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A BOUNDEDNESS CONDITION FOR SETS
WITH LATTICE POINT CONSTRAINTS

P.R. ScotT

Let K Dbe a closed convex body in 7 containing a finite
number of points of lattice A in its interior. We show that X

is bounded if K contains a certain suitably large simplex.

In his recent thesis, Arkinstall [71] has directed attention to convex
bodies containing a finite number of interior lattice points. We give here

a boundedness condition for such bodies.

Let A Ye a lattice in the n-dimensional space Hn having linearly
independent generating vectors vl, V2, e Vn from the origin O . Let
K be a closed convex body in Rn containing a finite number of points of
A in its interior. It is easy to see that X may be chosen to extend

beyond any preassigned bounds, even in R2 (Figure 1).
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Denote by An the simplex in R given by the convex hull of

v .y vn , and let kAn represent any translate of the simplex

1° V2,
obtained from An by enlargement about O with scale factor k (> 0)
LEMMA. If k > n , then kb~ contains a point of A in its
interior.
Proof. Since the statement of the lemma is invariant under affine
transformation, we may take A to be the integer lattice, and
Vl, V2, . Vn the unit vectors el, e2, eey en respectively. 1In the

same way, we may now assume that a face of kAn lies in'the hyperplane

x, = § (-1 =68 <0)

.

We give a proof by induction on the dimension n . The result is
trivially true for n =1 . Let us assume it to be true for »n - 1 , and

consider kAn with k > n ., By simple proportion, the hyperplane xn =0

now cuts kAn in an (n-1)-dimensional simplex qAn— , Where

1
q >k (k-1)/k =k -1>n-1.
Hence this section of kAn contains a point of A in its relative
interior; this point is interior to kAn . This completes the proof by
induction.
We now come to our main result.
THEOREM. Let K be a closed convex body in R containing a finite

number of points of lattice M in its interior. If K contains a simplex
qd, with q >n -1, then K is bounded.

Proof. As before, we take A to be the integer lattice generated by
the unit vectors, and we assume that a face of qAn lies in each of the

hyperplanes “ﬁ = 6j (—l = Gj <0,1l=gc= n]

Since K contains a finite number of lattice points in its interior,

for each integer J , 1 = j =n , there exists an integer Bj > 0 such

that these lattice points lie in the strip lle < Bj . We assert now that
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for each J , 1= j =n , the body K 1itself lies in the strip
qB .+(n-1)

(1) ]xj| e ) Rl B; say.

There are three cases to consider.

CASE 1. The bound xj < B; . Suppose X* is a point of K lying

in the region xj > B; . By convexity, K contains the simplex S which.

is the convex hull of X* and the face of qAn lying in the hyperplane

.= -8, <8, =
z; GJ (o GJ 1)

Using simple proportion we see that the hyperplane xj = Bj cuts the

simplex S in an (n-1)-dimensional section gq’'A , where

n-1

v

q' > q(B3-B;)/ (B4 )

q(B ;_BJ.) /(B 3+1)

v

n-1,

substituting for B; from (1).

Now by the lemms, q'An_l contains a lattice point in its relative
interior. This lattice point is interior to S and so to K . But this
contradicts our choice of Bj . Hence K 1lies in the halfspace xj < B; .

CASE 2. The bound av > -B} , but with either Gj <1 or Bj > 1
[These alternative conditions on Gj and Bj ensure that the hyperplane

xj = -Bj does not intersect the simplex qAn .]

Suppose X* is a point of K 1lying in the half space xj < -B; , and
construct S as in Case 1. Now the hyperplane xj = —Bj intersects S
in an (n-1)-dimensional simplex q'An_l , where

q' > q(B;—BJ.)/(B;-GJ.]
> q(B;—BJ.) / (B;+l)
=n-1,

and the proof follows as for Case 1.
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CASE 3. The bound xj > -B; ,and 6 =1 = Bj . We show here that

in fact X 1lies in the halfspace mj > -Bj fz —B;] .

Since § =1 , the hyperplane xj = -1 meets qAn in a simplex
qAn_l , where q >n > n-1 ., By the lemma, qAn-l contains a lattice
point b in its relative interior. Since Bj =1, b is not interior to

K ;3 hence b is a boundary point of K . Since K is convex, there

exists a support hyperplane H to K (and so to qAn ] at b. It
follows that H must be the hyperplane mﬁ = —Bj . Thus K lies in the
halfspace s > -Bj Ed —B; as required.

This completes the proof of the theorem.

We define a lattice simplex to be a simplex which has every vertex at
a lattice point. We then have the somewhat weak but interesting condition

for the boundedness of K .

COROLLARY. If K contains a lattice simplex nb, then K is
bownded.

Finally, we observe that the two-sided bound B; given by (1) cannot

be improved. For take K +to be the triangle in the plane with vertices
(-1, 1), (-1, -1) and (3, -1) . Now K contains the origin as its

single interior lattice point, and X contains the triangle 2A2 . Hence

n=2, qg=2, Bl = 1 , and the bound Bf = 3 , obtained from the

formula (1) is actually attained by X .
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