J. Hano

Nagoya Math. J.
Vol. 61 (1976), 197-202

A GEOMETRICAL CHARACTERIZATION OF A CLASS OF HOLOMORPHIC VECTOR BUNDLES OVER A COMPLEX TORUS

JUN-ICHI HANO*)

This note is to be a supplement of the preceeding paper in the journal by Matsushima, settling a question raised by him. In his paper he associates a holomorphic vector bundle over a complex torus to a holomorphic representation of what he calls Heisenberg group. We shall show that a simple holomorphic vector bundle is determined in this manner if and only if the associated projective bundle admits an integrable holomorphic connection. A theorem by Morikawa ([3], Theorem 1) is the motivation of this problem and is somewhat strengthened by our result.

Let V be a complex vector space of dimension n and let L be a lattice in V. The quotient group $V / L=E$ is a complex torus. It is known ([2], §3) that a holomorphic vector bundle F of rank m over E is determined by a $G L(m, C)$-valued theta factor J, namely by a holomorphic map

$$
J: L \times V \rightarrow G L(m, C)
$$

satisfying the following equality :

$$
\begin{equation*}
J(\alpha+\beta, u)=J(\alpha, \beta+u) J(\beta, u) \quad \text { for } \alpha, \beta \in L \text { and } u \in V \tag{1}
\end{equation*}
$$

We denote by F_{J} the holomorphic vector bundle over E determined by a theta factor J.

A résumé of Matsushima's construction of holomorphic vector bundles over E is in order. Let H be a hermitian form on $V \times V$. Let G_{H} be a nilpotent Lie group whose underlying manifold is $V \times C^{*}$ and whose multiplication is defined by

[^0]$$
(u, c) \cdot(v, d)=\left(u+v, e\left[\frac{1}{2 i} H(u, v)\right] c d\right) \quad \text { for }(u, c),(v, d) \in V \times C^{*}
$$
where $e[x]=\exp 2 \pi i x$.
We denote by $G_{H}(L)$ the subgroup $L \times C^{*}$ in G_{H}, which is a complex Lie group. The right action of the complex Lie group $G_{H}(L)$ on the complex manifold $V \times C^{*}$ is holomorphic. Thus $V \times C^{*}$ is a holomorphic principal bundle over E with structure group $L \times C^{*}=G_{H}(L)$.

If a holomorphic representation $\rho: G_{H}(L) \rightarrow G L(m, C)$ is given, a holomorphic vector bundle F_{H}, ρ is determined as the quotient space $V \times C^{*} \times C^{m} /\left\{G_{H}(L), \rho\right\}$. Lemma 3.1 in [2] shows that a theta factor J_{ρ} associated to the holomorphic vector bundle F_{H}, ρ is given by

$$
\begin{equation*}
J_{\rho}(\alpha, u)=\rho\left(-\alpha, e\left[\frac{1}{2 i}(H(u, \alpha)+H(\alpha, \alpha))\right]\right) \quad \text { for } \alpha \in L, u \in V \tag{2}
\end{equation*}
$$

Theorem. Suppose that the associated projective bundle of a holomorphic vector bundle F over a complex torius E admits an integrable holomorphic connection, or equivalently admits a system of transition functions which are constant. Then, we can choose a hermitian form H_{1} on $V \times V$ whose imaginary part assumes rational values on $L \times L$, and a holomorphic representation ρ of $G_{H_{1}}(L)$ so that F is isomorphic to $F_{H_{1}}, \rho$.

Proof. (a) It is well known (Atiyah [1], Proposition 14) that the associated projective bundle $P(F)$ of a holomorphic vector bundle F admits an integrable holomorphic connection if and only if $P(F)$ arises from a homomorphism h of the fundamental group L of torus E into $P G L(m, C)$. A necessary and sufficient condition for the projective bundle $P(F)$ to have an integrable holomorphic connection is that one can choose a theta factor J of F such that

$$
\begin{equation*}
J(\alpha, u)=J(\alpha, 0) \mu(\alpha, u) \tag{3}
\end{equation*}
$$

with scalar function $\mu(\alpha, u)$ for each $\alpha \in L$.
Indeed, this condition is sufficient. Suppose that $P(E)$ admits an integrable holomorphic connection. Then $P(E)$ arises from a homomorphism $h: L \rightarrow P G L(m, C)$. Let us denote by $\tilde{J}(\alpha, u)$ the image of a theta factor $J(\alpha, u)$ under the natural homomorphism of $G L(m, C)$ onto $P G L(m, C)$. Since the $P G L(m, C)$-valued factor \tilde{J} and the homomorphism h define the same bundle $P(F)$,

$$
h(\alpha)=\tilde{\varphi}(u+\alpha) \tilde{J}(\alpha, u) \tilde{\varphi}(u)^{-1}
$$

with a $\operatorname{PGL}(m, C)$-valued holomorphic function $\tilde{\varphi}$ on V. Since V is simply connected, we can lift $\tilde{\varphi}$ to a holomorphic map $\varphi: V \rightarrow S L(m, C)$ so that $\varphi(u)$ is lying above $\tilde{\varphi}(u)$. Then, $J^{\prime}(\alpha, u)=\varphi(u+\alpha) J(\alpha, u) \varphi(u)^{-1}$ is a theta factor with required property.
(b) Let us assume that a holomorphic vector bundle F satisfies the condition in the theorem and that a theta factor J of F is chosen so that the condition (3) is satisfied. From the condition (1) on J, it follows that the scalar function μ determined by (3) satisfies the following equalities:
(i) $\mu(\alpha, \beta) \mu(\alpha+\beta, u)=\mu(\alpha, \beta+u) \mu(\beta, u)$, for $\alpha, \beta \in L, u \in V$;
(ii) $\mu(\alpha, 0)=\mu(0, u)=1, \quad$ for $\alpha \in L, u \in V$;
(iii) $\mu(\alpha,-\alpha)=\mu(-\alpha, \alpha), \alpha \in L$.

We define a multiplication \times on $L \times C^{*}$ in terms of μ and make $L \times C^{*}$ a complex Lie group $G_{\mu}(L):$

$$
(\alpha, c) \times(\beta, d)=(\alpha+\beta, \mu(\beta, \alpha) c d) \quad \text { for }(\alpha, c),(\beta, d) \in L \times C^{*}
$$

The associative law is verified by (i). The identity is $(0,1)$, because of (ii) and the inverse of (α, c) is $\left(-\alpha, \mu(-\alpha, \alpha)^{-1} c\right)$.

Define a map

$$
f: G_{\mu}(L) \rightarrow G L(m, C)
$$

by $f(\alpha, c)=J(\alpha, 0)^{-1} c$. Then, f is a holomorphic representation. In fact,

$$
f((\alpha, c) \times(\beta, d))=J(\alpha+\beta, 0)^{-1} \mu(\beta, \alpha) c d
$$

Since $J(\alpha+\beta, 0)=J(\beta, \alpha) J(\alpha, 0)=J(\beta, 0) J(\alpha, 0) \mu(\beta, \alpha)$ by (1) and (3),

$$
\begin{aligned}
f((\alpha, c) \times(\beta, d)) & =J(\alpha, 0)^{-1} J(\beta, 0)^{-1} c d \\
& =f(\alpha, c) f(\beta, d)
\end{aligned}
$$

(c) The map $L \times V \rightarrow C^{*}$ given by $(\alpha, u) \rightarrow \operatorname{det} J(\alpha, u)$ is a C^{*}-valued theta factor corresponding to the line bundle $\operatorname{det} F$, which is equivalent to a normalized theta factor ([4], p.111). We choose a C^{*}-valued holomorphic function φ on V, a hermitian form H on $V \times V$ whose imaginary part assumes integral values on $L \times L$ and a semi-character $\chi: L \rightarrow C^{*}$ such that

$$
\operatorname{det} J(\alpha, u)=\varphi(u+\alpha) \chi(\alpha) e\left[\frac{1}{2 i} H(u, \alpha)+\frac{1}{4 i} H(\alpha, \alpha)\right] \varphi(u)^{-1} .
$$

On the other hand from (3),

$$
\operatorname{det} J(\alpha, u)=\operatorname{det} J(\alpha, 0) \mu^{m}(\alpha, u)
$$

Thus,

$$
\operatorname{det} J(\alpha, 0)=\varphi(\alpha) \varphi(0)^{-1} \chi(\alpha) e\left[\frac{1}{4 i} H(\alpha, \alpha)\right]
$$

and

$$
\mu^{m}(\alpha, u)=\varphi(u+\alpha) \varphi(\alpha)^{-1} e\left[\frac{1}{2 i} H(u, \alpha)\right] \varphi(u)^{-1} \varphi(0) .
$$

Since φ is a nowhere vanishing holomorphic function on a simply connected space V, there is a nowhere vanishing holomorphic function ψ on V such that $\psi^{m}=\varphi$. For each α, an $m^{\text {th }}$ root of unity ε_{α} is determined by

$$
\mu(\alpha, u)=\varepsilon_{\alpha} \psi(u+\alpha) \psi(\alpha)^{-1} e\left[\frac{1}{2 m i} H(u, \alpha)\right] \psi(u)^{-1} \psi(0) .
$$

Putting $u=0$, we see that $1=\mu(\alpha, 0)=\varepsilon_{\alpha}$. Thus,

$$
\begin{equation*}
\mu(\alpha, u)=\frac{\psi(u+\alpha)}{\psi(\alpha)} e\left[\frac{1}{2 m i} H(u, \alpha)\right] \frac{\psi(0)}{\psi(u)} . \tag{5}
\end{equation*}
$$

(d) The above relation enables us to establish an isomorphism of $G_{H / m}(L)$ and $G_{\mu}(L)$. Put

$$
\lambda(\alpha)=\psi(\alpha) / \psi(0) .
$$

Then from (5),

$$
\begin{equation*}
\mu(\alpha, \beta)=\frac{\lambda(\alpha+\beta)}{\lambda(\alpha) \lambda(\beta)} e\left[\frac{1}{2 m i} H(\beta, \alpha)\right] . \tag{6}
\end{equation*}
$$

Making use of the $\lambda(\alpha)$'s, we define a map

$$
\begin{equation*}
g: G_{H / m}(L) \rightarrow G_{p}(L) \tag{7}
\end{equation*}
$$

by

$$
g(\alpha, c)=(\alpha, \lambda(\alpha) c), \quad(\alpha, c) \in L \times C^{*}
$$

We claim that g is an isomorphism. Obviously, g is $1: 1$ and onto.

$$
\begin{aligned}
g((\alpha, c) \cdot(\beta, d)) & =g\left(\alpha+\beta, e\left[\frac{1}{2 m i} H(\alpha, \beta)\right] c d\right) \\
& =\left(\alpha+\beta, \lambda(\alpha+\beta) e\left[\frac{1}{2 m i} H(\alpha, \beta)\right] c d\right) \\
& =(\alpha+\beta, \lambda(\alpha) \lambda(\beta) \mu(\beta, \alpha) c d) \\
& =g(\alpha, c) \times g(\beta, d),
\end{aligned}
$$

on account of (6). Thus g is an isomorphism.
(e) From (4) and (7), $\rho=f \circ g$ is a holomorphic representation of $G_{H / m}(L)$ into $G L(m, C)$ given by

$$
\rho(\alpha, c)=J(\alpha, 0)^{-1} \lambda(\alpha) c .
$$

The theta factor J^{\prime} associated to the representation ρ in the formula (2) is

$$
\begin{aligned}
J^{\prime}(\alpha, u) & =\rho\left(-\alpha, e\left[\frac{1}{2 m i}(H(u, \alpha)+H(\alpha, \alpha))\right]\right) \\
& =J(-\alpha, 0)^{-1} \lambda(-\alpha) e\left[\frac{1}{2 m i}(H(u, \alpha)+H(\alpha, \alpha))\right] .
\end{aligned}
$$

Making use of the equalities

$$
\begin{aligned}
& J(-\alpha, 0)^{-1}=J(\alpha, 0) \mu(0,-\alpha) \\
& \mu(\alpha,-\alpha)=\lambda(\alpha)^{-1} \lambda(-\alpha)^{-1} e\left[-\frac{1}{2 m i} H(\alpha, \alpha)\right]
\end{aligned}
$$

and of the equality (5), we see that

$$
J^{\prime}(\alpha, u)=\psi(u+\alpha)^{-1} J(\alpha, u) \psi(u) .
$$

Thus, we have seen that the theta factors J and J^{\prime} are equivalent and hence $F \cong F_{H / m}, \rho$, finishing the proof.

Remark. In order to prove the converse of the theorem, we assume that a holomorphic vector bundle F_{ρ} over E associated to a holomorphic representation ρ of $G_{H}(L)$ is simple. Then, the image of the central subgroup $\{0\} \times C^{*}$ is of scalar matrices and hence $\rho(0, c)=c^{k}$ for some integer k. The projective representation $\tilde{\rho}$ reduces to a projective representation of L. By Atiyah's proposition, $P\left(F_{\rho}\right)$, which arises from $\tilde{\rho}$ of L, admits an integrable holomorphic connection.

Bibliography

[1] Atiyah, M. F., Complex analytic connections in fibre bundles, Trans. AMS. 85 (1957), 181-207.
[2] Matsushima, Y., Heisenberg groups and holomorphic vector bundles over a complex torus, Nagoya Math. J. 61 (1976).
[3] Morikawa, H., A note on holomorphic vector bundles over complex tori, Nagoya Math. J. 41 (1971), 101-106.
[4] Weil, A., Introduction à l'etude des variétés kahleriennes, Paris, Hermann (1958).

Washington University

[^0]: Received November 25, 1975.
 *) Partially supported by N.S.F. Grant GP-34710.

