s)=-2 m, \tag{A.20}
\end{align*}
$$

and the completeness relation is

$$
\begin{align*}
& \sum_{s} u(p, s) \bar{u}(p, s)=\not p+m \tag{A.21}\\
& \sum_{s} v(p, s) \bar{v}(p, s)=\not p-m \tag{A.22}
\end{align*}
$$

A. 3 Currents

Vector:

$$
\begin{equation*}
J_{\mu}(x)=\bar{\Psi}(x) \gamma_{\mu} \Psi(x)=\Psi(x)^{+} \gamma_{0} \gamma_{\mu} \Psi(x) \tag{A.23}
\end{equation*}
$$

Axial:

$$
\begin{equation*}
J_{\mu 5}(x)=\bar{\Psi}(x) \gamma_{\mu} \gamma_{5} \Psi(x) \tag{A.24}
\end{equation*}
$$

Decompositions of the currents or products of them are very useful. Let $\ell_{\mu}=p_{\mu}+p_{\mu}^{\prime}$ and $q_{\mu}=p_{\mu}^{\prime}-p_{\mu}$, then

$$
\begin{align*}
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p) & =\frac{1}{2 m} \bar{u}\left(p^{\prime}\right)\left(\ell^{\mu}+\mathrm{i} \sigma^{\mu v} q_{\nu}\right) u(p) \tag{A.25}\\
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} \gamma_{5} u(p) & =\frac{1}{2 m} \bar{u}\left(p^{\prime}\right)\left(\gamma_{5} q^{\mu}+\mathrm{i} \gamma_{5} \sigma^{\mu \nu} \ell_{\nu}\right) u(p), \tag{A.26}\\
\bar{u}\left(p^{\prime}\right) \mathrm{i} \sigma^{\mu \nu} \ell_{\nu} u(p) & =-\bar{u}\left(p^{\prime}\right) q^{\mu} u(p) \tag{A.27}\\
\bar{u}\left(p^{\prime}\right) \mathrm{i} \sigma^{\mu v} q_{\nu} u(p) & =\bar{u}\left(p^{\prime}\right)\left(2 m \gamma^{\mu}-\ell^{\mu}\right) u(p) \tag{A.28}
\end{align*}
$$

Additional identities can be found in Appendix A of the article by M. Nowakowski, E. Paschos and J. M. Rodriguez (Eur. J. Phys. 26, 545-560, 2005) and in Appendix C of this book.

