H. Osada Nagoya Math. J. Vol. 113 (1989), 147-151

NOTE ON THE CLASS-NUMBER OF THE MAXIMAL REAL SUBFIELD OF A CYCLOTOMIC FIELD, II

HIROYUKI OSADA

For an integer m > 2, we denote by C(m) and H(m) the ideal class group and the class-number of the field

$$K = \boldsymbol{Q}(\zeta_m + \zeta_m^{-1})$$

respectively, where ζ_m is a primitive *m*-th root of unity. Let q be a prime and k/Q be a real cyclic extension of degree q. Let C(k) and h(k)be the ideal class group and the class-number of k. In this paper, we give a relation between C(k) (resp. h(k)) and C(m) (resp. H(m)) in the case that m is the conductor of k (Main Theorem). As applications of this main theorem, we give the following three propositions. In the previous paper [4], we showed that there exist infinitely many square-free integers m satisfying $n \mid H(m)$ for any given natural number n. Using the result of Nakahara [2], we give first an effective sufficient condition for an integer m to satisfy $n \mid H(m)$ for any given natural number n (Proposition 1). Using the result of Nakano [3], we show next that there exist infinitely many positive square-free integers m such that the ideal class group C(m) has a subgroup which is isomorphic to $(Z/nZ)^2$ for any given natural number n (Proposition 2). In paper [4], we gave some sufficient conditions for an integer m to satisfy 3|H(m)| and $m \equiv 1 \pmod{4}$. In this paper, using the result of Uchida [5], we give moreover a sufficient condition for an integer m to satisfy 4|H(m)| and $m \equiv 3 \pmod{4}$ (Proposition 3). Finally, we give numerical examples of some square-free integers m satisfying 4 | H(m) and $m \equiv 3 \pmod{4}$.

The author would like to thank the referee for his valuable advices.

MAIN THEOREM. Let q be a prime and k/Q be a real cyclic extension of degree q. If m is the conductor of k, then the ideal class group C(m)has a subgroup which is isomorphic to $C(k)^{q}$.

Received August 28, 1987.

HIROYUKI OSADA

Proof. First, we prove this Theorem in the case of q = 2. Let k = $Q(\sqrt{n})$ be a real quadratic field, where n is a square-free integer. Let m be the discriminant of k. Hence m is the conductor of k. Now assume that p_1, p_2, \dots, p_t are all the prime divisors of m. Let k^* be the genus field of k, that is, $k^* = Q(\sqrt{p_1^*}, \sqrt{p_2^*}, \dots, \sqrt{p_t^*})$, where if p is an odd prime, then $p^* = (-1)^{(p-1)/2}p$, if p = 2, then $p^* = -4$, 8 or -8according $n \equiv 3 \pmod{4}$, 2 (mod 8) or $-2 \pmod{8}$ (see Ishida [1, Chapter 1]). Let \tilde{k} be the Hilbert class-field of k and $M = k^* \cap \tilde{k}$. Further let H be a subgroup of the ideal class group C(k) of k and H be isomorphic to the Galois group of \bar{k}/M . From [1, Chapter 1], the Galois group of k^*/k is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{t-1}$. Hence $C(k)^2$ is a subgroup of H. On the other hand, since $M = k^* \cap \tilde{k}$, we can see that M is contained in the real cyclotomic field $K = Q(\zeta_m + \zeta_m^{-1})$. Since k^* is the genus field of k, we have $K \cap \tilde{k} = M$. Hence we have that $K\tilde{k}/K$ is an abelian unramified extension and the Galois group of $K\tilde{k}/K$ is isomorphic to the Galois group of \bar{k}/M . Since the Galois group of \bar{k}/M is isomorphic to H and H has a subgroup $C(k)^2$, the Galois group of $K\tilde{k}/K$ has a subgroup which is isomorphic to $C(k)^2$. Hence the ideal class group C(m) has a subgroup which is isomorphic to $C(k)^2$.

Next, we prove this Theorem in the case of an odd prime q. Let k/Q be a cyclic extension of degree q. Let \tilde{k} be the Hilbert class field of k and k^* be the genus field of k. Further let H be a subgroup of the ideal class group C(k) of k and H be isomorphic to the Galois group of \tilde{k}/k^* . From [1, Theorem 5], we have that the Galois group of k^*/k is isomorphic to $(Z/qZ)^{t-1}$, where t is the number of distinct prime factors of the conductor m of k. It is now easy to see that $C(k)^q$ is a subgroup of H. On the other hand, k^* is contained in the real cyclotomic field $K = Q(\zeta_m + \zeta_m^{-1})$ (see Ishida [1, Theorem 5]). Since k^* is contained in \tilde{k} and k^* is the genus field of k, we have $K \cap \tilde{k} = k^*$. In the same way as in the proof of this Theorem for the case q = 2, we can show that the ideal class group C(m) has a subgroup which is isomorphic to $C(k)^q$.

Remark. Let n be a natural number. Let h(k) be the class-number of k. If $n \mid h(k)$ and $q \nmid n$, then we have $n \mid H(m)$.

LEMMA 1. If an integer $m = A^{2n} + 4B^{2n} > 5$ is square-free for natural numbers n > 1, A, B, the ideal class group of a real quadratic field $Q(\sqrt{m})$ has a cyclic subgroup with order n (see Nakahara [2, Theorem 1]).

148

CLASS-NUMBER

PROPOSITION 1. If an integer $m = A^{2n} + AB^{2n} > 5$ is square-free for natural numbers n > 1, A, B, then we have

- (1) $n \mid H(m)$, if n odd,
- (2) (n/2) | H(m), if *n* is even.

Proof. It is clear that $m \equiv 1 \pmod{4}$. Hence *m* is the conductor of a real quadratic field $k = Q(\sqrt{m})$. By Lemma 1, the ideal class group C(k) of k has a subgroup which is isomorphic to Z/nZ. Hence by Main Theorem, we have this Theorem.

LEMMA 2. For any given natural number n, there exist infinitely many cubic cyclic fields k whose ideal class groups contain a subgroup isomorphic to $(Z/nZ)^2$ (see Nakano [3, Theorem]).

Remark. Let *m* be the conductors of *k*. From the proof of [3, Theorem], we have $3 \nmid m$, Hence *m* are square-free integers.

By Lemma 2, we have

COROLLARY. For any given natural number n, there exist infinitely many cubic cyclic fields k whose ideal class groups C(k) contain a subgroup isomorphic to $(\mathbb{Z}/3n\mathbb{Z})^2$. Further the conductors m of k are squarefree integers.

PROPOSITION 2. For any given natural number n, there exist infinitely many positive square-free integers m such that the ideal class group C(m) has a subgroup which is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By Corollary of Lemma 2, there exist infinitely many cubic cyclic fields k such that $C(k)^3$ has a subgroup which is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2$ for any given natural number n. Let m be the conductors of the cubic cyclic fields k. Hence m are square-free integers. Then by Main Theorem, there exist infinitely many positive square-free integers m such that the ideal class group C(m) has a subgroup which is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2$ for any given natural number n. This completes the proof.

LEMMA 3. Let q be a prime and L/K be a cyclic extension of degree q. Let C(L) and C(K) be the ideal class groups of L and K, respectively. Let h(K) be the order of C(K) and p be a prime such that $p \nmid qh(K)$. Further let f be the order of p mod q.

If C(L) has a subgroup which is isomorphic to $Z/p^r Z$, then C(L) has a subgroup which is isomorphic to $(Z/p^r Z)^f$ for some integer $r \ge 1$ (see Washington [6, Theorem 10.8]).

Let ℓ be a prime. Let q, q_1 and q_2 be primes which satisfy the following conditions

(1) 2 or 3 is not an ℓ -th power residue mod q for $\ell = 2$,

(2) 2 is not an ℓ -th power residue mod q_i (i = 1, 2) and 3 is an ℓ -th power residue mod q_1 but is not an ℓ -th power residue mod q_2 for an odd prime ℓ .

LEMMA 4. Let n be a natural number. Let $m = (a^{2n} + 27)/4$ for some integer a prime to 6. If a has prime factors q, q_1 and q_2 which satisfy the above conditions (1) and (2) for the prime factors ℓ of n, the ideal class group of the cubic cyclic field defined by

$$f(x) = x^3 + mx^2 + 2mx + m = 0$$

has a subgroup which is isomorphic to Z/nZ (see Uchida [5, Theorem 1]).

By Lemma 3 and Lemma 4, we have

COROLLARY. Under the same assumptions as in Lemma 4, the ideal class group of the cubic cyclic field defined by

$$f(x) = x^3 + mx^2 + 2mx + m = 0$$

has a subgroup which is isomorphic to $Z/nZ \oplus Z/n_0Z$, where $n_0|n$ and any prime factor of n_0 is congruent to 2 (mod 3).

PROPOSITION 3. Let a be an integer prime to 6, and assume that a has a prime factor q such that $q \equiv \pm 5 \pmod{12}$ or $q \equiv \pm 11 \pmod{24}$.

If $m = (a^4 + 27)/4$ is a sequare-free integer, then we see that 4|H(m)| and $m = 3 \pmod{4}$.

Proof. It is easy to see that $m \equiv 3 \pmod{4}$. If $q \equiv \pm 11 \pmod{24}$, then we have $\left(\frac{2}{q}\right) = -1$. If $q \equiv 5 \pmod{12}$, then we have $\left(\frac{3}{q}\right) = -1$. Hence by Corollary, the ideal class group of the cubic cyclic field k defined by

$$f(x) = x^3 + mx^2 + 2mx + m = 0$$

has a subgroup which is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$. Since *m* is a square-free integer, the discriminant of *k* is equal to m^2 (see Uchida [5, Lemma 2]). Hence *m* is the conductor of *k*. Therefore by Main Theorem, we have 4|H(m). This completes the proof.

150

CLASS-NUMBER

Now we give some examples of square-free integers m satisfying the conditions in Proposition 3, that is, $4 \mid H(m)$ and $m \equiv 3 \pmod{4}$.

163, 607, 19.193, 7.1021, 20887, 32587, 127.769, 7.25261, 373.619, 375163, 103.4549, 7.43.2347, 19.75853, 1972627, 379.7993, 313.11059, 19.349.673, 577.8731, 8788267, 1789.5443, 7.1694941, 7.31.60139, 3259.4813, 17143747, 20362663, 19.1480933, 32769907, 35289547.

References

- Ishida, M., The genus fields of algebraic number fields, Lecture Notes in Math., 555, Berlin, Heidelberg, New York: Springer 1976.
- [2] Nakahara, T., On real quadratic fields whose ideal class groups have a cyclic p-subgroup, Rep. Fac. Sci. Engin. Saga Univ., 6 (1978), 91-102.
- [3] Nakano, S., Ideal class groups of cubic cyclic fields, Acta Arith., 46 (1986), 297-300.
- [4] Osada, H., Note on the class-number of the maximal real subfield of a cyclotomic field, Manuscripta Math., **58** (1987), 215-227.
- [5] Uchida, K., Class numbers of cubic cyclic fields, J. Math. Soc. Japan, 26 (1974), 447-453.
- [6] Washington, L., Introduction to cyclotomic fields, Graduate Texts in Math., 83, Berlin, Heidelberg, New York: Springer 1982.

Department of Mathematics Rikkyo University Ikebukuro, Tokyo 171, Japan