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NEIGHBOURHOOD LATTICES - A POSET
APPROACH TO TOPOLOGICAL SPACES

FRANK P. PROKOP

In this paper neighbourhood lattices are developed as a generalisation of topological spaces
in order to examine to what extent the concepts of "openness", "closedness", and "conti-
nuity" defined in topological spaces depend on the lattice structure of V(X), the power
set of X .

A general pre-neighbourhood system, which satisfies the poset analogues of the neigh-
bourhood system of points in a topological space, is defined on an A-semi-lattice, and is
used to define open elements. Neighbourhood systems, which satisfy the poset analogues
of the neighbourhood system of sets in a topological space, are introduced and it is shown
that it is the conditionally complete atomistic structure of "P(X) which determines the
extension of pre-neighbourhoods of points to the neighbourhoods of sets.

The duals of pre-neighbourhood systems are used to generate closed elements in
an arbitrary lattice, independently of closure operators or complementation. These dual
systems then form the backdrop for a brief discussion of the relationship between pre-
neighbourhood systems, topological closure operators, algebraic closure operators, and
Cech closure operators.

Continuity is defined for functions between neighbourhood lattices, and it is proved
that a function f: X —* Y between topological spaces is continuous if and only if cor-
responding direct image function between the neighbourhood lattices V(X) and V(Y)
is continuous in the neighbourhood sense. Further, it is shown that the algebraic char-
acter of continuity, that is, the non-convergence aspects, depends only on the properites
of pre-neighbourhood systems. This observation leads to a discussion of the continuity
properties of residuated mappings. Finally, the topological properties of normality and
regularity are characterised in terms of the continuity properties of the closure operator
on a topological space.

1. INTRODUCTION

A topology on a set X can be defined in terms of any of four equivalent primitive
concepts, namely: openness (interior operators), closedness (closure operators), conver-
gence (either nets or filters), and neighbourhoods (neighbourhood filters). However, the
study of topology only begins with the algebraic structure which is introduced on the
power set of X by, say, closure operators. The importance of the topological structure
lies in its appropriateness for defining continuous functions between topological spaces
as a generalisation of "intuitive" continuity. Further, each of the four primitive concepts
listed above leads to a significant insight into the nature of continuous functions.
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32 F.P. Prokop [2]

From a lattice theoretic view-point, a topological space could be considered in the
following way: Let (X, T) be a topological space and consider V(X) the power set of
X. The topology T selects a union complete sublattice of "open" elements from the
complete, atomistic, completely distributive Boolean lattice V{X). In addition, the
continuous functions between topological spaces are those functions whose associated
lattice function, the inverse image function, preserves openness.

This paper is concerned with developing a generalisation of a topological space,
called a neighbourhood lattice. This topology-like structure, which depends directly on
the internal order structure of the poset itself and on poset filters, is used to charac-
terise open and closed elements in terms of neighbourhoods or dual neighbourhoods and
to introduce a "natural" generalisation of continuity between neighbourhood lattices.
We will show that the theory of neighbourhood lattices includes "reasonable" gener-
alisations of the topological concepts of "openness", "closedness", "neighbourhood",
and "continuity". "Reasonable" in this context means that when the lattice is V(X)
for some topological space (X, T), the "new" definitions and theorems agree with the
standard topological results.

The observation that a topology was a union complete sublattice of a Boolean
lattice motivated the search for a connection between lattices and topological spaces.
One starting point in these endeavours, as discussed in the survey article by Johnstone
[9], was the consideration of a completely distributive lattice which was the analogue
of the lattice of open subsets of a topological space. The objects of study then became
the category of frames (or locales) and the associated functors.

By contrast, this paper utilises the order structure of the poset itself and poset
filters as a starting point in generalising a topological space. This approach is based
on the observation that if X is a poset, V{X) does not reflect in any way the order
relation on X, that is, the lattice structure of V(X) is cardinality dependent and not
order dependent. For example, if all topologies on the chain R were known, then all
topologies on any set X of cardinality c would be known.

2. PRE-NEIGHBOURHOOD MAPPINGS

We will show in this section that if L is an arbitrary lattice, we can define pre-
neighbourhood systems for elements of L and these pre-neighbourhood systems give
rise to a topology-like structure on L .

We begin with the observation that if (X, T) is a topological space, then T de-
termines for each x £ X a neighbourhood system of the point x with respest to T,
denoted by T?(:C), and given by rj(x) = {y: y £ V(X) and (3g € T)(x 6 5 C y)} . Fur-
ther, T](X) is a filter in V(X). Conversely, it can be shown that if for each x £ X,
there is an associated filter in V(X) , denoted r](x), which satisfies conditions 1-3
listed below, then there is exactly one topology T on X, given by A G T if and only if
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(Vx £ A)(A £ TJ(X)) > such that 77(2) is the neighbourhood system of X . The conditions
are:

(1) TV £ •q(x) and N C M => M £ J7(x),

(2) JV € ?7(x) and M £ T?(X) ^ i V n M e t](x), and
(3) JV £ 77(x) =4- (36> C JV)(x € 0 £ t7(aj) and (Vy £ 0)(0 £ V{y))).

Hence, a topology on a set X is uniquely determined when the neighbourhoods of each
of its points are known. It should be noted that the "standard" topological proof of this
theorem makes use of the completeness and atomiticity of V{X), and the fact that in
'P(X), the neighbourhoods of a set are determined by the neighbourhoods of its points.
We will clarify the roles that the completeness and atomiticity of V(X) play in defining
topological neighbourhoods in Section 3.

We will make use of the following notation and conventions:
If L is an orthocomplemented lattice, then ' will be used to denote complementation;
I will be used to denote an arbitrary indexing set; if P is a poset, V and A will
represent the operations of sup and inf; while U and ft will be used to denote the
set theoretic operations of union and intersection, V xa will be used to represent

V{x a : a £ I} , with similar abbreviations used for / \ xa , | J Aa , and f] Aa\ 1

will represent the greatest element of P and 0 will represent the least element of
P; T{P) = {F: F is a filter of P} ; X(P) = {I: I is an ideal of P} ; if x £ P , then
[x) = {y: y £ P and y > x} and (x\ = {y: y € P and y < x } .

DEFINITION 1: Let P be an A-semi-lattice. A function 77: P -» T(P) is called a
fi/ter mapping. If 77 is a filter mapping on P, then g £ P is said to be neighbourhood
open (rj-open or simply open) if ii(g) = [g). Further, if rj is a filter mapping on P,
we will let G — {g: g € P and 77(5) = [<?)}. Finally, a filter mapping 77 is said to be a
pre-neighbourhood mapping if (Vx, i £ P)(t £ 77(x) 4=> (3g £ G)(x ^ g ^ £)).

If 77 is a pre-neighbourhood mapping, then T7(x) satisfies the poset analogues of

conditions 1-3 for a topological neighbourhood system.

The proofs of those Lemmas which are straightforward computations and which
follow directly from the corresponding definitions will be omitted.

LEMMA 2. HP is an /\-semi-lattice and 77 is a pre-neighbourhood mapping on P

then

i) 77 is antitone, that is, x ^ y => v(y) £ 7l{x) 1
ii) (Vx£P)(T7(x)C(x]),anc/

iii) l € P = > t , ( l ) = [l).

Further, wiienever all terms exist in P, we have
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iv) 77/ V xa ) C f| rj(xa),

v) (1 [*«) = f V *«) - "i
a€l La€l /

vi) | J 77(a;or) C 771 / \ a:,,, ) .
aSI Vagi /

A subset of a topological space (X, T) is open if and only if it is a neighbourhood
(that is, a member of the neighbourhood system) of each of its elements. The following
theorem is the pre-neighbourhood version of this result.

THEOREM 3. Let P be an A-semi-lattice and TJ be a pre-neighbourhood mapping

on P. g£G <3> (Vz e P)(x < g => g G »?(«)).

PROOF: g E G and a; ^ 5 => [5) = 77(5) C T](x). Thus, ^ 6 ^ (z ) . To prove the
converse, simply let x — g. |

Theorem 4 will show how subsets of an A-semi-lattice determine pre-neighbourhood

mappings.

THEOREM 4. Let P be an A-semi-lattice and G C P. If

i) {Vx e P)(3g e G){g > x), and

ii) G is an A-semi-lattice of P,

then there is exactly one pre-neighbourhood mapping rj: P —> J-(P) such -that G is

the set of open elements of TJ . Conversely, if rj: P —> F{P) is a pre-neighbourhood

mapping, then G satisfies (i) and (ii).

PROOF: Suppose G satisfies (i) and (ii). Define, Vx £ P, r/(x) = {t: (3g € G)

(x < g ^ t)} • It is a routine verification to show that 77 is a pre-neighbourhood map-

ping. Further, 77 is unique by Definition 1. Conversely, suppose 77: P —> J-{P) is a

pre-neighbourhood mapping. 77(3;) ^ 0 implies G satisfies (i). gi, gi 6 G and a; ^

9i A g2 =*• g\, gi, g\ A g2 € 77(3;). Thus, 51 A g2 is open by Theorem 3, and G satisfies

(H)- A

COROLLARY 4 . 1 . If P is an A-semi-lattice with 1, G C P, and ( i j ' l e G , then

in Theorem 4 we have (i) O (i)'.

If P is an A-semi-lattice, then G = P generates a discrete pre-neighbourhood
mapping on P, and, further, if 0 and 1 £ P, then G = {0, 1} determines a trivial

pre-neighbourhood mapping on P. Finally, if (X, T) is a topological space, then
G = {A: A G V(X) and A' G T} determines a pre-neighbourhood mapping on V(X)

but G is not closed under the formation of arbitrary suprema.
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3. NEIGHBOURHOOD MAPPINGS AND NEIGHBOURHOOD LATTICES

We will now show that if L is any lattice, which need be neither complete nor

atomic, we can introduce a neighbourhood system on L which agrees with topological

neighbourhoods when the lattice is V(X) for a topological space (X, T).

We will find the following definitions useful.

DEFINITION 5: Let L be a lattice and I j C i . L\ is a V-semi-complete suWattice

of L if (VA C I j ) ( Y o exists in L\ •& V a exists in L and they are equal).

Similarly, we have an A-semi-complete sublattice of L.

DEFINITION 6: Let L be a lattice. A pre-neighbourhood mapping 77: L —> F{L)

is a neighbourhood mapping if i) G is a V-semi-complete sublattice of L, and ii)
0 € L =>• ri{%) = [0). Further, if T/ is a pre-neighbourhood mapping on L, then the pair
(L, 77) will be called a pre-neighbourhood lattice. Similarly if 77 is a neighbourhood
mapping defined on L, then the pair (L, 77) will be called a neighbourhood lattice.

We will now show how a neighbourhood mapping can be characterised by the

propoerties of its set of open elements.

THEOREM 7. Let L be a lattice and G e V(L). If

ii) G is a V-semi-complete sublattice of L, and

iii) 0 € L => 0 e G,

then G is the set of open elements of L if we define a neighbourhood mapping TJ: L —•
T{L) by f](x) = {t: (3g 6 G)(x ^ g ^ <)}. Conversely, if {L, 77) is a neighbourhood
lattice, then G satisfied (i), (ii), and (iii).

PROOF: Immediate from Theorem 4. R

COROLLARY 7.1. If L is a iattice with 1, G e T^L), and i f ( i ) ' 1 € G, then in
TJieorem 7 we have (ij <£> (i)\

It is clear from Definition 6 and Theorem 7 that if (X, T) is a topological space,
then TJ: V{X) -» T{V(X)) defined by 77(4) = {N: {3g € T)(A C g C iV)} is a neigh-
bourhood mapping on ^ ( X ) . This neighbourhood mapping 17 is called the induced
neighbourhood mapping on V(X) and the pair (V(X), 77) is the induced neighbour-
hood iattice of (X, T). Further, it follows from Theorem 7, that if X is a set, and
(V(X), rj) is a neighbourhood lattice, then G = {g: g £ V(X) and rj(g) = [g)} is a
topology on X , and (V(X), 77) is the induced neighbourhood lattice of (X, G).

It should also be noted that not only are the T7-open elements of the induced
neighbourhood lattice (V(X), 77) identical with the open elements of (X, T) but also
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that the neighbourhood system of {x} in V(X) is identical with the neighbourhood

system of x in (X, T). Thus, we will identify ri{x) and T]({X})-

We will now examine the properties of neighbourhood mappings on conditionally

complete lattices.

THEOREM 8. Let (L, i]) be a conditionaJly complete pre-neighbourhood lattice.

(L, 77) is a neighbourhood lattice O 771 V xa I = |~| T](xa), whenever V xa exists in

L.

PROOF: Let (L, 77) be a neighbourhood lattice. By Lemma 2(iv), 771 V xa ) C
W i /

D vixa)- 111 particular, this shows that f] T](xa) ̂  0. Now, y G f] T](xa) => VQ 6 I,

2/ € '/(^a) =*• ̂ a € I, 3ga G G, such that .Ta < ga ^ y and Vff« is open. Hence,

y G 77I V x a ) • Conversely, suppose rjl V »a ) = D # a ) . Va G I, ga G <? =>
Vagi / Va6l / ael

V I/a) = PI '?(<?«) = PI [ffa) = [ V 9c) • If 0 e L, let I = 0. N

Abbott [1] denned a neighbourhood mapping as, essentially, a pre-neighbourhood
mapping satisfying the condition given in Theorem 8.

Theorem 9 will show that in order for a conditionally complete atomistic pre-
neighbourhood lattice to be a neighbourhood lattice, we must be able to "extend" the
pre-neighbourhood system from the atoms to any element of the lattice. It is this
"extension" process which fails for the pre-neighbourhood mapping on a topological
space (X, T) determined by G = {A: A G V(X) and A' E T}.

THEOREM 9. Let (L, 77) be a conditionally complete, atomistic pre-neighbourhood
lattice. (L, 77) is a neighbourhood lattice <£> (i) 7/(0) = [0) and (ii) for each collection

{pa : (VQ G l)(pcr is an atom)}, we have 77 ( V pa 1 = f) rj(Pa), whenever V Pa exists
Vagi / aGI agl

in L.

PROOF: Theorem 8 establishes the proof in one direction. To prove the converse.

V/? G I, 90 G G and V 90 € L =» 9l3 = V Vl3a =» V 9p = V f V Pp* ) • Thus,

fv |VwV
V»ei / be ' /

Thus, we have shown that the V-semi-completeness of the open elements in the

induced neighbourhood lattice of a topological space simply assures us that for each

A G V(X), v(A) = v(\J {a}) = f] v(a). «
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We will now include without proof Theorem 10, which states that if £ is a con-
ditionally complete lattice, then a neighbourhood mapping 77 on £ determines, in the
usual way, an interior operator on L, and the "open" elements agree.

THEOREM 10. Let (L, 77) be a conditionally' complete neighbourhood lattice. If

we define ° : L —> L by a° = V{<7: 9 G G and g < a } , t i en

i) (VaeL)(a°<a) ,
ii) a G G <£• a = a° ,

iii) (a°)°=a°,
iv) a < b =>• a° ^ b° ,

v) (a A 6)° = a° A 6° ,

vi) a° V 6° < (a V 6)° , and

vii) ° : L —> L is a dual closure mapping.

4. PRE-DUAL NEIGHBOURHOOD MAPPINGS, DUAL NEIGHBOURHOOD MAPPINGS,

AND DUAL NEIGHBOURHOOD LATTICES

In Section 2, filters and pre-neighbourhood mappings were used to define open
elements in an arbitrary lattice. By dualising these definitions, we will derive a parallel
theory of "closed" elements in a lattice based on ideals and pre-dual neighbourhood
mappings. This dual theory indicates that there is a "natural" lattice theoretic duality
between the definitions of open and closed, which is not dependent on complementation.
However, we will prove that if L is an orthocomplemented lattice, then an element is
closed in the dual theory if and only if it is the complement of an open element.

DEFINITION 11: Let P be a V-semi-lattice. A function 7: P —> I(P) is called
an ideal mapping, h E P is said to be f-closed (or simply closed) if j(h) = (h]. We
will let H = {h: h £ P and 'f(h) = (h}}. In addition, an ideal mapping y is said to
be a pre-duai neighbourhood mapping (or more simply a pre-dual mapping) on P if
(Vo, t £ P){t £ 7(0) & (3/i 6 H)(t < fe < o)).

We will simply note that for pre-dual V-semi-lattices the duals of Lemma 2, The-
orem 3, Theorem 4 and Corollary 4.1 are valid.

DEFINITION 12: Let L be a lattice. A pre-dual mapping 7: L —> I(L) is a
•duai neighbourhood mapping if (i) H is an A-semi-complete sublattice of L and (ii)
1 6 L => 7(1) = (1]. Further, the pair (L, 7) will be called a duai neighbourhood
lattice.

The duals of Theorem 7 and Corollary 7.1 give alternate characterisations of dual
neighbourhood lattices.

THEOREM 13. Let (L,1) be an ortholattice. If (Lt 77) is a neighbourhood lattice
and G = {g: g isij-open} , then 7: L —* I(L) given by j(x) = {t: (3g £ G)(t ^ g' < x)}
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is a dual neighbourhood mapping on L and x is open •& x' is closed. Conversely, if

(L, 7) is a dual neighbourhood lattice and H = {h: h is y-closed}, then 77: L —» T(L)

given by 77(2:) = {<: (3/i £ H){x ^ h' ^ <)} is a neighbourhood mapping on L and x

is open O a;' is closed.

PROOF: If {L, 77) is a neighbourhood lattice and G — {g: g isT/-open}, then G

satisfies (i)', (ii), and (iii) of Corollary 7.1. If we let H = {g': g € G}, then (via De
Morgan's Laws) H satisfies (i)', (ii) and (iii) of the dual of Corollary 7.1. Thus 7 is
a dual neighbourhood mapping on L. Now, x is open <£• x £ G <=> x' £ H •& x' is
7-closed. The proof of the converse is the dual of this proof. R

In particular, for the orthocomplemented lattice (V(X),' ) associated with a topo-
logical space (X, T), the dual mapping 7 defined in Theorem 13, is called the induced

dual neighbourhood mapping on V(X), and the pair (V(X), 7) is called the induced

dual neighbourhood lattice. Further, it follows from Theorem 13, that if X is a set and
(V(X), 7) is a dual neighbourhood lattice, then H = {h: h € V{X) and 7(^1) = [h]}

is the set of closed elements determined by a topology T on X and (V(X), 7) is the
induced dual neighbourhood lattice of (X, T).

In the "usual" sense of Boolean duality, the ideals generated by the induced dual
neighbourhood mapping on V(X) are the duals of the filters generated by the induced
neighbourhood mapping on V{X).

The dual of Theorem 9 is valid for co-atomistic pre-dual lattices. In particular,
if (P(X), 7) is a dual neighbourhood lattice, then A £ *P{X) is closed if and only
if (Vx € A')(A € l({x}')) • This special case of the dual of Theorem 9 indicates that
the A-semi-complete condition on the closed elements in a topological space allows us
to "extend" the induced dual neighbourhood system from co-atoms to any element of
V(X).

A consideration of lattices with both a pre-neighbourhood mapping and a pre-dual
mapping suggests the following definition.

DEFINITION 14: Let (L, 77, 7) be a lattice with a pre-neighbourhood mapping 77,
a pre-dual mapping 7 , and respective sets G and H. x £ L is clopen if x £ G D H .

We note that if A is a sublattice of a lattice L such that for each x £ L, there
exists a i , 0,2 elements of A such that ai < x < 02, then A is the set of clopen
elements of L if we define H — G = A. In particular, Z, Q and Q' are sets of clopen
elements of the chain R.

5. CLOSURE MAPPINGS

In this section, we will discuss the relationship between dual neighbourhood lattices

and closure mappings. In particular, we will show that (algebraic) closure mappings on
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posets do not give the appropriate information about the "structure" and "location" of
the 'closed' elements to determine either pre-dual or dual neighbourhood mappings.

DEFINITION 15: Let P be a poset. A function ~: P —* P is said to be a

closure mapping on P if (i) (Vz, y £ P)(x < y => x~ ^ y~) (isotone), (ii) (Va; £ P)

(x~ •=. (x~)~ ) (idempotent), and (iii) (Vx £ P){x < x~) (extensive). Further, x £ P

is said to be closed with respect to ~ (or simply ~~ closed) if x = x~ .

We now note that if (L, 7) is a conditionally complete dual neighbourhood lattice
then H, the set of 7-closed elements of L, determines (in the usual way) a closure
mapping ~ : L —+ L given by a~ = A{/i: h £ H and a ^ h}. In addition, a is 7-closed
if and only if a is ~ closed, and (a V 6)~ = a~ V fe~ .

This agreement between the closed elements in a conditionally complete dual neigh-
bourhood lattice (L, 7) allows us to show in an unambiguous way that if L is also an
ortholattice, then the "usual" characterisation of the interior of an element is valid.

THEOREM 16. If (L, 77) is a conditionally complete, neighbourhood ortholattice,
then a" = a~ , where closure is taken in the induced dual neighbourhood lattice
(L,7).

PROOF: a° = \/{g: g £ G and g < a} = {/\{g': g' £ H and a' ^ g'})' =

((a ' ) -) ' - I

It is clear that a closure mapping on an A-semi-lattice P determines a pre-
neighbourhood mapping on P with G = {x: x = x~}. However, if we consider the
closure operator defined on L — ^(R2) by A~ is the convex hull of A, then ~ does not
determine a pre-dual mapping on L, even though L is a complete atomistic Boolean
lattice and points are closed.

Uech in [4] bases his development of topological spaces on "closure operators"
defined on V(X) which are extensive, preserve unions, and which map 0 to 0. We will
show that a "generalised" Cech closure mapping defined on a lattice with 0 determines
a dual neighbourhood mapping.

DEFINITION 17: Let P be a V-semi-lattice. A function c : P -* P is said to
be a Cech closure mapping on P if i) 0 £ P =*• 0C = 0, ii) (Vx £ P)(x ^ xc), and
iii) (Vz,y £ P){(x V y)c = xc V yc). Further, x £ P is said to be c-closed if xc = x.
Finally, a 6ech closure mapping will be called a proper (5ech ciosure mapping (or more
simply, a proper Cech mapping) if H = {h: h = hc} ^ 0.

If P has either 0 or 1, then every Oech closure mapping on P is a proper Cech
mapping. In particular, every Cech closure mapping on V{X) is a proper Cech map-
ping, and 0, X are c-closed. It should be noted that the set of elements of a lattice
L which are closed with respect to either a proper Cech mapping or a closure mapping
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is an A-semi-complete sub-lattice of L, and further, that the c-closed elements form a
V-semi-complete sublattice of L. Thus, we have

THEOREM 18. Let P be a V-semi-lattice, let c: P -> P be a Cech closure map-

ping, and let H = {h: h = hc}. If either (i) 0 £ P, or (ii) (V* £ P)(3h € H)(h < x),

then H determines a pre-dual mapping f on P. Further, (Va; £ P) (x is -y-closed <£> x

is c-closed). Finally, if P is a lattice and H satisfies (i) or (ii), then H determines a
duai neighbourhood mapping j on P.

COROLLARY 18.1. Let L be a conditionally complete lattice with 1. c : L —•> L
be a Cech closure mapping, H = {h: h — hc}, and let Ha — {y: y ^ a and y £ H}.

i) ~: L —> L given by a" — [\Ha is a closure mapping on L. In addition,

ac ^ a~ , and a~c = ac~ = a~ .

ii) H determines a dual neighbourhood mapping -y on L and a pre-

neighbourhood mapping r\ on L. Further, a £ L is -y-closed <=> a is

c-closed •& a is ~ closed <$ a is clopen in (L, TJ, 7) .

If we apply the construction process outlined in Corollary 18.1 to a Cech closure
mapping c : V{X) —> V{X), we will generate a topological closure mapping ~": T{X) —*

V(X), and the elements closed with respect to each of these mappings agree. Thus,
the conditional completeness of V(X) effects the link between closure operators, Cech
closure mappings, and dual neighbourhood mappings.

To indicate how Corollary 18.1 works in practice, let F = { / : / : R —> R}, and
define c : V{F) -> V(F) by Ac = {/: 3o sequence {/„} in A and / = l i m / n } . c is
a Cech closure mapping on V(F). By Theorem 18 and the completeness of V{F),

~: V(F) —* V(F) given by A~ — f]{y: V 2 A and yc = y} is a closure mapping on
V(F). Thus, ~ determines a topology T on F. Now, if A £ V(F) is closed in Tp,
the topology of pointwise convergence on F, then A is closed in T. Thus, T is finer
than Tp.

We will now show that Cech closure mappings on V-semi-lattices are determined
by V-homomorphisms that preserve 0. Such 0 preserving V-homomorphisms between
Boolean algebras, called hemimorphisms, were discussed by Jonsson and Tarski [10]
under the name of 'normal and additive functions'.

DEFINITION 19: Let Pi and P2 be V-semi-lattices. A function / : Px —> P2 is
called a hemimorphism if

i) (Vx,y £ Pi)(f(xVy) = f(x) V f(y)), and

ii) 0i £ Pi and 02£P2=> /(0i) = 02 •

Tukey [16] uses hemimorphisms, which he calls "closure operators", as the starting
point for defining topological spaces. Theorem 20 shows that on V{X), "Tukey clo-
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sures" generate Gech closures which in turn determine dual neighbourhood mappings

and topological spaces.

THEOREM 20. Let P be a V-semi-lattice. c: P -» P is Cech closure mapping &

there exists a hemimorphism f: P —> P such that ac — aV / (a ) . Further, a is c-closed

& /(a) < a.

PROOF: If c : P —»• P is Cech closure mapping, then define / : P —* P by f(a) =
ac . Conversely, if / : P —> P is a hemimorphism then c : P —* P given by ac = aV f(a)
is a Cech closure mapping. Finally, a is c-closed <£• ac = a = aV /(a) •££ /(a) ^ a. |

6. CONTINUITY

Let (X, 7\) and (Y, T2) be topological spaces, and let / : X —* Y be a function.
The point function / induces two lattice functions, /» : V(X) —> V(Y), the direct
image function, given by /*(A) = {/(a): a 6 A}, and /* : V(Y) —» 'P(X), the inverse
image function, given by f*(B) = {x : x £ X and f(x) £ B} . We will define continuous
functions on neighbourhood lattices in such a way that / : X —+ Y is a continuous point
function between topological spaces if and only if /» : V(X) —> V{Y) is a continuous
lattice function in the induced neighbourhood systems on V(X) and V(Y). We should
remark that the upper and lower star notation for these induced lattice functions, though
non-standard, was used by MacLane and Birkhoff in [12], and has many pedagogical
advantages over the usual notation. Further, we will write rif(x) for r](f(x)).

The first observation about "global" continuity is that points can be replaced by
sets and point functions by lattice functions. For example, if (X, T\) and (Y, T2) are
topological spaces / : X —* Y is defined to be continuous if and only if (VA € T?)

(f*(A)eT1).
In order to motivate the definition of neighbourhood continuity and at the same

time to indicate why a structure as general as a pre-neighbourhood lattice was intro-
duced in section 2, we will discuss the proof of Theorem 21 which is a standard result
from general topology concerning continuous functions, see [11].

THEOREM 21. Let (X, Ta) and (Y, T2) be topological spaces, (V(X),rn) and
(V(Y), 772) be the induced neighbourhood lattices, and f:X^>Y be a function. The
following statements are equivalent:

1) / : X —y Y is continuous;

2) / ' : V{Y) -> V(X) is an open function;

3) (VA 6 V(X))(\/B € mr{A)){3Z € m(A))(f.(Z) C B);

4) (VA e V{X))(VB € V2fM))(f*(B) € Vi(A));

5) {VBeV{Y))(f.(B°)Cf(B)°);

6) /* : V{Y) -» V(X) is a ciosed function;

https://doi.org/10.1017/S0004972700027969 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027969


42 F.P. Prokop [12]

7)

8)

An analysis of the proof of Theorem 21 shows that equivalences (1) through (5)
and (6) through (8) can be established using only three properties of /* and /*,
namely, (i) /„ and / • are each isotone, (ii) (VA € V(X))(A C f*[f.(A)]), and (iii)
(\/B £ V(Y)){f,[f*(B)] C B). Further, the equivalence of (1) and (6) uses only com-
plementation in V(X) and V(Y), and an additional property of /*, namely, (iv)
(V£ £ T(Y))(f(B') = [f*(B)]'). Surprisingly, the proof makes no use of the fact that
the open elements form a V-semi-complete sublattice of either V(X) or T(Y), nor any
of the properties of neighbourhood mappings other than the filter property, that is, no
properties other than those of pre-neighbourhood mappings.

Of the equivalent statements in Theorem 21, statement (3) alone involves only /«
and the neighbourhood systems of elements. Thus, we will define a continuous function
between pre-neighbourhood A-semi-lattices by

DEFINITION 22: Let (Pi, 771) and (P2, 772) be pre-neighbourhood A-semi-lattices.
A function f • Pi —* Pi is said to be 77-continuous at a £ Pi if (Vy £ 772/(0))
(3z £ T7i(a))(/(a) < f(z) ^ y) . Further, / : Pi —> P2 is said to be 77-continuous or
continuous (on Pi) ii f is 77-continuous at each element of P i .

It is clear from Theorem 21 and Definition 22 that if (X, Tx) and (Y, T2)
are topological spaces, then f:X —> Y is topologically continuous if and only if
/ , : V[X) —» V(Y) is continuous in the induced neighbourhood systems on P(X) and
V{Y).

Thus, by considering the consequences of replacing point by set in topological
neighbourhood systems, not only is one led to pre-neighbourhood posets but also to 77-
continuity. Further, each of these concepts agrees with the the corresponding topological
concept when (X, T) is a topological space and (P(X), 77) is the induced neighbour-
hood lattice.

We will now include the more technical aspects of ^-continuity in Lemma 23.

LEMMA 23. Let (Pi, 771) and (p2,772) be pre-neighbourhood A-semi-lattices, and
let Gi and G2 be the sets of open elements of Pi and P2 , respectively.

(i) A function / : Pi —+ P2 is continuous at x £ P -£> (Vjr £ G2)

{9 e vifix) => (3z £ m(*)){f(x) < /(*) ^ 9)) •
(ii) A function / : Pi —> P2 is continuous at each open element of Pi .

(iii) An isotone function f • P\ —* P2 is continuous at x £ Pi •<=> (V</ £ G2)
(9 G mf{*)) => (3ffi £ <?i A T]{x)) and f(x) ^ /(51) ^ g.

(iv) An antitone function f: Pi -> P2 is continuous at x £ P] <£>
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( 6(?iA T](x)) and f{x) = ()

(v) If f: Pi —* Pi is continuous at x, and if f{x) is open in P2 , but x is

not open in Pi, then (3z £ T/I(X))(Z < z and f(x) = f(z)) •

(vi) If (Pi, 771) is a neighbourhood lattice, and a £ Pi, then fa: Pi —* P\,

given by fa(x) = x V a, is continuous.

(vii) If (Pi, 771) is a Boolean neighbourhood lattice, and a £ Pi, then

ga- Pi —> Pi j given by ga(x) = x A a is continuous <£> 0' is open O a is
closed.

If we now let (X, Ti) and (Y, T2) be topological spaces, (^ (X) , T/J) and (V(Y), J?2)
be the induced neighbourhood lattices, and / : X —+ Y be continuous, then we can ap-
ply Lemma 23 (iii) and (v) to the continuous isotone function / , , and we obtain the
standard result that although /„ need not be an open function, /* has the property
that if f*(A) is open in Y, then there is g open in X such that f*(A) = f*{g)-

Clearly, if / is injective, then the openness of f*{A) implies the openness of A. In
addition, (iv) proves that ' : V(X) —v V(X) is continuous at A £ V(X) if and only if
A is clopen.

In Theorem 24 we establish necessary and sufficient conditions for /* to be a
continuous function, noting that the proof makes use only of the pre-neighbourhood
systems of V(X) and V{Y).

THEOREM 24. Let {X,Ti) and (Y, T2) be topological spaces, (T(X), T)I) and

(V(Y), T72) be the induced neighbourhood iattices, and / : X —» Y be a function,

f*: V{Y) -> T(X) is continuous & / , : V(X) -* V(Y) is a closed function.

PROOF: This follows from the definition of continuity and properties (i) through

(iv) of / . and / ' listed after Theorem 21. I

We will introduce the concept of pre-neighbourhood homeomorphisms so that we
can characterise topological homeomorphisms in terms of the functions /„ and / * .

DEFINITION 25: Let (Pi, T/J) and (P2, TI2) be pre-neighbourhood A-semi-lattices.
A function f: Pi —+ P2 will be called a pre-neighbourhood homeomorphism (or an
•q-homeomorphism or simply a homeomorphism) if / and f~1 are each continuous.

THEOREM 26. Let (X,Yi) and (Y,T2) be topological spaces (V(X),T)I) and
(P(Y), Tft) be the induced neighbourhood lattices. The following statements are equiv-
alent:

(i) / : X —+ Y is a homeomorphism;

(ii) / * : V{Y) —• "P(X) is a homeomorphism; and

(iii) ft • "P(X) —• V(Y) is a homeomorphism.
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PROOF: This follows from Definition 25, and the relations /* = ( A ) " 1 , /* =

As one examines the proofs of these 'topological' results, it becomes clear that
only the properties of pre-neighbourhood mappings are used, and that, unless closure
is involved, only properties (i) through (iii) of f, and /* listed after Theorem 21
are needed. These observations lead one to consider the 'natural' algebraic analogues
of /* and /*, namely, residuated and residual functions. Our immediate objective
of paralleling these topological proofs seems better served by this direct approach of
utilising selected pairs of isotone functions, rather than the 'traditional' approach using
as 'primitives' pairs of antitone functions, called Galois connections, to construct isotone
functions.

DEFINITION 27: Let A and P2 be posets. A function /': P, -* P2 is said to be
residuated if there exists a function f+'-P2—>Pi, called the residual of f, such that

(1) / and / + are each isotone,
(2) (Vt ,eP2)( / ( /+(y))<y) ,and
(3) (VzePiX* < /+ ( / (* ) ) ) .

It is clear that if / : X —+ Y is a function, then /„ is a residuated function with
residual /* . Further, since the discussion of the proof of Theorem 21 indicates that
only the pre-neighbourhood structure and conditions (1), (2) and (3) of Definition 25
are used in the proof we will state without proof the corresponding results for residuated
functions.

THEOREM 28. Let (PI,T]I) and (P2, 772) be pre-neighbourhood A-semi-lattices,

and f: Pi —*• P2 be a residuated function. The following statements are equivalent:

(i) / + : P2 —* P\ is an open function;
(ii) f'• P\ —> P2 is continuous, (r)-continuous); and

(iii) (V* e PxXVj/ e mf(x))(f+(y) £ Vi{*)) •

Further, if Pi and P2 are conditionally complete lattices, then (i), (ii) and (iii) are
equivalent to

(iv) (Vy e P2){f+(y°) < f+(y)°) •

THEOREM 29. Let (£1,71) and (£2,72) be pre-dual conditionally complete lat-

tices, and f': L\ —> L2 be a residuated function. The following statements are equiva-

lent:

(i) f+:L2—t £1 is an closed function;

(ii) (VyG£

(iii) (Vze £
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It is quite easy to construct an example to show tha t the composition of continuous

functions need not be continuous. However, Theorem 30 shows that the composition of

continuous residuated functions is continuous.

THEOREM 30. Let (Pi,ih)> (P21V2) &nd ^3,773) be pie-neighbourhood A-semi-

lattices. If fj: Pj —> P2 , f2: P2 —> P3 are each continuous functions, and f2 is isotone,

then f2 ° /1 is continuous.

PROOF: Let x E Py and g £ G3 such that g (E 773(72 ° / I ) ( E ) , and let b = /](x).
9 € 773/2(6) => (3«i € 772(6))(/2(6) < /^(si) ^ <?)• Now, the isotoneness of / 2 proves the
continuity of f2 o /1 at x . I

Theorem 30 and the relation (f2 0/1),, = f2, o flt proves that the composition of
topological continuous functions is continuous and shows that the proof of this result
depends only on the isotoneness of / , .

We will now show that both regularity and normality reflect the continuity of the
closure operator.

THEOREM 31. Let (X, T) be a topological space and (V(X), 77) be the induced

neighbourhood lattice.

(1) A T\ topological space X is regular <£• ~ : V{X) —> V(X) is continuous

at each point of 'P(X).

(2) X is normal & ~ : V(X) -> V(X) is continuous.

PROOF: (1) This follows from the topological result which states that X is regular

<£> the family of closed neighbourhoods of each point is a base for the neighbourhood

system of the point and the fact that in a T\ space 77({x}~) = 77({a;}) .

(2) This follows from the topological result which states that X is normal <£> the

family of closed neighbourhoods of each set is a base for the neighbourhood system of

the set. H

A few comments of Theorem 31. Regularity always implies continuity at points of
V(X). Further, since a regular T"i space is Hausdorff, Theorem 31 has as an obvious
corollary the statement that in a Ti space the continuity of ~: V(X) —+ V(X) at
points implies Hausdorffiiess.

The agreement between topological continuity and neighbourhood continuity il-
lustrated in the statement that / : X —» Y is topologically continuous if and only if
/»: V(X) —> V(Y) is continuous in the induced neighbourhood systems on V(X) and
V(Y), suggests that a 'generalised' continuity can be defined for a function from a set
X to a set Y, which will agree with topological continuity when either X and Y are
topological spaces, or (T(X), 775) and (V{Y), 772) are neighbourhood lattices.
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DEFINITION 32: Let X and Y be sets and f:X —> Y be a function. If

(V(X), iji) and (V(Y), 772) are pre-neighbourhood lattices, then / is ^-continuous

on X if / , : V{X) -> 'P(r) is continuous.

It follows from Definition 32 that if (Xi, /^) are measure spaces for i = 1, 2 and T̂

is the pre-neighbourhood mapping on T(Xi) determined by Gi —

{A: A is a measurable subset of Xi}, then f:Xi—* X2 is a measurable function if and

only if / is 77-continuous. Further, if (Y, T) is a topological space, then f:Xi —+ Y

is a measurable function if and only if / is 77-continuous in the appropriate pre-

neighbourhood systems on V(X\) and V(Y).

We will conclude this paper with an example of a non-topological application of

pre-neighbourhood continuity and 77-continuity. For i = 1, 2, let X, be a group with

identity element e<, let 77̂  be the pre-neighbourhood mapping on V(Xi) determined

by S(Xi) = Gi = {A: A is a subgroup of Xi}, let a: X\ —• X2 be a homomorphism

with kernel K, and let H be a normal subgroup of X-i. Further, if A £ V(Xi), then

{A} will denote the subgroup generated by A.

(a) / : (P(Xi), m) -> {"P{Xi), 771) given by f(A) = {A} is a isotone function that

is both open and continuous.

(b) g: (V{Xi), 771) —> (V(Xi), 771) given by g(A) = (A)H is a continuous open

function.

(c) a,: (V(Xi), 771) —* (V(X2), 772) is an open continuous function. Thus, a is

77-continuous and open. Further, if a is an isomorphism, then a, is a homeomorphism.

Thus, a is an 77-homeomorphism.

(d) Let 773 be the neighbourhood mapping on V(Xi) determined by Gj = {A: A €

V(X\) and K C .4}, and let 774 be the neighbourhood mapping on V(X2) deter-

mined by G4 - {B: B e V{X2) and e2 € B}. a , : (^(X,), 773) -> (V(X2), 7?4) is

an open continuous function. Thus a is a (topological) homeomorphism. Finally,

a , : (V(Xi), 773) —> (V(X2), 772) is a continuous function. Thus, in this case a, is an

77-continuous function.

(e) Let (S(Xi), V, A) be the lattice of subgroups of Xi, let 77; be the pre-

neighbourhood mapping on «S(X{) determined by G'j = {A: A < Xi}, and let

d» : (S(Xi), 771) —+ (S(X2), 772) be the restriction of a, to S(Xi). a, is continuous.

If a is onto, then a» is a continuous open function. Thus, if a is a isomorphism, a , is

an 77-homeomorphism. The function h: (S(Jfj), 77) —> (<5(X2), 77) given by h(A) = AH

is a "naturally" continuous function, in the sense that if 77 is any pre-neighbourhood

mapping on <S(Xj), then h is continuous. Further, h is an open function if H is

77-open.
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CONCLUSION

In this paper an introduction to pre-neighbourhood posets was presented. The
development of this topic was motivated by questions which are not addressed in the
"usual" treatment of topological spaces, in which the Boolean properties of the ortho-
complemented lattice V(X), and the properties of the function /« and /* are used
whenever convenient. For example, we have shown that even if distributivity and or-
thocomplementation are not available in a lattice, 'openness' can be defined in such
a way that 'closedness' is in a real sense a dual lattice theoretic concept. Further,
the topological continuity of a function / : X —> Y is characterised in terms of the
neighbourhood continuity of /*: V(X) —̂  "P{\ ) . Thus, one is led in a natural way to
continuous residuated functions defined on pre-neighbourhood A-semi-lattices, and to
77-continuity. It is hoped that neighbourhood lattices have been shown to be a useful
structure for examining the way in which topology depends 011 the Boolean properties
of V(X).

Finally, this lattice theoretic view point of topological spaces suggests the following
'natural' questions: "Since continuous functions are characterised by the behaviour of
/* , a function between Boolean lattices, why is there no dual continuity in topology?",
"Do the Ti properties of topological spaces generalise to neighbourhood lattices?", "Is
there any reasonable concept of convergence in neighbourhood lattices, and if so, how
does it interact with continuity?","Can proximity structures be denned in neighbour-
hood lattices?", "If it possible to 'lift' topologies from V{X) to V(V{X)) in such a
way that / , / » , and /» , are each continuous?", "If Pi and Pi are posets, are there
pairs of compatible pre-neighbourhood systems and topologies on Px and P2 so that
77-continuity implies or is implied by topological continuity?", and finally, "Can neigh-
bourhood continuity be applied to relations, by using the lower star function associated
with a relation?".

These questions have been answered by the author in work that is in prepara-
tion. It may be noted that in the theory of neighbourhood convergence, the limits of
77-convergent nets are unique, and a residuated function / defined on conditionally com-
plete Ti lattices is continuous if and only if / preserves the limits of convergent nets.
Thus, each of the four equivalent primitive concepts from topology, namely: openness,
closedness, convergence, and neighbourhoods is available in neighbourhood lattices, and
each is relevant to neighbourhood continuity.
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