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Abstract

Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA
damage, oxidative stress, and inflammation. This is associated with increases in levels of
inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation
of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been
implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which
contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue
remodeling. These findings suggest that targeting production of TNFα or TNFα activity may
represent an efficacious approach to mitigating lung toxicity induced by both mustards and
radiation. This review summarizes current knowledge on the role of TNFα in pathologies
associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic
potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.

Mustard vesicants and ionizing radiation are cytotoxic to the lung, causing progressive injury at
low to moderate doses and lethality at high doses.1–3 Acute lung injury, pulmonary edema,
respiratory epithelial necrosis and sloughing, and pneumonitis are noted within days to weeks of
exposure, whereas chronic bronchitis, asthma, bronchiectasis, chronic obstructive pulmonary
disease (COPD), pulmonary fibrosis, and/or cancer are observed 6–12months post-radiation or
10–30 years after mustard exposure.3,4 A common feature of acute injury and chronic disease
induced bymustards and radiation is an accumulation of inflammatory cells within the lung and
release of cytokines such as tumor necrosis factor (TNF)α.5–7 TNFα is an early response cytokine
important in initiating inflammatory responses; it also promotes cellular proliferation and tissue
regeneration.8 Excessive production of TNFα is associated with uncontrolled inflammation and
disease pathogenesis. In this context, elevated levels of TNFα have been identified in a number of
inflammatory diseases, including COPD, rheumatoid arthritis, psoriasis, and inflammatory
bowel disease; moreover, the administration of biologics, which block TNFα, has demonstrated
therapeutic efficacy against various pathologies and diseases.9,10 In this review, we discuss the
role of TNFα in mustard vesicant- and radiation-induced pulmonary disease pathogenesis, with
a focus on the therapeutic potential of TNFα-targeting agents in mitigating toxicity.

TNFα Production, Receptors, and Biological Activity

TNFα is primarily produced by macrophages in response to tissue injury or infection.11,12

Synthesized as a transmembrane homotrimer consisting of three 26 KDa subunits (mTNFα), it
is cleaved by TNFα-converting enzyme (TACE) to soluble TNFα (sTNFα), a homotrimer
consisting of three 17 KDa subunits.13 The activity of both mTNFα and sTNFα is mediated by
binding to cell surface receptors identified as type 1 (TNFR1) and type 2 (TNFR2) (Figure 1).
TNFR1 is expressed on the surface of most cell types, whereas TNFR2 is largely restricted to
immune cells and endothelial cells.12 Both forms of TNFα bind to TNFR1 and TNFR2. However,
TNFR2 binds to TNFαwith lower affinity andmay easily dissociate from the ligand.12,14 Thus, it
appears that the biological activity of TNFα mainly involves TNFR1 signaling.10,15,16 Reports
also suggest that signaling pathways activated by these 2 receptors overlap or they transduce
signaling cooperatively as genetic deletion of either receptor blocks signaling initiated by
TNFα.15,17 Ligand binding to TNFR1 initiates signaling, resulting in the activation of mitogen
activated protein (MAP) kinases and transcription factors, including AP-1 and nuclear factor-
kappa B (NF-κB), which regulate genes involved in inflammation, cell proliferation, and
differentiation.10,15 TNFR1 also recruits TNFR1-associated death domain (TRADD) protein,
which promotes cell death. TNFR2 recruits TNFR-associated factor (TRAF)-1 and TRAF-2
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proteins, resulting in the activation of MAP kinases, NF-κB, and
protein kinase B.10,15 Functionally, TNFR1 activation is associated
with the induction of cytotoxic and proinflammatory responses of
TNFα, whereas TNFR2 mediates homeostatic bioactivities, including
tissue regeneration, cell proliferation, and cell survival.15,18

TNFα is a master regulator of inflammation generated early after
injury or infection in response to bacterially derived lipopolysac-
charide, as well as interleukin (IL)-1, interferon-γ, granulocyte
macrophage colony stimulating factor, platelet derived growth
factor, and TNFα itself.19–21 The biological actions of TNFα are
varied and summarized in Table 1. TNFα promotes inflammation
by upregulating adhesion molecules important in leukocyte
trafficking to inflammatory sites, including intracellular leukocyte
adhesion molecule, endothelial leukocyte adhesion molecule-1, and
vascular cell adhesion molecule-1, and by stimulating the release of
macrophage and neutrophil chemokines, such as CXCL8 (IL-8),
CCL2 (MCP)-1, interferon-inducible protein 10 (IP-10) (CXCL10),
as well as bioactive lipids (eg, eicosanoids and platelet activating
factor), which promote vasodilatation, leukocyte adhesion, and
chemotaxis.12,22–25 TNFα also stimulates phagocytic cells to release
proinflammatory cytokines (eg, IL-1, IL-6, IL-12, IL-15, IL-23, and
TNFα) and reactive oxygen and nitrogen species. In the lung, these
cytotoxic/proinflammatory mediators cause alveolar epithelial cell
injury, denudation of the basement membrane, hyalin membrane
formation, impaired surfactant activity, and altered pulmonary
functioning.19,26,27

TNFα is known to cause oxidative and nitrosative stress.28,29 It
also depletes intracellular glutathione, which contributes to its pro-
oxidant actions.28,30 Oxidative stress is associated with activation of
redox sensitive transcription factors, including NF-κB and AP-1
that upregulate proinflammatory genes, further contributing to
inflammation and tissue injury.11 TNFα is also a potent mitogen,

stimulating epithelial cell proliferation.31 This is thought to be due
in part to activation of AP-1 and upregulation of cyclin-D1, a cell
cycle regulatory protein.28,32 TNFα-induced proliferation leads
to epithelial thickening and pulmonary fibrosis.33,34 TNFα also
promotes fibrosis by inducing focal accumulation of fibroblasts
and collagen deposition and by stimulating the production of
matrix metalloproteinases (MMPs) and transforming growth
factor (TGF)β.34–37 In humans, circulating levels of MMP-9 and
TGFβ correlate with the extent of fibrosis.38 Collectively, these data
suggest that blocking TNFα may be efficacious in mitigating
mustard or radiation-induced acute lung injury and inflammation,
as well as their long-term pulmonary complications.

Role of TNFα in Mustard-Induced Lung Injury

Mustard vesicants, including sulfur mustard (SM) and nitrogen
mustard (NM), are cytotoxic alkylating agents that cause
incapacitating injury to the respiratory tract.39 Toxicity is largely
due to its lipophilic nature that allows it to rapidly penetrate tissues
and cells, and alkylate and cross-link cellular macromolecules,
including nucleic acids, lipids, and proteins.40 Both conducting and
respiratory airways are affected by mustards.1,41 Early symptoms
include cough, hoarseness, sore throat, mucus discharge, loss of
smell and taste, and irritation of the nasal mucosa.1,42–44

Pulmonary edema and damage to the pharynx induced by acute
mustard inhalation result in an inability to speak, moist rales,
tachypnea, and tachycardia.45,46 At high doses, necrosis of the
respiratory epithelium, epithelial sloughing, pseudo-membrane
formation, lung lobe collapse, and death occur.41,43,47,48

Chronic clinical and pathological manifestations of mustard
exposure have been observed in survivors of chemical attacks and
in manufacturing plant workers. The most common symptoms in
long-term survivors of mustard gas exposure are chronic cough,
dyspnea, increases in sputum and hemoptysis (airway bleeding),
progressive airway deterioration, hyperreactivity, and stenosis
of the conducting airways.1,40,49,50 Common pathologies in
victims of the Iran–Iraq war include asthma, bronchitis,
bronchiectasis, airway narrowing, COPD, and pulmonary
fibrosis.40,50 Emphysema, bronchiectasis, centrilobular nodules,
bronchial wall thickening, reticular opacity, ground glass
opacity, consolidation, honeycombing, and other respiratory
pathologies have similarly been reported in survivors of
mustard gas exposure in a manufacturing factory.40,51–53

Pulmonary injury from mustard exposure is associated with an
accumulation of large numbers of inflammatory cells, including
macrophages, neutrophils, and eosinophils at sites of injury in the
lung, as well as oxidative stress and production of cytotoxic/
proinflammatory cytokines, including TNFα.4,40,54,55 Levels of
TNFR1 are also upregulated, suggesting a role of TNFα signaling
through this receptor in the pathogenic response to mustards.56

Accumulating evidence described below provides support for this
activity.

Rodent Models of Mustard Lung Injury Used to Investigate
the Impact of Targeting TNFα

In initial mechanistic studies, 2-chloroethyl ethyl sulfide (CEES), a
monofunctional analog of SM and NM, was used as a model for
mustard lung toxicity. In rodents, CEES causes injury to the
alveolar epithelial barrier as measured by increases in cells, protein,
and IgM in bronchoalveolar lavage fluid (BAL); fibrinogen
and prothrombin levels also increase, a response associated with
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Figure 1. Tumor necrosis factor (TNF)α signaling. Binding of soluble or membrane
bound TNFα to TNFR1 and TNFR2 initiates signaling events associated with apoptosis
or activation of transcription factors, NFκB and AP-1. TNFα binding to TNFR1 and/or
TNFR2 can also activate protein kinase B/Akt, which leads to prolonged NF-κB
activation. Together, these responses contribute to inflammation, leukocyte
trafficking, cell death, cell proliferation, and tissue remodeling.
AP-1, activator protein-1; IKK, IκB kinase; MAPKs, mitogen-associated protein kinases;
mTNF, membrane-bound TNFα; NFκB, nuclear factor kappa B; sTNF, soluble TNFα;
TACE, TNFα-converting enzyme; TNFR1, TNFα receptor 1; TNFR2, TNFα receptor 2;
TRADD, TNFR associated death domain; TRAF1, TNFR associated factor 1; TRAF2, TNFR
associated factor 2.
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impairment of fibrin-degrading activity in the lung.56,57

Proliferating cell nuclear antigen (PCNA), a marker of cellular
proliferation in response to injury,58 is upregulated after CEES
administration to rodents, along with cyclin D1.59 CEES also
causes pulmonary oxidative stress, characterized by increases in
superoxide dismutase (SOD), Ym-1, and lipid peroxidation end
products and decreases in intracellular glutathione levels.60–62

Inflammatory proteins, including inducible nitric oxide synthase
(iNOS), cyclooxygenase (COX)-2, TNFα, TNFR1, and CCR2 are
also increased in the lung after CEES.56,61,62 These responses are
linked to functional alterations, including decreases in lung
compliance and increases in elastance.56,62 Additionally,
methacholine-induced alterations in total lung resistance and
central airway resistance are dampened following CEES exposure.

More recently, rodentmodels of lung injury and chronic disease
using NM and SM have been developed as they more closely reflect
pulmonary responses in humans.4,63 In general, injury, oxidative
stress, and inflammatory responses are similar to CEES, appearing
early (1–3 days) after exposure; however, they are more severe and
prolonged. Additionally, pulmonary fibrosis is observed, typically
within 28 days of exposure. The increased pathologic response to
SM and NM when compared to CEES is likely due to the fact that
they are bifunctional alkylating agents, allowing them to induce
DNA intrastrand and interstrand cross-links, as well as DNA-
protein cross-links.64 These cross-links can alter the structure of
DNA and interfere with replication and transcription. In contrast,
monofunctional alkylation of DNA and proteins caused by CEES
can more readily be repaired.65

Owing to high reactivity of SM and NM with mucosal surfaces
of the upper respiratory track, rodent models of lung injury involve
intratracheal exposure to ensure delivery to the lower lungs, where
most damage occurs in humans.66–69 A single exposure of rats to
SM or NM causes dose and time-related histopathological changes
in the lungs, including multifocal lesions comprising perivascular
and peribronchial edema, blood vessel hemorrhage, patchy mild
thickening of alveolar septa, increased numbers of alveolar

macrophages and neutrophils, and luminal accumulation of
cellular debris and fibrin.66,67,70–73 Bronchiolization of alveolar
walls, indicating type I epithelial cell damage and repair by type II
epithelial cells, hyperplasia, and hypertrophy of the bronchial
epithelium leading to piling of bronchiolar epithelial cells have also
been noted. SM also causes severe ulceration of the proximal
bronchioles and deposits of fibrillar membranes in bronchiolar
lumen, suggesting apoptosis and necrosis.67,74 Consistent with
early SM-induced histopathologic evidence of acute lung injury
and bronchiolar epithelial denudation, proteins involved in cell
apoptosis and autophagy, including caspase-3, caspase-6, caspase-
8, caspase-9, poly (ADP-ribose) polymerase (PARP)-1 and LC3BI
and LC3BII, are upregulated in the lung; terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) positive cells are also
present.75–77

The chronic phase of respiratory injury caused by SM and NM
in rats (beginning 28 days post-exposure) is characterized by a
predominance of fibroblasts, neutrophils, lymphocytes, and
enlarged foamy macrophages in the alveoli and/or alveolar septal
walls, multifocal fibrotic lesions, and collagen deposition.40,78–80

Fibroplasia, squamous metaplasia of the bronchial wall, honey-
combing, and emphysema-like changes in alveolar regions of the
lung are also evident.40,67,68,81 Hyperplasia and squamousmetaplasia
in ulcerated proximal bronchiolar epithelium are also observed after
SM exposure, indicative of aberrantwound repair.67 These structural
changes are correlatedwith impaired pulmonary functioning.80,82 As
observed with CEES, NM- and SM-induced lung injury and
apoptosis/necrosis of epithelial cells are associated with increases in
BAL cells, protein, IgM, fibrinogen, and total phospholipids.66,67,82

Levels of fibrinogen/fibrin and surfactant protein (SP)-D are also
increased in the lung and/or BAL. This is evident early after
exposure and remains elevated up to 28 days.67,82,83

Lung injury induced by SM andNM is associated with oxidative
stress characterized by increases in 8-hydroxy-2-deoxyguanosine
(8OHdG), 2-deoxyguanosine, malondialdehyde and 4-hydroxy-
nonenal, and decreases in glutathione levels.66,84,85 Nitrates and

Table 1. Biological activities of tumor necrosis factor (TNF)α in mustard or radiation-induced lung injury

Activity Mustards Radiation References

Oxidative stress SOD, HO-1, Ym-1, lipocalin-2,
8-hydroxy-2-deoxyguanosine,
malondialdehyde,
4-hydroxynonenal,
nitrite/nitrates

HO-1, lipocalin-2, Ym-1, superoxide
anions, hydroxyl radicals, H2O2,
NO

60,62,66,67,76,78,82,
84,85,88,97,103,104,
114,125

Inflammatory
proteins

iNOS, COX-2, sRAGE, HMGB-1,
prostaglandins

COX-2, iNOS, PGI2, TXA2 56,60,62,67,73,76,78,
82,86,88,97,111,114,
125,126

Cytokines/
chemokines

IL-1, IL-2, IL-8, IL-6, IL-12, IL-10, TNFα,
IFNγ, KC/GRO (CXCL1), CCR2, CCR5, CCL2,
CCL3, CCL5, CCL11, CX3CR1, fractalkine

IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12,
IL-13, KC/GRO (CXCL1), TNFα, CCL2,
CCL3, CXCL13, CCR1, CXCR2

6,61,62,67,78,79,81,
82,84,104,109,110,
114,126

Cell injury/
DNA damage/
apoptosis/ autophagy

Caspase-3, 6, 8, 9,
Fas L, Fas R, PARP-1, LC3BI, LC3BII,
γH2A.X, fibrinogen, fibrin

Caspase-3, PARP-1, p53, γH2A.X 67,76,77,104,113,114,
126,127

Cell proliferation PCNA, cyclin D1, Cyclin D1 59,67,78,87,88,104,128

Tissue remodeling MMP-9, MMP-10, TGFβ, MR, Gal-3, Arg, CTGF,
α-SMA

TGFβ, PDGF, CTGF, FGF, Arg1,
TIMP-1

67,76,79,81,84,97,104,
109,110,125,126

Arg, arginase; CCL, C-C chemokine ligand; CCR, C-C chemokine receptor; COX, cyclooxygenase; CTGF, connective tissue growth factor; CXCL, C-X-C chemokine ligand; CXCR, C-X-C chemokine
receptor; Fas L, Fas ligand; Fas R, Fas receptor; FGF, fibroblast growth factor; γH2A.X, histone variant H2A.X; HMGB, highmobility group box; HO, heme oxygenase; H2O2, hydrogen peroxide; IFN,
interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; KC/GRO, keratinocyte chemoattractant/human growth-regulated oncogenes; LC3B, light chain 3B; MMP, matrix
metalloproteinase; MR, mannose receptor; Gal, galactin; NO, nitric oxide; PARP, poly (ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen; PDGF, platelet-derived growth factor;
PGI2, prostacyclin; SMA, smooth muscle actin; SOD, superoxide dismutase; sRAGE, soluble receptor for advanced glycation end product; TGF, tumor growth factor; TIMP, tissue inhibitors of
metalloproteinases; TNF, tumor necrosis factor; TXA, thromboxane A.
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nitrites also increase in BAL and urine.84,85 Additionally,
antioxidants such as heme oxygenase (HO)-1, lipocalin-2, Ym-1,
and Mn-SOD are upregulated, a response that persists for at least
28 days post-SM or NM exposure.66,67,86 A marker of DNA
damage, γH2A.X, and PCNA are also detectable in the lungs.67,87,88

Whereas γH2A.X increases 1–3 days after mustard exposure,
PCNA is increased 3–28 days in bronchiolar epithelium, alveolar
epithelial cells, interstitial cells, and in focal areas exhibiting
honeycombing and/or fibrosis.

Inflammatory genes/proteins, including IL-1, IL-2, IL-6, TNFα,
KC/GRO, CCR2, CCR5, CCL2, CCL3, CCL5, CCL11, CX3CR1,
CX3CL1, high mobility group box (HMGB)1, and MMP-9, are
evident in the lungs and/or BAL fluid from mustard-treated
rodents within 1–3 days post-exposure.67,79,81,84 Proinflammatory
macrophages expressing TNFα (Figure 2), iNOS, MMP-9,
HMGB1, or COX-2 are also present at this time.67,82,89 Whereas
NM-induced increases in expression of inflammatory markers are
maximum at 3 days post-exposure, persisting at lower levels up to
28 days, the response to SM is biphasic.67,88 Thus, SM exposure
causes an early increase in inflammatory markers at 1–3 days,
which is followed by a decrease at 7–16 days, and then a generally
more robust increase at 28 days. Antiinflammatory/profibrotic
genes (IL-10, pentraxin-2, connective tissue growth factor [CTGF],
ApoE) have also been identified in the lungs; however, the timing
of their appearance varies with the gene.79 Antiinflammatory
macrophages characterized by expression of CD206 (mannose
receptor), CD68, CD163, galectin-3, and arginase-II are also
present in histologic lung sections most prominently at later time
points.67,78,79 This is correlated with the upregulation of α-smooth

muscle actin, TGFβ, platelet-derived growth factor (PDGF), PDGF
receptor-α, and CTGF.68,78,81

Loss of TNFR1 Mitigates Half-Mustard-Induced Lung Injury

As indicated above, TNFR1 is the major receptor mediating the
proinflammatory actions of TNFα. In initial studies, to assess
the potential role of TNFα in mustard-induced lung injury, mice
lacking TNFR1 were used.56 In these studies, CEES was used as
an experimental model vesicant. TNFR1−/− mice exhibited an
attenuated response to CEES-induced lung injury, oxidative stress,
and inflammation; thus, expression of oxidative stress markers and
inflammatory proteins was reduced or delayed. Loss of TNFR1 also
blunted aberrant functional responses to CEES. These findings
provided initial evidence for a role of TNFα in mustard lung
toxicity.56

Pharmacologic Inhibition of TNFα Mitigates Mustard-Induced
Lung Injury, Inflammation, and Fibrosis

In further studies, the effects of pharmacologic inhibition of TNFα
on mustard toxicity were assessed. Pentoxifylline (PTX) is a
nonspecific phosphodiesterase inhibitor with anti-inflammatory
activity, due largely to its ability to block TNFα synthesis.90–92

PTX has been reported to blunt TNFα production by alveolar
macrophages from patients with sarcoidosis.93 PTX is also
clinically efficacious in a number of inflammatory pathologies
characterized by excessive TNFα production, including alcoholic
liver disease and rheumatoid arthritis.94–96 Treatment of rats with
PTX (46.7 mg/kg, ip) daily for 3 days was found to reduce acute

CTL

3 d
Post SM

7 d
Post SM

28 d
Post SM

16 d
Post SM

Figure 2. Effects of sulfur mustard on TNFα expression in the lung. Rats were exposed by intratracheal inhalation to air (CTL) or sulfur mustard (SM, 0.4 mg/kg) as previously
described.67 Lung sections were prepared 3, 7, 16, and 28 days later and immunostained with anti-TNFα antibody. Binding was visualized using a Vectastain kit. Original
magnification, 600X. Representative images from 8–9 rats/group are shown.
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lung injury and inflammation induced by NM.97 Thus, granulocyte
infiltration into the lung is blunted, along with edema, fibrin
deposition, and fibroplasia; BAL protein and cell numbers are also
significantly reduced. PTX also reduces NM-induced oxidative
stress and numbers of proinflammatory macrophages in the lung,
while increasing numbers of antiinflammatory macrophages. This
correlates with persistent upregulation of markers of wound repair,
including pro-SP-C and PCNA. These data support the idea
that targeting TNFα using more specific inhibitors represents a
potentially efficacious approach for treating mustard lung toxicity.

Biologics against TNFα are widely used clinically to treat
immunoinflammatory diseases, including rheumatoid arthritis,
psoriasis, and Crohn’s disease, with minimal toxicity.98,99 TNFα
blocking agents have also proven beneficial in patients with the
lung diseases such as severe asthma, COPD, and sarcoidosis.19,100

Based on these findings, anti-TNF antibody has been evaluated as a
countermeasure against mustard lung toxicity. Treatment of rats
with anti-TNFα antibody (15 mg/kg, IV, every 8 days) blunts
mustard-induced structural alterations in the lung at all post-
exposure times (3–28 days) examined.78,86 Thus, parenchymal
lesions are reduced in size and intensity, and deposits of plasma
proteins decreased; occlusion of the bronchiolar lumen by fibrillar
membrane, ulceration of bronchial epithelium, acute inflamma-
tion, edema, bronchoalveolar, and goblet cell hyperplasia and
hypertrophy, bronchiectasis, interstitial thickening, macrophage
accumulation, squamous cell metaplasia, mesothelial cell prolif-
eration, and emphysema are attenuated.78,86 Anti-TNFα antibody
also reduces NM-induced collagen deposition, peribronchial and
parenchymal fibrosis, and numbers of fibrotic lesions in the lung.78

Further studies demonstrated that anti-TNFα reduces mustard-
induced alveolar-epithelial barrier dysfunction, oxidative
stress, and increases in inflammatory proteins and profibrotic
cytokines in the lung, along with the numbers of proinflammatory
macrophages, while antiinflammatory macrophages important in
wound healing are increased or unaffected.78,86 Small live animal
imaging techniques, including magnetic resonance imaging (MRI)
and computed tomography (CT) imaging, confirmed the efficacy
of anti-TNFα antibody in blunting NM-induced lung injury and
fibrosis.101 Thus, anti-TNFα antibody treatment of rats was found
to reduce the percentage of injured lung within 1 day of NM
exposure and subsequent development of fibrosis. Together, these
data demonstrate that inhibiting TNFα represents an efficacious
approach to mitigating acute lung injury, inflammatory macro-
phage activation, oxidative stress, and lung remodeling induced by
mustard vesicants.

Role of TNFα in Radiation-Induced Lung Injury

Radiation exposure causes acute lung injury, which progresses to
pneumonitis within weeks to months and fibrosis within months
to years.102 Early injury is characterized by damage to the alveolar
wall, interstitial edema, and an accumulation of proteins and
inflammatory cells in the lung lining fluid; this is followed by
thickening of alveolar walls, solid lesions with collagen deposits,
and bronchiectasis as the pathology develops. Mechanistically,
radiation-induced lung injury involves DNA damage and the
generation of cytotoxic reactive oxygen and nitrogen species.103,104

This is associated with loss of epithelial and endothelial barrier
function, an accumulation of inflammatory cells in the lung that
produce mediators such as IL-1, IL-6, IL-13, IL-17, TNFα, and
TGFβ that can further damage the tissue and/or contribute to
tissue remodeling and fibrogenesis.102,105–110 Radiation also affects

pulmonary endothelial cell function as measured by decreases in the
activity of angiotensin converting enzyme (ACE) and plasminogen
activator (PLA).111 This is accompanied by increases in lung wet
weight, protein and hydroxyproline content, and eicosanoids.

Radiation-induced lung injury is characterized by increases in
TNFα and TNFR1.112–114 This is observed early (1–3 hours) after
exposure to a single dose of radiation6,113 and aligned with
increases in numbers of TUNEL-positive epithelial cells and
upregulation of cleaved capase-3, markers of apoptosis. Radiation-
induced increases in TNFα persist in the lung up to 24 hours post-
exposure; subsequently, TNF levels return to baseline. This is
followed by secondary, more exaggerated increases 2–24 weeks
post-exposure coinciding with radiation-induced histopatholog-
ical changes in the lung, including diffuse alveolitis, inflammatory
cell accumulation, thickening of alveolar walls, depletion of
type II epithelial cells, fibroblast proliferation, and interstitial and
alveolar deposition of extracellular matrix.6,106,108,114–118 Fractionated
radiation exposure (single high dose divided into low dose radiation
over several days) is also associated with increases in TNF levels at
early times but at reduced levels when compared to a single high dose.
Cumulative TNFα levels after fractionated radiation, however, are
greater and more persistent.113 Of note, early increases in TNFα
precede radiation-induced increases in IL-1α and IL-6, suggesting
that TNFα plays a role in the initiation of the inflammatory cytokine
cascade.6

Blocking TNFα Mitigates Radiation-Induced Lung Injury,
Pneumonitis, and Fibrosis

Treatment of mice with a TNFR1-specific antisense oligonucleo-
tide (ASO) has been reported to reduce radiation-induced
increases in TUNEL-positive cells and expression of cleaved
caspase-3.113 This correlates with a reduction in collagen
deposition and restoration of pulmonary function 8 weeks post-
exposure. Mice lacking TNFR1 are also resistant to radiation-
induced alterations in lung function.113 Similarly, gene therapy
using a plasmid vector encodingmouse soluble TNFR1 (psTNFR1)
reduces radiation-induced lung fibrosis and mortality.112 In
response to radiation, mice bearing mutations in the TNFα
signaling pathway also exhibit an attenuated breathing rate.116

Pharmacologic inhibition of TNFα has also been found to
mitigate radiation-induced lung injury and inflammation. For
example, Rube et al. (2002)119 reported that PTX downregulates
radiation-induced increases in lung TNFα. PTX treatment has also
been reported to delay radiation-induced apoptosis in the lung.118

Relatively greater numbers of SP-D expressing cells, which are
important in suppressing pulmonary inflammatory responses,
have been noted 1–5 weeks after radiation exposure in mice
returning to control levels after 8–12 weeks.118 PTX treatment
significantly enhances numbers of SP-D expressing cells at all time
points examined after radiation exposure. This is associated with
a delayed accumulation of neutrophils in the lung and a reduction
in radiation-induced alveolar septal thickness up to 12 weeks after
exposure.118,120 PTX treatment also reduces radiation-induced
increases in lung wet weight and protein content and improves
lung perfusion, which enhances tissue oxygenation and wound
healing.111,121,122 Taken together, these findings show that TNF
plays a role in radiation-induced lung injury; moreover,
inhibition of TNFα or TNFR1 can mitigate the deleterious
effects of radiation. Further investigations on the efficacy of
biologics against TNFαmay lead to new treatments for radiation-
induced lung pathology.
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Conclusions

TNFα is a key mediator of local damage and inflammation in the
lung. Both mustard vesicant- and radiation-induced lung injury
are associated with increases in TNFα. A wide range of responses,
including apoptosis, mitosis, chemotaxis, angiogenesis, extracel-
lular matrix production, and release of cytokines and chemokines,
are triggered when TNFα binds to its receptor on target cells.
Given that tissues and cells are exposed to complex mixtures of
inflammatory mediators, it is likely that blocking TNFα
immediately after the injury may be beneficial. As increases in
TNFα have been linked to both acute and chronic manifestations of
toxic injury,multiple sequential doses of biologics against TNFαmay
be required to keep inflammation in check. Anti-TNFα biological
therapies have been used to treat immuno-inflammatory diseases of
the skin, joints, and gut. These treatments have also been effective to
varying degrees in patients with chronic lung diseases.19,100,123,124

Further research and clinical investigation with anti-TNFα therapy
in acute and chronic pulmonary toxicity induced by mustard
vesicants and radiation may prove useful for the development of
successful treatment strategies using TNF targeting agents.
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