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A MAXIMUM PRINCIPLE FOR BOUNDED HARMONIC 
FUNCTIONS ON RIEMANNIAN SPACES 

Y. K. KWON AND L. SARIO 

Harmonic functions with certain boundedness properties on a given open 
Riemann surface R attain their maxima and minima on the harmonic boundary 
AB of R. The significance of such maximum principles lies in the fact that the 
classification theory of Riemann surfaces related to harmonic functions 
reduces to a study of topological properties of A^ (cf. [11; 8; 3; 12]. 

For the corresponding problem in higher dimensions we shall first show 
that the complement of AR with respect to the Royden boundary r B of a 
Riemannian N-space R is harmonically negligible: given any non-empty 
compact subset E of TR — AR there exists an Evans superharmonic function 
v, i.e., a positive continuous function on R* = R U TR, superharmonic on 
R, with v = 0 on AR, v = oo on E, and with a finite Dirichlet integral over R. 
As a consequence we then establish the following maximum principle: every 
bounded harmonic function on a subregion G of R attains its supremum and 
infimum on the set (G C\ AR) U dG, where dG is the relative boundary of 
G, and G stands for the closure of G in Royden's compactification of R. For 
similar consequences of the existence of v to Dirichlet-finite harmonic functions 
on Riemannian spaces we refer the reader to [7]. 

The difficulty in the existence proof of an Evans superharmonic function 
lies in that, in contrast with the case of dimension 2, we cannot form a 
1 'double'' of a subregion of a Riemannian space and the maximum principle 
for Dirichlet-finite harmonic functions is a priori not at our disposal. 

We start by recalling in § 1 fundamentals of the function spaces M(R), 
M(R), $l*(R), and MA(R). In § 2 we prove the duality theorems of MA(R) 
and M A ( ^ ) . The existence of an Evans superharmonic function, and the 
maximum principle for bounded harmonic functions are established in § 3. 

1. Let R be a Riemannian N-space, i.e., a separable, connected, orientable, 
C°° N-manifold with a positive definite metric tensor (gij). We designate by 
(gij) the inverse matrix and by g the determinant of {go). 

We consider the vector lattice M(R) which consists of all continuous 
real-valued functions f on R with finite Dirichlet integrals 
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where dV = \/gdxl A . . . A dxN and partial derivatives of / with respect 
to the coordinate variables are assumed to exist almost everywhere on each 
parametric neighbourhood in R. The subclass M(i?) of bounded functions 
in M (R) is, by definition, Royden's algebra of R. 

By means of M(R) we can construct Royden's compactification R* of R, 
defined by the following properties: 

(i) R* is a compact Hausdorff space, 
(ii) R is an open dense subspace of R*, 

(iii) every function in M(R) has a continuous extension to R*, 
(iv) M(i?) separates points in R*. 
In fact, M(R) separates closed sets in R* and every function in M (R) has 

a continuous extension to R*. The set TR = R* — R is called the Royden 
boundary of R. 

We shall use two modes of convergence in M (R) : 
(i) / = CD-limw/w on R if \fn) converges to / uniformly on compact 

subsets of R, and DR(fn — f) —> 0 as n —>co, 
(ii) / = BD-limw/w on R if / = CD-\\mnfn on R and {fn} is uniformly 

bounded on R. 
It is known that M(R) is BD-complete and M(R) is CD-complete. The 

class Mo(i^) of functions in M.(R) with compact supports in R forms an 
ideal of M(R). We denote its BD-closure in M(R) and CD-closure in M(R) 
by MA(R) and MA(R), respectively. 

Let ©G be the class of Riemannian spaces on which there exist no Green's 
functions. It is well known that if R Ç Û G, then the class HD (R) of Dirichlet-
finite harmonic functions consists of constants [13]. In this case it is understood 
that HD OR) = {0}. 

For a detailed discussion of topics in § 1 we refer the reader to [1 ; 9 ; 10 ; 12]. 

2. First we establish a topological property of MA(R). 

PROPOSITION 1. The potential subalgebra M A ( ^ ) is complete in the 
BD -topology. 

Proof. Let {/n}i°° be a BD-Cauchy sequence in MA(R). Since M(R) is 
complete in the BD-topology, there exists a function / G M(i?) such that 
/ = BD-limnfn on R. By the definition of MA(R), there exist sequences 
{fnm}m=i° in M0(R) such that fn = BD-limw/ww on R, n = 1, 2, . . . . Taking 
subsequences if necessary we may assume that 

DR{fn -fnm) < l/n* 

for all m è 1 and each n. 
Let {Rn}i° be a regular exhaustion of R. Since limmsupRn\fn — fnm\ = 0 

we may again assume that 

SUP \fn — fnm\ < 1/™ 
Rn 

for all m and n. 

https://doi.org/10.4153/CJM-1970-096-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-096-0


BOUNDED HARMONIC FUNCTIONS 849 

Now it suffices to show that / = BD-\imnfnn on R since fnn £ M0(i2). 
Clearly, {fnn} is uniformly bounded on R. Since 

DR(f - /„„)* £ DB(f - /„)* + 2?«(/n - /„„)* 

< £ « ( / - / » ) * + 1/», 

we conclude t h a t / = D-lim^/^ on R. To prove the uniform convergence of 
{fnn} t o / on compact sets, take a compact subset F of i?. Choose n so large 
that F C i?n. Then for m ^ n, 

sup | / - /mOT| g sup | / - /OTro| 

^ sup | / - fm\ + sup |/m - fmm\ 

< s u p | / - / m | + -
#n m 

a n d / = C-limw/nn on R. This completes the proof. 

In view of the CD-completeness of m(R), we can similarly prove the 
following result. 

PROPOSITION 2. The sublattice MACR) of the vector lattice M(R) is complete 
in the CD-topology. 

The harmonic boundary AR of R is, by definition, a compact subset of the 
Royden boundary TB = R* — R and consists of the common zeros of all 
functions in M A ( ^ ) . Conversely, the potential subalgebra MA(R) of M(R) 
and the sublattice M&(R) of M(R) can be characterized in terms of AR 

(cf. [12]). 

PROPOSITION 3. The following duality relations are valid: 
(a) MAOR) = {/ € M(i?)| / = 0 o » A s ) , 
(b)MA(i?) = {feM(R)\f = 0onAB\. 

For the proof we first show the following. 

LEMMA. If R £ Û G, then every f £ M(R) can be decomposed uniquely in 
the form f = u + g on R for some u 6 HBD(i?) = {u £ HD(R)\ s u p ^ l < oo } 
and g Ç M A ( ^ ) . In particular, u ^ 0 on R whenever f ^ 0 on R and 

DR(f) =DB(u) +DR(g). 

Proof. Let {Rn}i° be a regular exhaustion of R. Consider the sequence 
[un}\° of continuous functions un on R such that 

un 6 H( i^ ) and un s= / on i? — i?w 
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for each » ^ 1 . Then un £ M(R) by Dirichlet's principle. Hence by Green's 
formula, 

•L^RV^n+p Uni Un+p) = JJRn+p(Un+p Un, Un+p) 

= I {Un+v — Un) *dun+p = 0. 
"dRn+p 

Thus DR(un+p — un) = DR(un) — DB(un+p) and {««Ji00 is D-Cauchy on 2?. 
In view of sup# \un\ ^ sup# | / | < oo for all « we may assume that {u„]i° 
isBD-Cauchyon2e.Letw = BD-limw un on R. Clearly u 6 HBD(i?) (cf. [13]). 

Set gn = f — un on i^. Since {gn}i° is a BD-Cauchy sequence on R and 
gw Ç M0(i?), g = BD-limwg% exists on i? and belongs to MA(R). Thus we 
obtain a decomposition/ = u + g on R with w € HBD(i^) and g £ MA(-R) . 

Since gw has a compact support in R, Green's formula yields DR(gn, u) = 0 
and DR(u + gn) = DR{u) + DR(gn). On letting n —>oo we obtain 

Z>*(/) = />«(«) + Z>*(g). 
Clearly « ^ 0 on i? whenever / à 0 on R. 

It remains to prove that the decomposition is unique. Suppose that 
/ = ur + gf is another decomposition with the required properties. Then 
ï , = = w - w ' : = g ' - g £ HBDCR) C\ MA(R). Take vn G M0(i?) such that 

v = BD-limw £w 

on R. Then 

I>s(iO = limZJfi(»m>w) = 0 
W-»oo 

since z> Ç HBD(i?) and vm Ç M0(i?). In view of v = 0 on A^ we conclude 
that u ^ uf and g = g7 on i?, as desired. 

Proof of Proposition 3. (a) By the definition of ARy every / Ç MA(i?) 
vanishes identically on A^. Thus it suffices to show that every / G M(R) 
with / = 0 on AR belongs to MA(R). 

Let / = u + g be the decomposition in the above lemma. We shall prove 
that u = 0 on R. Then / = g G MA(R). Clearly u = f - g = 0 on A«. 
For any e > 0 set 

E = {q £ R*\u(q) ^ €}. 

Then AB Pi E = 0. For each q Ç £ choose a function /ff £ MA(i^) such that 
fq(q) > 1. Then g ^ / ? U 0 f MA(i?), gff(g) > 1, and gq è 0 on 2*. Since £ 
is a compact subset of i£*, there exists a finite subset {gi, . . . , qn} of £ such 
that 

ECU {qeR*\gqi(q)>l}. 

Therefore g = S?=i g« G MACR) and g > 1 on E. Set M = sups\u\. Clearly 
u - e - Mg £ M(R) and u — e — Mg < 0 on R. Since 

« — e — Afg = (w - e) + ( — Mg) 
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is the decomposition of u — e — M g in the above lemma, u — e S 0 on R. 
On letting e —» 0 we obtain u ^ 0 on R. The same argument for — u yields 
u = 0 on i£. 

(b) L e t / 6 M A C R ) . There exists a sequence {/nji00 in M0(i?) such that 

/ = CD-Urn/» 

on R. Clearly (/„ C\ a) \J (-a) € M0(R) for « > 0 and 

( / n « ) U ( - « ) = BD-lim (/„ r\ a) \J ( - a ) 

on JR. Hence ( / P\ a) W (—a) is in M A ( ^ ) and vanishes identically on AR 

by (a). Since a > 0, / = 0 on AB. 
Conversely, let / G M(i?) be such t h a t / = 0 on A^. For each n ^ 1 set 

/n = (fr\n)\J (-n) on £ . Then/W G MA(i?) by (a) and 

/ = CD-lim/n 
W->oo 

on R. Since/, G MA(R) and M A W is CD-complete,/is in M A ( ^ ) , as desired. 

3. We are ready to establish the existence of an Evans superharmonic 
function. It will in turn be essential for the proof of the maximum principle 
for bounded harmonic functions. 

We claim the following result (cf. [2]). 

THEOREM 1. Let E be an arbitrary non-empty compact subset of TR — AB. 
Then there exists a positive continuous superharmonic function v on R such that 
v z= 0 on AR, v = co on E, and v is a Dirichlet finite Tonelli function on R. 

Proof. Let K be a distinguished compact subset of i£*, i.e., a subset of R* 
with K = (KTVR) and with a smooth d{KC\R), such that K C\ AR = 0 
and K contains E in the interior. 

Choose / G M(i?) with the properties / = 1 on K, f = 0 on ABf and 
0 ^ / ^ 1 on R*. For a regular exhaustion {Rn}i° of R set Kn = K — Rn. 
Consider the continuous functions unm on R such that 

unm G U(Rm - Kn) and unm =f on R - (Rm - Kn) 

for m, w è 1. Since 

•DR\Mn,m+P ^raroj /^n,m+p) == -^ Rm +p—Kn\Mn,m+p r̂cm> ^w,m+p) 

= I \^n,m+P ^nm) *&Un,m+p = " > 

DR(un,m+p — unm) = DR{unw) — DR(un,m+p) and the sequences {^m}m=ico are 
D-Cauchy on R for all n ^ 1. Clearly 0 < s u p ^ ^ ^ s u p ^ / = 1 for all 
m, n ^ 1. Hence we may assume that the sequences {unm}m=i° are BD-Cauchy 
on R. Set un = BD-limw unm on R. Then un G HBD(i? — JTn) and un = f 
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on Kn. Since gnm = / — unm G M0(R) and the sequences {gnm}m=i° are 
BD-Cauchy on jR, gn = BD-limw gnm exists on R and gw G MA(R). By 
virtue of un = f — gn we have 

«„ G HBD(R-Kn), iin=f 

on i£w U AR and 
0 ^ ww g s u p / = 1 

onjR. 
On the other hand, DR(un+p>m — unm) = DR(anm) — DB(un+Ptm) as before. 

Thus the sequences {unm}n==1
œ are D-Cauchy on R for all m ^ 1. In view of 

D R\Un+p ^ w ) 2 = U R\Un+v Mni-p,m)2 I - ^ R\Un+p,m ^nmj i t) R\Unm Un)
2, 

we obtain, on letting m —*co, 

DR(un+p — uny ^ lim inf DR(un+p>m — unny. 
m 

Since {unm}n=i° is D-Cauchy on i£ for each m ^ 1, it is easily seen from the 
above inequality that the sequence {un} is D-Cauchy on R. The family [nn) 
being uniformly bounded on R we may again assume that u = BD-limre un 

exists on R. Clearly*/ G HBD(i?). We know that gn G MA(i?). Also/ G MA(i?) 
by Proposition 3 (a). Thus un = / — gn G M A ( ^ ) and 

« = BD-lim„ww G M A ( ^ ) 

by Proposition 1. Hence u G HBD(i?) Pi MA(R) and « = 0 on i? by the 
lemma in §2. Thus we have a sequence {un)i

m of positive superharmonic 
functions on R such that un G HD(i? — Kn) C\ MA(R), un = 1 on Kn, and 
BD-limw ww = 0 on R. 

Let £o G R be a fixed point and choose a subsequence {unk}k=iœ of {̂ w}w==iOT 

such that 

UnkiPo) S 2~* and £ > * K J ^ 2~*. 
Set 

W oo 

vm = X «n* and » = X **»* 

on R. Since {z>m} is D-Cauchy on R and {z>w(£o)î is convergent, we obtain 
v = CD-lim vm 

ra-»oo 

on i?. Here each vm is a positive continuous function onR with a finite Dirichlet 
integral and therefore the CD-limit v has the same properties. 

On KnkCZ)E), v ^ vk = * for all k è 1, and therefore z; = oo on E. The 
relation y|Ai2 E= 0 follows immediately from Propositions 2 and 3 (b) in view 
olvn G MA(i?) C M A O R ) . 

It remains to show that v is superharmonic on R. Let £ be an arbitrary 
point of R and V a parametric ball about p in i£. There exists a Green's 
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function qv(x, p) on V with singularity p (cf. [5; 4]). For each m ^ 1, 

v(p) ^ vm(p) ^ - vm{x) *dqv{x,p), 

the second inequality being implied by the superharmonicity of vm. On 
letting m —> oo we obtain 

fl(p) ^ — I v(x) *dqv(x, p) 
Jdv 

by Lebesgue's convergence theorem. This completes the proof. 

Every non-constant superharmonic function on a subregion G of R attains 
its infimum on the boundary G — G of G. It is natural to ask whether we 
can replace the boundary G — G of G by a subset such that all superharmonic 
functions on G assume their infima on that subset. We shall establish the 
following generalization of a result of Constantinescu [2]. 

THEOREM 2. Suppose that v is a superharmonic {subharmonic) function on a 
subregion G of a Riemannian space such that v is bounded from below {above) 
on G. 

If v has the property 

lim inf v{p) è w I lim supv{p) ^ M J 
p£G,p^,q \ p£G,p->q ' 

for all q Ç {G C\ AR) \J dG, then v ^ m {v ^ M) on G. 

Proof. Since v is superharmonic if and only if — v is subharmonic, it suffices 
to consider the case in which v is superharmonic on G. 

We may assume that m > — oo. For n ^ 1 we consider the set 

En = \q Ç G - G \\mmîv{p) S m - - \ . 
V I p£Gtp-+q M] 

Clearly En is a closed set in R*, contained in T R — AB by our assumption. 
If En = 0 for all n ^ 1, then the assertion follows from the lemma. Since 
En C En+i for each n, it is sufficient to consider the case En ^ 0 for all n. 

By Theorem 1 for E = En there exists a positive continuous superharmonic 
function vn on i^ such that vn = 0 on AB, vn = oo on JSn, and ^ has a finite 
Dirichlet integral over R. For an arbitrary e > 0, v + etfw is a superharmonic 
function on G and bounded from below. Since 

lim inf (v + evn)(p) ^ lim inf v{p) + lim inf evn(p) > m — ~ 
p£G,p-^q p€G,p-$q p£G,p->q % 

for all g Ç G — G and n ^ 1, we have 

fl + €̂ w > w — l/n 

on G. On letting e —> 0 and then #->co we obtain the desired result. 

https://doi.org/10.4153/CJM-1970-096-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-096-0


854 Y. K. KWON AND L. SARIO 

Observe that u is harmonie on G if and only if u is simultaneously 
superharmonic and subharmonic on G. Thus as a direct consequence of the 
above theorem we have the following result (cf. [8]). 

COROLLARY 1. Let G be a subregion of a Riemannian space R and u a bounded 
harmonic function on G such that 

m g lim inf u(p) ^ lim sup u(p) ^ M 
p£G,p->q v€G,p->q 

for all g e (G C\ AR) U dG. Then m S u g M on G. 
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