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Abstract

Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated
tG-module. If M is realized by a compact C-Moore space X, then the Betti numbers of the fixed point
set XCn and the multiplicities of indecomposable summands of M considered as a £Cn-module are related
via a localization theorem in equivariant cohomology, where Cn is a cyclic subgroup of G of order n.
Explicit formulas are given for n = 2 and n = 4.
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0. Introduction

Throughout the paper G denotes a finite group of order divisible by a prime p, A a.
subgroup of G, k a field of characteristic p, J the Jacobson radical of the group algebra
kG, M a finitely generated £G-module, X a G-space, and XA the fixed point set of A
in X. Topological spaces with a G-action give rise to G-modules; for example, the
cohomology group H'(X;k) with &-coefficients is a finitely generated £G-module for
i > 0 provided that X is a compact G-space. Equivariant cohomology HG(X\k) of X
is defined as the cohomology H*(XG\ k) of the Borel construction XG = (X x EG)/ G
of X. When X is a point, we simply write Hc for //^(X;^) which is the same as
H*(G;k). The constant map from X to a one-point space induces an //^-module
structure on HG(X;k). When G is an elementary abelian p-group and X is finite-
dimensional, the inclusion map j : (XG,x0) <-> (X,x0) induces an isomorphism in
the localized equivariant cohomology of //^-modules ([Qu]). A simply connected
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G-space X is called a G-Moore space if H'(X, xQ; k) = 0 for all / except for some
fixed n > 2. A fcG-module M is called realizable (in dimension n) if there exists a
G-Moore space X whose cohomology in dimension n is M for some n > 2.

Suppose that M is a /fcG-module realized by X in dimension n. Then M ^ ,
M considered as a )fcA-module, is also realized by X, and H*(A;M) is isomorphic
to the equivariant cohomology ring H^+n(X, xo;k). Combining this with the above
isomorphism obtained by localization, of course for a 'nice' A or a 'nice' A-action
(for example A acting semi-freely on X, that is, the isotropy subgroups being either A
or {1}), we observe that the multiplicities of the indecomposable modules appearing
in the decomposition of M \.kA have a geometric interpretation in terms of the total
Betti number fi of the fixed point set XA.

THEOREM. Let G be a finite group of order divisible by 2, and Cbea cyclic subgroup
of G. Suppose that M is realized in dimension n by a compact space X. Then the
following can be stated for the total Betti number ft and the Euler characteristic x of
the fixed point set Xc of C:

(a) IfC = I2, then /3(XC) = IJ, + 1, where MikC = (*)" © (*C)"2.
(b) IfC = 24 and C acts semi-freely on X, then

(i) /6odd(Xc) is r)\ or r?3 if n is odd or if n is even, respectively, and P(XC) =
V\ + m + 1.

(ii) X(XC) = (-l)"(»j, - »fc) + 1,

where MikC = (&)"' 0 (J2)"2 © (J)1" ©

The restriction on the order of the cyclic subgroup C to be 2 or 4 in the theorem
is due to the fact that for large orders that are powers of a prime p > 2, one could
still obtain an isomorphism H^(XC, xo;k)[l/t] = H*(C;Mikc)[l/t]. However,
interpreting the right hand side of the isomorphism to obtain a similar formula is not
possible without such restrictions.

A corollary of the theorem is given in the discussion section.

1. Proof of Theorem

DEFINITION. Let 5 be a multiplicative subset of the polynomial part of H*G contain-
ing 1 6 HQ, and Gx be the isotropy subgroup consisting of all g e G with gx = x.
Define Xs = {x e X : ker{res : / /* ->• / /£} n S = 0} following [Hs].

In some cases Xs turns out to be the same as the fixed point set XA for some A < G;
see [DW].
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PROPOSITION 1. Let G be a compact Lie group, X be a compact G-space, and
Y C X be a G-invariant subspace. Let S C HG be a multiplicative system. Then the
localized homomorphism

P — "J I . O nG(A, I) —• o nG(A , I )

is an isomorphism, where i* is the induced map in G-equivariant cohomology by the
inclusion map i : (Xs, Ys) ^ (X, Y).

PROOF. Recall that localization is an exact functor, and p = S~xiG : S~XHG(X) ->
S~XHG(XS) is an isomorphism, where iG is the map induced by the inclusion i :
X5 °-> X in G-equivariant cohomology. Apply [Hs, Theorem III. 1] to the long exact
sequence of a pair in cohomology. The result then follows by the Five-Lemma. •

PROPOSITION 2. Let M be a kG-module realized by X in dimension n. Then

PROOF. Consider the Serre spectral sequence for the fibration(X, XO)G =
EG)/G -> EG/G = BG with fiber (X,x0). Here EG is a contractible space on
which G acts (fixed-point) freely. The spectral sequence has E\'9-term equal to
Hp(G;Hi(X,x0;k)). For q £ n, we have Hq(X,xQ\k) = 0; then E{-q = 0 for
q ^ n. Hence the sequence contains only one line and collapses. It follows that EP'" =
HP(G;Hn(X,x0;k)) = H"(G;M). Therefore HG

+n(X,x0) := H*+n((X, xo)G;k) =
H*(G\M). D

PROOF OF THEOREM. Without loss of generality we may assume that XG is non-
empty ; so let *<) be in XG c XK for K < G. Also X is a A'-Moore space with
H*(X;x0) = A/;AJf for A: < G. Hence H*K

+n(X,x0) = H*(K;M\.kK) by Proposi-
tion 2.

(a) Let //£ = H*(C;k) = &[r]. By Proposition 1, localization with respect
to S = {*' : i > 0} gives H*(X,xo)[l/t] = Hc(X

c,x0)[l/t]. Since resc,,,(0 =
0, we have k[l/t] = 0. Hence r)2 disappears after localization and we obtain
d\mkH*(Xc,xo;k) = p(Xc)- 1 = ij,, that is, P(XC) = IJ, + 1.

(b) It is sufficient to prove only (i) since x(Xc) = £e v e n(Xc) - y3odd(A:c). Let C2 <
CandC 2 = Z2; let also H* = k[r']®A(v')andH*2 = *[*]. Thus rescc> (r ' ) = r2. We
h a v e / / * ( C ; M | t c ) = ( / /*)" '0( / /* 2 )" 2 ©( / /*(C; J ) ) " 3 ® ^ ) " 4 since 72"= A:[C/C2] =
)tttc2

 a n d Shapiro's Lemma implies H^ = H*(C; J2). Applying Proposition 1 with
the multiplicative set 5 = {(r')' : i > Oj'gives H*(Xc\x0)[l/r'] = H*(X,XO)[1/T'].

The term with T?4 disappears after localization as in part (a). Hence

i ] ={m[i])' e (H^ [i])
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The hypothesis that Cacts semi-freely on X implies Xc = Xc\ Write#£ = H*[l/x']
and H*2[l/t]. Then

(*) (H*-")"' 0 (H*C;T2 © (H*-"(C; J) I -̂  1 J = /T(XC, jc0) ® #*.

Since / / ' (C;7) = H'-l(C;k) = Hf1 for i > 2 and //£*• = v'H™", we get
W(C; 7) • v' = 0 for i even. Also / /^ • v' = H*2 • resCC2 (i/) = //*2 • 0 = 0. Then (*)
becomes

(Hlcn • v')"' 0 (H'c-"-1 • v')m = 22 H'-(XC, JC0) ® Wc • v'.
i>0, i even

In particular,

v ^ ,_, c 'j , ~ | W 3 . i f / - " i s odd;
. ~ '*° c u ~ I (A)", if / - n is even.

j >0,; even I v ' '

Choose an integer / > H o m d i m ( X c ) . For / even and / odd, we respectively obtain

that

even C j ^ + 1. 'f n IS odd;

\r\\ + 1, if n is even;

and

oodd/yCx _ I1?1' 'f " is odd;

|>73, if « is even.

This completes the proof of the theorem. •

2. Discussion

The theorem of the paper is more meaningful when put in the context of the
realization problem referred to in the literature as Steenrod's Problem, and/or in
the classification problem of some category of &G-modules when G contains cyclic
subgroups of order 2 and/or 4. (See the corollary below.) When G is a cyclic p-
group of order, p", all indecomposable /fcG-modules (up to isomorphism) are given
by the powers of the Jacobson radical, namely, the ideals Jp"~' of ^-dimension i
for i = 1, . . . , p". However, when G contains 1P x Zp there are infinitely many
indecomposable £G-modules ([Hi]). Due to the lack of a classification for kG-
modules when G ^ lpxZp except for G = Z2 x Z2, considering the restrictions M\,kA

for various subgroups A in G to obtain information on M is a fundamental technique
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n modular representation theory. For example, the complexity of a &G-module,
n particular, the cohomology H*(G;k) of the trivial JfcG-module k is 'detected'
jn maximal elementary abelian subgroups of G by theorems due to Quillen [Qu],
^houinard [Ch], and Alperin-Evens [AlEv]. See [Ka] for another detection theorem
when G = Z2 x Z4. Furthermore, it is possible to obtain information on a&E-module
M by considering M\,k{l+x) for x e J\J2 of kE, where E is an elementary abelian
o -group [Ca]. See also [W].

Some partial results on Steenrod's Problem are as follows. All &Zp™-modules are
•ealizable (see [Ar]) and all realizable kZ2 x Z2-modules are described in [BeHa].
When Z2 x Z2 is a normal Sylow subgroup of a finite group G, a &G-module M is
-ealizable if and only if MikliXl2 is realizable ([Cn]). When G contains 1P x Zp, there
ire &G-modules that are not realizable (see [Vo, Cs, Asl, As2, BeHa]). Compare our
:heorem with [As3, Theorem 2.2], which states that the total Betti number fi{XA) of a
'nice' Moore space X realizing a ££-module M is equal to the r a n k ( ^ ) , where &A is
the characteristic sheaf of X and A is a subgroup of the elementary abelian p -group E.

The simplest group for which one can attack the classification problem or the
realization problem for k G-modules is G = Z2 x Z4 due to the fact that it contains
I2 x 22 as its unique maximal elementary abelian subgroup and that the classification of
fcZ2 x Z2-modules is known. As mentioned above, a 'detection' theorem supporting
the first expectation is given in [Ka]. For the latter, we can only give a necessary
condition for a kZ2

 x Z4-module M to be realizable by combining [Cs, Proposition
II] and [Se, Proposition 1]: Let M be a kZ2 x Z4-module. If M \,kl2xZ2 is realizable
by X, then the rank variety VZixl2(M],kl2Xl2) (see [Ca]) is a union of F2-rational lines
in k2. Therefore for a realizable kZ2 x Z4-module M, we obtain that M ikS is free for
every shifted cyclic subgroup S of kZ2 x Z4 except possibly for cyclic subgroups of
Z2 x Z4. This can be used to construct non-realizable modules. Consider the induced
fcZ2 x Z4-module Ma = k®kMkZ2 x Z4 fora € k1. It can be seen easily by Mackey's
formula that Vj2Xl2(Maikl2Xl2) = k{a] for a 6 k2. Therefore, Ma is not realizable if
a is not an F2-rational point.

The Theorem of this paper and the necessary condition mentioned above gives the
following.

COROLLARY. Let G = (e,f : e2 = / 4 = efef3 = 1) D E = {e,f2). If M

is a non-free indecomposable kG-module realized by X, then M is a periodic kG-
module, and M lk{l+ade_l)+a2<f2_U) is a free k(l +ax(e- 1) +a2(f

2 - l))-modulefor
(a , ,a2) 6 k2 except possibly for (a u a2) e k{(l,0)}Uk{(0, 1)}U£{(1, 1)}. Moreover,
ifM\,k{g) is a free k{g) -module for g e {e,f2, ef2}, thenX{g) is homotopic to a point.

PROOF. The necessary condition given above for the realizability of a module M
implies that V = Vr

E{MikE) c jfc{(l, 0)} U Jfc{(0, 1)} U *{(!, 1)}. This forces M to
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be periodic as it is indecomposable and non-free. In addition, since k{l + a^e —
l) + a 2 ( / 2 - l ) ) f o r a e {(1, 0)}U£{(0, 1)}U*{(1, 1)} corresponds to k(g) for some
g e [e,f2, ef2}, it follows that M\,{g) is not free for at most one g e {e,f2, ef2}.
Suppose Mi{g) is a free &(g)-module with g e {e,f2, ef2}. Then it has no trivial
summands, that is, r)\ = 0. Hence fi(X{s)) = 1 by the theorem, and this implies that
X{>!) is homotopic to a point. •

CONJECTURE. If M is a finitely generated periodic kZ2 * Hi-module, then M is
realizable.
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