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Abstract. We study the set of all m-tuples (λ(1), . . . , λ(m)) of possible types of
finite abelian p-groups Mλ(1), . . . , Mλ(m) for which there exists a long exact sequence
Mλ(1) → · · · → Mλ(m). When m = 3, we recover W. Fulton’s (Eigenvalues of majorized
Hermitian matrices and Littlewood-Richardson coefficients (Special Issue: Workshop
on Geometric and combinatorial Methods in the Hermitian Sum Spectral Problem),
Linear Algebra Appl. 319(1–3) (2000), 23–36) results on the possible eigenvalues of
majorized Hermitian matrices.

2000 Mathematics Subject Classification. Primary 16G20; Secondary 05E15.

1. Introduction. In [5], Friedland asked for a description of the possible
eigenvalues of Hermitian matrices A, B and C such that B ≤ A + C (i.e. A + C − B is
positive semi-definite). A complete answer to this majorization problem was obtained
by Fulton in [6] who showed that the eigenvalues of A, B and C are given by the same
inequalities as in Klyachko’s theorem [9] for the case when B = A + C, except that
the equality Tr(B) = Tr(A) + Tr(C) is replaced by the linear homogeneous inequality
Tr(B) ≤ Tr(A) + Tr(C). As explained in [6], the problem about the existence of short
exact sequences of finite abelian p-groups without zeros at the ends has the exact
same answer as the majorization problem above. In this paper, we find necessary and
sufficient inequalities for the existence of long exact sequences, generalizing Fulton’s
result.

For every partition λ = (λ1, . . . , λn) and a (fixed) prime number p, one can
construct a finite abelian p-group Mλ = �/pλ1 × · · · × �/pλn . It is known that every
finite abelian p-group is isomorphic to Mλ for a unique partition λ. Such a group Mλ

is said to be of type λ.

For an integer n ≥ 1, let

Pn = {(λ1, . . . , λn) ∈ �n | λ1 ≥ · · · ≥ λn ≥ 0}

be the semi-group of all partitions with at most n non-zero parts. Let m ≥ 3 be a
positive integer. We are interested in the set

�(n, m) = {(λ(1), . . . , λ(m)) ∈ Pm
n | ∃ Mλ(1) → Mλ(2) → · · · → Mλ(m)}.

The convex cone (in �nm) generated by �(n, m) is denoted by C(n, m). Now, we are
ready to state our first result:
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THEOREM 1.1. Let m ≥ 3 and n ≥ 1 be two integers.
(1) The set �(n, m) is a finitely generated sub-semigroup of �nm and is saturated, i.e.

for every integer r ≥ 1,

(λ(1), . . . , λ(m)) ∈ �(n, m) ⇐⇒ (rλ(1), . . . , rλ(m)) ∈ �(n, m).

(2) C(n, m) is a rational convex polyhedral cone and

dim C(n, m) = nm.

When m is odd, we obtain a recursive method for describing the cone C(n, m).
For this, we need to recall some of the terminology from [1]. Let λ(i), 1 ≤ i ≤ m, be m
partitions. Then the generalized Littlewood–Richardson coefficient f (λ(1), . . . , λ(m)) is
defined by

f (λ(1), . . . , λ(m)) =
∑

cλ(2)
λ(1),μ(1) · cλ(3)

μ(1),μ(2) · · · cλ(m−2)
μ(m−4),μ(m−3) · cλ(m−1)

μ(m−3),λ(m),

where the sum is taken over all partitions μ(1), . . . , μ(m − 3). The convention is that
when m = 3, f (λ(1), λ(2), λ(3)) is the Littlewood–Richardson coefficient cλ(2)

λ(1),λ(3).

We refer to the notation paragraph at the end of this section for the details of our
notations. Now, let (I1, . . . , Im) be an m-tuple of subsets of {1, . . . , n} such that at least
one of them has cardinality at most n − 1. We define the following weakly decreasing
sequences of integers (using conjugate partitions):

λ(I1) = λ′(I1), λ(Im) = λ′(Im)

and for 2 ≤ i ≤ m − 1

λ(Ii) =
{
λ′(Ii) if i is even
λ′(Ii) − ((|Ii| − |Ii+1| − |Ii−1|)n−|Ii|) if i is odd.

Let S(n, m) be the set of all m-tuples (I1, . . . , Im) for which:
(1) at least one of the Ii has cardinality at most n − 1;
(2) |I1| = |I2|, |Im−1| = |Im|;
(3) λ(I1), . . . , λ(Im) are partitions;
(4) the generalized Littlewood–Richardson coefficient

f (λ(1), . . . , λ(m)) = 1.

For example, if m = 3 then S(n, 3) consists of all those triples (I1, I2, I3) of subsets
of {1, . . . , n} of the same cardinality r with r < n and

cλ(I2)
λ(I1),λ(I3) = 1.

The set S(n, m) has been used in [1] to construct necessary and sufficient Horn
type inequalities for the existence of long exact sequences of finite abelian p-groups
with zeros at the ends. As we are going to see, the same set can be used to describe
C(n, m) :

THEOREM 1.2. Assume that m ≥ 3 is odd and let λ(1), . . . , λ(m) be m weakly
decreasing sequences of n non-negative real numbers. Then the following are equivalent:
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(1) (λ(1), . . . , λ(m)) ∈ C(n, m);
(2) the numbers λ(i)j satisfy ∑

i even

|λ(i)| ≤
∑
i odd

|λ(i)|,

and

∑
i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ≤

∑
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠

for every (I1, . . . , Im) ∈ S(n, m); if m > 3 we also have

(λ(2), . . . , λ(m − 1)) ∈ C(n, m − 2).

We should point out that the above theorem fails if m is even (see Example 5.5).
Nonetheless, for arbitrary m, a similar description of the cone C(n, m) can be found in
Theorem 4.4.

The strategy for proving the main results of this paper is to show first that the
existence of long exact sequences of finite abelian p-groups without zeros at the ends
is equivalent to the existence of non-zero semi-invariants for a certain quiver. Next,
we use methods from quiver invariant theory developed by Derksen and Weyman [2],
[3] to prove Theorem 1.1 and to find the Horn type inequalities of Theorem 1.2 and
Theorem 4.4.

The paper is organized as follows. In Section 2, we recall some well-known facts
about semi-invariants of quivers and introduce the cone of effective weights of quivers
without oriented cycles. The quiver setting corresponding to our problem is defined in
Section 3 where we prove Theorem 1.1. In Section 4, we give a first description of the
cone C(n, m) and prove Theorem 4.4. The proof of Theorem 1.2 is given in Section 5.

Notations. For a partition λ, we denote by λ′ the partition conjugate to λ, i.e.
the Young diagram of λ′ is the Young diagram of λ reflected in its main diagonal.
We will often refer to partitions as Young diagrams. If λ = (λ1, . . . , λN) is a weakly
decreasing sequence then we define rλ by rλ = (rλ1, . . . , rλN). Let λ = (λ1, . . . , λN)
and μ = (μ1, . . . , μM) be two sequences of integers. Then we define the sum λ + μ

by first extending λ or μ with zero parts (if necessary) and then we add them
componentwise. If I = {z1 < . . . < zr} is an r-tuple of integers then λ(I) is defined
by λ(I) = (zr − r, . . . , z1 − 1). For r ≥ 0 and a two integers, we denote the r-tuple
(a, . . . , a) by (ar). A composition a is just a sequence a = (a1, . . . , an) of non-negative
integers. For a weakly decreasing sequence μ of n integers, Sμ(V ) denotes the
irreducible rational representation of GL(V ) with highest weight μ, where V is an
n-dimensional complex vector space. Let λ(i) = (λ(i)1, . . . , λ(i)n), 1 ≤ i ≤ 3, be three
weakly decreasing sequences of n integers. Then we define the Littlewood–Richardson
coefficient cλ(2)

λ(1),λ(3) to be the multiplicity of Sλ(2)(�n) in Sλ(1)(�n) ⊗ Sλ(3)(�n), i.e.

cλ(2)
λ(1),λ(3) = dim� HomGLn(�)(Sλ(2)(�n), Sλ(1)(�n) ⊗ Sλ(3)(�n)).

If a = (a1, . . . , an) is a composition and λ = (λ1, . . . , λn) is a partition with at most n
non-zero parts, we define the Kostka number Ka,λ to be

Ka,λ = dim� HomGLn(�)(Sλ(�n), Sa1 (�n) ⊗ . . . ⊗ San (�n)).
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2. Preliminaries.

2.1. Generalities. A quiver Q = (Q0, Q1, t, h) consists of a finite set of vertices
Q0, a finite set of arrows Q1 and two functions t, h : Q1 → Q0 that assign to each arrow
a its tail ta and its head ha, respectively. We write ta

a−→ha for each arrow a ∈ Q1.
For simplicity, we will be working over the field � of complex numbers. A

representation V of Q over � is a family of finite dimensional �-vector spaces {V (x) |
x ∈ Q0} together with a family {V (a) : V (ta) → V (ha) | a ∈ Q1} of �-linear maps. If V
is a representation of Q, we define its dimension vector dV by dV (x) = dim� V (x) for
every x ∈ Q0. Thus the dimension vectors of representations of Q lie in � = �Q0 , the set
of all integer-valued functions on Q0. For every vertex x, the dimension vector of the
simple representation corresponding to x is denoted by ex, i.e. ex(y) = δx,y,∀y ∈ Q0,

where δx,y is the Kronecker symbol.
Given two representations V and W of Q, we define a morphism φ : V → W to

be a collection of linear maps {φ(x) : V (x) → W (x) | x ∈ Q0} such that

φ(ha)V (a) = W (a)φ(ta),

for every arrow a ∈ Q1. We denote by HomQ(V, W ) the �-vector space of all
morphisms from V to W . Let W and V be two representations of Q. We say that
V is a sub-representation of W if V (x) is a subspace of W (x) for all vertices x ∈ Q0

and V (a) is the restriction of W (a) to V (ta) for all arrows a ∈ Q1. In this way, we obtain
the abelian category Rep(Q) of all quiver representations of Q. A dimension vector β

is said to be a Schur root if there exists a β-dimensional representation W such that
EndQ(W ) = �.

If α, β are two elements of �, we define the Euler form by

〈α, β〉 =
∑
x∈Q0

α(x)β(x) −
∑
a∈Q1

α(ta)β(ha). (1)

2.2. Semi-invariants for quivers. Let β be a dimension vector of Q. The
representation space of β-dimensional representations of Q is defined by

Rep(Q, β) =
⊕
a∈Q1

Hom(�β(ta), �β(ha)).

If GL(β) = ∏
x∈Q0

GL(β(x)) then GL(β) acts algebraically on Rep(Q, β) by
simultaneous conjugation, i.e. for g = (g(x))x∈Q0 ∈ GL(β) and V = (V (a))a∈Q1 ∈
Rep(Q, β), we define g · V by

(g · V )(a) = g(ha)V (a)g(ta)−1 for every a ∈ Q1.

Note that Rep(Q, β) is a rational representation of the linearly reductive group
GL(β) and the GL(β)-orbits in Rep(Q, β) are in one-to-one correspondence with
the isomorphism classes of β-dimensional representations of Q.

From now on, we will assume that our quivers are without oriented cycles. Under this
assumption, one can show that there is only one closed GL(β)-orbit in Rep(Q, β) and
hence the invariant ring I(Q, β) = �[Rep(Q, β)]GL(β) is exactly the basefield �.
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Now, consider the subgroup SL(β) ⊆ GL(β) defined by

SL(β) =
∏

x∈Q0

SL(β(x)).

Although there are only constant GL(β)-invariant polynomial functions on Rep(Q, β),
the action of SL(β) on Rep(Q, β) provides us with a highly non-trivial ring of semi-
invariants.

Let SI(Q, β) = �[Rep(Q, β)]SL(β) be the ring of semi-invariants. As SL(β) is the
commutator subgroup of GL(β) and GL(β) is linearly reductive, we have that

SI(Q, β) =
⊕

σ∈X
(GL(β))

SI(Q, β)σ ,

where X
(GL(β)) is the group of rational characters of GL(β) and

SI(Q, β)σ = {f ∈ �[Rep(Q, β)] | gf = σ (g)f,∀g ∈ GL(β)}
is the space of semi-invariants of weight σ. Note that any σ ∈ �Q0 defines a rational
character of GL(β) by

{g(x) | x ∈ Q0} ∈ GL(β) �→
∏

x∈Q0

(det g(x))σ (x).

In this way, we can identify � = �Q0 with the group X
(GL(β)) of rational characters
of GL(β), assuming that β is a sincere dimension vector (i.e. β(x) > 0 for all vertices
x ∈ Q0). We also refer to the rational characters of GL(β) as weights.

If α ∈ �Q0 , we define the weight σ = 〈α, ·〉 by

σ (x) = 〈α, ex〉 , ∀x ∈ Q0.

Conversely, it is easy to see that for any weight σ ∈ �Q0 there is a unique α ∈ �Q0

(not necessarily a dimension vector) such that σ = 〈α, ·〉. Similarly, one can define
μ = 〈·, α〉.

2.3. Derksen–Weyman saturation. We write β1 ↪→ β if every β-dimensional
representation has a sub-representation of dimension vector β1. If σ ∈ �Q0 and β ∈ �Q0

we define σ (β) to be

σ (β) =
∑
x∈Q0

σ (x)β(x).

The cone of effective weights associated to (Q, β) is defined by

C(Q, β) = {σ ∈ �Q0 | σ (β) = 0 and σ (β1) ≤ 0 for all β1 ↪→ β}.
Now, let

�(Q, β) = C(Q, β)
⋂

�Q0

be the semi-group of lattice points of C(Q, β). By construction C(Q, β) is a rational
convex polyhedral cone and hence �(Q, β) is saturated and finitely generated.
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In [10], Schofield constructed semi-invariants of quivers with remarkable
properties. We should point out that these Schofield semi-invariants have weights
of the form 〈α, ·〉, with α dimension vectors. A fundamental result due to Derksen and
Weyman [2] (see also [12]) states that each weight space of semi-invariants is spanned
by Schofield semi-invariants. An important consequence of this spanning theorem is
the following description of �(Q, β) (see [2]):

THEOREM 2.1 (Derksen–Weyman saturation). Let Q be a quiver and let β be a
sincere dimension vector. If σ = 〈α, ·〉 ∈ �Q0 is a weight with α ∈ �Q0 then the following
statements are equivalent:

(1) σ ∈ �(Q, β);
(2) dim SI(Q, β)σ �= 0;
(3) α must be a dimension vector, σ (β) = 0 and α ↪→ α + β.

In particular, the dimensions of the weight spaces of semi-invariants are saturated, i.e. if
n ≥ 1 then

dim SI(Q, β)σ �= 0 ⇐⇒ dim SI(Q, β)nσ �= 0.

We also have the following reciprocity property:

LEMMA 2.2. [2, Corollary 1]. Let α and β be two dimension vectors. Then

dim SI(Q, β)〈α,·〉 = dim SI(Q, α)−〈·,β〉.

Now, we can define (α ◦ β) by

(α ◦ β) = dim SI(Q, β)〈α,·〉 = dim SI(Q, α)−〈·,β〉.

If case β is a Schur root, we have the following refinement of Theorem 2.1 which
is also due to Derksen and Weyman [3, Corollary 5.2]:

PROPOSITION 2.3. Let Q be a quiver with N vertices and let β be a Schur root. Then
(1) dim C(Q, β) = N − 1.

(2) σ ∈ C(Q, β) if and only if σ (β) = 0 and σ (β1) ≤ 0 for every decomposition β =
c1β1 + c2β2 with β1, β2 Schur roots, β1 ◦ β2 = 1 and ci = 1 whenever 〈βi, βi〉 < 0.

Finally, we record a theorem of Schofield on Schur roots which will be used in the
proof of Lemma 4.1.

THEOREM 2.4. [11, Theorem 6.1]. Let Q be a quiver and let β be a dimension vector.
Then the following are equivalent:

(1) β is a Schur root;
(2) σβ(β ′) < 0,∀ β ′ ↪→ β, β ′ �= 0, β, where σβ = 〈β, ·〉 − 〈·, β〉.

3. Long exact sequences from semi-invariants. In this section, we show that the
existence of long exact sequences of finite abelian p-groups without zeros at the ends is
equivalent to the existence of semi-invariants of a certain quiver. To be more precise,
let (Q, β) be the following quiver setting:

(1) the quiver Q has m + 1 central vertices denoted by 0, 1 = (n, 1), 2 = (n, 2), . . . ,

m = (n, m) such that at vertices 1, 2, . . . , m we attach m equi-oriented type �n

quivers (call them flags or arms) F(1), . . . ,F(m) with F(i) going in the central
vertex i if i is even and going out from the central vertex i if i is odd; there
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are m − 1 main arrows a1, . . . , am−1 connecting the central vertices such that
i + 1

ai−→i if i is odd and i
ai−→i + 1 if i is even. Furthermore, there are n arrows

going from vertex 0 to vertex 1 and there are n arrows going from 0 to m if m
is odd; the n arrows go from m to 0 if m is even. For example, if m is odd, then
the quiver Q looks like:

(2) the dimension vector β is given by β(j, i) = j for all j ∈ {1, . . . , n}, i ∈ {1, . . . , m}
and β(0) = 1, i.e. β is equal to

1
n n · · · n n

n − 1 n − 1 · · · n − 1 n − 1
...

...
...

...
2 2 · · · 2 2
1 1 · · · 1 1

Let λ(1), . . . , λ(m) be m sequences of n real numbers. Then we define the weight
σλ by

σλ(j, i) = (−1)i(λ(i)j − λ(i)j+1),∀1 ≤ j ≤ n,∀1 ≤ i ≤ m, (2)

with the convention that λ(i)n+1 = 0 and

σλ(0) = −
∑

1≤i≤m

∑
1≤j≤n

σλ(j, i)j =
∑
i odd

|λ(i)| −
∑
i even

|λ(i)|. (3)

Note that (3) is equivalent to σλ(β) = 0.

LEMMA 3.1. Let λ(1), . . . , λ(m) be m partitions with at most n non-zero parts. Then

dim SI(Q, β)σλ
�= 0 ⇐⇒ (λ(1), . . . , λ(m)) ∈ �(n, m).

Proof. First, we compute the space of semi-invariants SI(Q, β)σλ
. This is a standard

computation involving Schur functors. For simplicity, let us define Vj(i) = �β(j,i). Using
the same arguments as in [1, Lemma 3.1], one can show that each flag F(l) going out
from the central vertex (n, l) contributes to SI(Q, β)σλ

with

Sγ n−1(l)Vn(l),
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where

γ n−1(l) = ((n − 1)−σλ(n−1,l), . . . , 1−σλ(1,l))′.

Now, it is easy to see that

γ n−1(l) = (λ(l)1 − λ(l)n, . . . , λ(l)n−1 − λ(l)n).

Similarly, if F(i) is a flag going in the central vertex (n, i), then its contribution to
SI(Q, β)σλ

is

Sγ n−1(i)V∗
n (i),

where

γ n−1(i) = (λ(i)1 − λ(i)n, . . . , λ(i)n−1 − λ(i)n).

So far, we have found those spaces of semi-invariants coming from the vertices of the
m flags, except for the central vertices i, where i ∈ {0, 1, . . . , m}. Taking into account
the weights attached to the central vertices, one can easily see that:

dim SI(Q, β)σλ
=

∑
Ka,μ(0) · cλ(1)

μ(0),μ(1) · cλ(2)
μ(1),μ(2) · · · · · cλ(m)

μ(m−1),μ(m) · Kb,μ(m),

where the sum is over all partitions μ(0), . . . , μ(m) and compositions a, b with |a| +
(−1)m+1|b| = |λ(1)| − |λ(2)| + . . . + (−1)m+1|λ(m)|.

Now let us prove the implication “⇒”. If dim SI(Q, β)σλ
�= 0 then there exist

partitions μ(0), . . . , μ(m) such that

f (μ(0), λ(1), . . . , λ(m), μ(m)) �= 0.

This together with Klein’s theorem [8] imply the existence of a long exact sequence
without zeros at the ends of finite abelian p-groups of types λ(1), . . . , λ(m), i.e.
(λ(1), . . . , λ(m)) ∈ �(n, m).

For the other implication “⇐”, we extend the given exact sequence to a long exact
sequence with zeros at the ends by taking the kernel (say, of type μ(0)) of the first
morphism and the cokernel (say, of type μ(m)) of the last morphism of our long exact
sequence. Now, let us break this long exact sequence with zeros at the ends in short
exact sequences by taking cokernels:

0 → Mμ(0) → Mλ(1) → Mμ(1) → 0,

0 → Mμ(1) → Mλ(2) → Mμ(2) → 0,

· · ·
0 → Mμ(m−1) → Mλ(m) → Mμ(m) → 0.

Using Klein’s theorem [8], this is equivalent to

Ka,μ(0) · cλ(1)
μ(0),μ(1) · cλ(2)

μ(1),μ(2) · · · cλ(m)
μ(m−1),μ(m) · Kb,μ(m) �= 0,

where a = μ(0) and b = μ(m). This implies dim SI(Q, β)σλ
�= 0. �
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REMARK 3.2. Note the lemma above remains true when we work with the quiver
obtained from Q by reversing all arrows. Of course, in this case the new weight is just
−σλ. This observation is particularly useful when proving Lemma 5.4.

LEMMA 3.3. The map

C(n, m) −→ C(Q, β)

λ = (λ(1), . . . , λ(m)) −→ σλ,

is an isomorphism of cones that restricts to an isomorphism between the semi-groups of
the lattice points.

Proof. The map is well-defined because of Lemma 3.1 and the fact that

σαλ+βγ = ασλ + βσγ ,

for all α, β (non-negative) real numbers. Note also that the map is injective. To complete
the proof, we only need to show that the map is surjective.

Let σ ∈ �(Q, β). For 1 ≤ j ≤ n and 1 ≤ i ≤ m, define

β1 =
{
β − e(j,i) if i is even
e(j,i) if i is odd

Then it is easy to see that β1 ↪→ β and σ (β1) = (−1)i+1σ (j, i). So, σ must satisfy the
so-called chamber inequalities, i.e.

(−1)iσ (j, i) ≥ 0,

for all 1 ≤ j ≤ n and 1 ≤ i ≤ m. Now, define λ(i) = (λ(i)1, . . . , λ(i)n) by

λ(i)j = (−1)i
∑

j≤k≤n

σ (k, i),∀1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then the λ(i) are partitions with at most n non-zero parts and σ = σλ. Hence
(λ(1), . . . , λ(m)) ∈ �(n, m) by Lemma 3.1 and this finishes the proof. �

LEMMA 3.4. The dimension vector β is a Schur root of Q.

Proof. The dimension vector β is in the fundamental region and the greatest
common divisor of its coordinates is one. Then it follows from [7, Theorem B(d)] that
β must be a Schur root. �

Proof of Theorem 1.1 (1) This follows from Derksen–Weyman Saturation
Theorem 2.1 and Lemma 3.3.

(2) As β is a Schur root, we know that dim C(Q, β) is the number of vertices of Q
minus one and so dim C(n, m) = nm. �

4. Horn type inequalities. We work with the quiver set up (Q, β) introduced in
the previous section.

LEMMA 4.1. Let λ(1), . . . , λ(m) be weakly decreasing sequences of n real numbers.
Then

σλ ∈ C(Q, β) ⇐⇒ σλ(β1) ≤ 0,
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for every dimension vector β1 �= β with β1 ◦ (β − β1) = 1 and β1 weakly increasing with
jumps of at most one along the m flags (from bottom to top).

Proof. The implication “=⇒” follows from Theorem 2.1(3).
Now, let us prove “⇐=”. Using Proposition 2.3 and σλ(β) = 0, we only need to

show

σλ(β1) ≤ 0,

for every decomposition β = c1β1 + c2β2 with β1, β2 Schur roots and β1 ◦ β2 = 1.
If β1 is either β1 = e(j,i) for some 1 ≤ j ≤ n − 1 and i odd or β1 = β − e(j,i) for some

1 ≤ j ≤ n − 1 and i even then σλ(β1) ≤ 0 is equivalent to λ(1), . . . , λ(m) being weakly
decreasing sequences.

Now, let us assume β1 is not of the above form. We are going to show that
c1 = c2 = 1 and that β1, β2 are weakly decreasing with jumps of at most one along the
m flags (from bottom to top). Let us denote c1β1 = β ′, c2β2 = β ′′. Since β ′ ◦ β ′′ �= 0 it
follows from Theorem 2.1 that any representation of dimension vector β has a sub-
representation of dimension vector β ′. Therefore, β ′ must be weakly increasing along
each flag going in and it has jumps of at most one along each flag going out.

Next, we will show that β ′ has jumps of at most one along each flag F(i) going in
a central vertex and β ′ is weakly increasing along each flag F(i) going out of a central
vertex. For simplicity, let us write

F(i) : 1 −→ 2 · · · n − 1 −→ n,

for a flag going in its central vertex (n, i) (i.e. i is even). Assume to the contrary that
there is an l ∈ {1, . . . , n − 1} such that β ′(l + 1) > β ′(l) + 1. Then β ′′(l + 1) < β ′′(l)
which implies that el ↪→ β ′′. Since β ′′ is 〈β ′, ·〉-semi-stable it follows that 〈β ′, el〉 ≤ 0.
So, β ′(l) ≤ β ′(l − 1) and hence β ′(l) = β ′(l − 1) or β ′′(l) = β ′′(l − 1) + 1. This shows
that c2 = 1 and β ′′ − el ↪→ β ′′. From the fact that β ′′(= β2) is a Schur root and from
Theorem 2.4 we obtain that β ′′ is σβ ′′ -stable. Since el ↪→ β ′′, β ′′ − el ↪→ β ′′ and β ′′ �= el

it follows 〈β ′′, el〉 − 〈el, β
′′〉 < 0 and 〈β ′′, β ′′ − el〉 − 〈β ′′ − el, β

′′〉 < 0. But this is a
contradiction. We have just proved that β ′ has jumps of at most one along each flag
going in. Similarly, one can show that β ′ has to be weakly increasing along each flag
going out.

Now, let us show that c1 = c2 = 1. Since β ′ = c1β1 has jumps of at most one
along each flag, we obtain 0 ≤ c1(β1(l + 1, i) − β1(l, i)) ≤ 1 for all l ∈ {1, . . . , n − 1}
and i ∈ {1, . . . , m}. If there are l, i such that β1(l + 1, i) − β1(l, i) �= 0 then c1 = 1.
Otherwise, there is an i such that β ′(1, i) = 1 and so c1 = 1. Similarly, one can show
c2 = 1.

In conclusion, β = β1 + β2 with β1 weakly increasing with jumps of at most one
along the m flags. So, we have σλ(β1) ≤ 0 and we are done. �

REMARK 4.2. We want to point out that some of the inequalities obtained in
Lemma 4.1 are redundant. The reason for the redundancy is that some of the β1 or
β2 = β − β1 above might not be Schur roots.

EXAMPLE 4.3. Let n = 1 and m ≥ 3. Let λ(i) = (λi) with λi non-negative integers,
1 ≤ i ≤ m. We show that there exists an exact sequence

�/pλ1 → �/pλ2 → · · · → �/pλm
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if and only if

λi − λi+1 + · · · − λj−1 + λj ≥ 0,

for all even numbers i and j with 2 ≤ i ≤ j ≤ m and

λi′ − λi′+1 + · · · − λj′−1 + λj′ ≥ 0,

for all odd numbers i′ and j′ with 1 ≤ i′ ≤ j′ ≤ m.

The quiver we work with in this case is of type �̃m. For example, if m is odd then
the quiver looks like:

The dimension vector β is

1
n n · · · n n.

We want to find all Schur roots β1 and β2 such that β1 �= β and β1 ◦ β2 = 1.

Case 1. If β1(0) = 1 then β1 has to be of the form

β1(v) =
{

0 if i ≤ v ≤ j,
1 otherwise,

for two even numbers i and j, 2 ≤ i ≤ j ≤ m. Conversely, any dimension vector β1 of
this form has the property that β1, β − β1 are Schur roots and β1 ◦ (β − β1) = 1. In
this case, we have

σλ(β1) =
∑
i≤v≤j
v odd

λv −
∑
i≤v≤j

v even

λv.

Case 2. If β1(0) = 0 then β1 has to be of the form

β1(v) =
{

1 if i′ ≤ v ≤ j′,
0 otherwise,

for two odd numbers i′ and j′, 1 ≤ i′ ≤ j′ ≤ m. Again, if β1 is of this form then β1, β − β1

are Schur roots and β1 ◦ (β − β1) = 1. In this case, we have

σλ(β1) =
∑

i′≤v≤j′
v even

λv −
∑

i′≤v≤j′
v odd

λv.

In what follows, we find a closed form of those inequalities obtained in Lemma 4.1.
Let β1 be a dimension vector which is weakly increasing with jumps of at most one
along the m flags of Q. Define the sets

Ii = {l | β1(l, i) > β1(l − 1, i)), 1 ≤ l ≤ n}
with the convention that β1(0, i) = 0 for all 1 ≤ i ≤ m. Then it is easy to see that
|Ii| = β1(i),∀1 ≤ i ≤ m.
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Conversely, given an m-tuple I = (I1, . . . , Im) of subsets of {1, . . . , n}, we can
construct two dimension vectors βI and β ′

I as follows. If

Ii = {z(i)1 < · · · < z(i)r},
we define

βI (k, i) = β ′
I (k, i) = j − 1,∀z(i)j−1 ≤ k < z(i)j,∀1 ≤ j ≤ r + 1,

with the convention that z(i)0 = 0 and z(i)r+1 = n + 1 for all 1 ≤ i ≤ m. At vertex 0,

we let βI (0) = 0 and β ′
I (0) = 1.

THEOREM 4.4. The cone C(n, m) consists of all m-tuples (λ(1), . . . , λ(m)) of weakly
decreasing sequences of n real numbers for which:

(1)

∑
i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ≤

∑
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ,

for every m-tuple I = (I1, . . . , Im) of subsets of {1, . . . , n} with

βI ◦ (β − βI ) = 1;

(2)

∑
i odd

⎛
⎝∑

j/∈Ii

λ(i)j

⎞
⎠ ≤

∑
i even

⎛
⎝∑

j/∈Ii

λ(i)j

⎞
⎠ ,

for every m-tuple I = (I1, . . . , Im) of subsets of {1, . . . , n} with

β ′
I ◦ (β − β ′

I ) = 1.

Proof. From Lemma 3.3 it follows that

(λ(1), . . . , λ(m)) ∈ C(n, m) ⇐⇒ σλ ∈ C(Q, β).

Now, let β1 be a dimension vector which is weakly increasing with jumps of at
most one along the m flags, β1 �= β and β1 ◦ (β − β1) = 1. Let I = (I1, . . . , Im) be the
jump sets. Then β1 is βI if β1(0) = 0 or β1 is β ′

I if β1(0) = 1. Moreover, we have that

σλ(βI ) =
∑

i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ −

∑
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ,

σλ(β ′
I ) =

∑
i odd

⎛
⎝∑

j/∈Ii

λ(i)j

⎞
⎠ −

∑
i even

⎛
⎝∑

j/∈Ii

λ(i)j

⎞
⎠

and, of course, σλ(β) = 0. The proof follows now from Lemma 4.1. �
REMARK 4.5. It is easy to see that if λ(i) are weakly decreasing sequences satisfying

the conditions (1) and (2) of Theorem 4.4 then λ(i) are sequences of non-negative real
numbers. Of course, this non-negativity is automatically satisfied in C(n, m).

https://doi.org/10.1017/S0017089508004631 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004631


QUIVERS, LONG EXACT SEQUENCES AND HORN TYPE INEQUALITIES II 213

5. A recursive description. First, we recall a reduction method that appears in [2],
[4], [13] and [14].

LEMMA 5.1. Let Q be a quiver and v0 a vertex such that near v0, Q looks like:

v1
a→ v0

b→ w1.

Suppose that β is a dimension vector and σ is a weight such that

β(v0) ≥ min{β(w1), β(v1)} and σ (v0) = 0.

Let Q be the quiver defined by Q0 = Q0\{v0} and Q1 = (Q1\{a, b}) ∪ {ba}. If β = β|Q is
the restriction of β and σ = σ |Q is the restriction of σ to Q then

SI(Q, β)σ ∼= SI(Q, β)σ .

From now on we will assume that m is odd. Under this assumption, we are able to
further describe βI ◦ (β − βI ) and β ′

I ◦ (β − β ′
I ). For the convenience of the reader, we

recall some of the notations from Section 1. Let (I1, . . . , Im) be an m-tuple of subsets
of {1, . . . , n} such that at least one of them has cardinality at most n − 1. We define the
following weakly decreasing sequences of integers (using conjugate partitions):

λ(I1) = λ′(I1), λ(Im) = λ′(Im)

and for 2 ≤ i ≤ m − 1

λ(Ii) =
{
λ′(Ii) if i is even
λ′(Ii) − ((|Ii| − |Ii+1| − |Ii−1|)n−|Ii|) if i is odd

LEMMA 5.2. Let I = (I1, . . . , Im) be an m-tuple of subsets of {1, . . . , n} as above and
such that |I1| = |I2| and |Im−1| = |Im|. If βI ◦ (β − βI ) �= 0 then λ(Ii) are partitions and

βI ◦ (β − βI ) = f (λ(I1), . . . , λ(Im)).

Consequently,

βI ◦ (β − βI ) = 1 ⇐⇒ I ∈ S(n, m).

Proof. Let us denote βI by β1 and β − βI by β2. Then we have that

β1 ◦ β2 = dim SI(Q, β1)−〈·,β2〉.

Since β1(0) = 0, we can work with the quiver Q′ obtained from Q by deleting the vertex
0 and all the arrows going out from this vertex. If β ′

1 and β ′
2 are the restrictions of β1

and β2 to Q′, then the restriction of the weight −〈·, β2〉 to Q′ is exactly −〈·, β ′
2〉 as the

n arrows connecting vertex 0 and m point towards vertex m. Therefore, we have

β1 ◦ β2 = β ′
1 ◦ β ′

2.

Let us denote 〈β ′
1, ·〉 by σ ′

1. As β ′
1(1) = β ′

1(2) = |I1| = |I2| and β ′
1(m − 1) = β ′

1(m) =
|Im−1| = |Im| it follows that σ ′

1(1) = σ ′
1(m) = 0.
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At this point, we can apply the reduction Lemma 5.1 to reduce Q′ to the quiver Q′′

obtained from Q′ by removing the two vertices 1 and m. Again, it easy to check that if
β ′′

1 , β ′′
2 are the restriction of β ′

1, β ′
2 to Q′′ then

β ′
1 ◦ β ′

2 = β ′′
1 ◦ β ′′

2 .

On the other hand, this reduced quiver Q′′ is exactly the generalized flag quiver from
[1, Section 3]. It follows from ([1, Lemma 6.4]) that λ(i), 1 ≤ i ≤ m are partitions and

β ′′
1 ◦ β ′′

2 = f (λ(I1), . . . , λ(Im)).

This finishes the proof. �
REMARK 5.3. Let β = β1 + β2 with β1 weakly increasing with jumps of at most

one along the flags and β1 ◦ β2 �= 0. We claim that

β1(0) = 1 ⇒ β1 is β along the flags F(1) and F(m).

Indeed, we have that β1 ↪→ β by Theorem 2.1(3). Consider a representation W ∈
Rep(Q, β) with {ImW (ai)}1≤i≤n linearly independent. Since W must have a β1-
dimensional sub-representation, we obtain that β1(1) = n and so β1 has to be β along
F(1). Similarly, as m is odd, we have that β1(0) = 1 implies that β1 equals β along the
flag F(m).

LEMMA 5.4. Let I = (I1, . . . , Im) be an m-tuple of subsets of {1, . . . , n} and let
λ(i), 1 ≤ i ≤ m be weakly decreasing sequences of n non-negative reals.

(1) If β ′
I ◦ (β − β ′

I ) �= 0 and (λ(2), . . . , λ(m − 1)) ∈ C(n, m − 2) then

σλ(β ′
I ) ≤ 0.

(2) Suppose that at least one of the sets I1, . . . , Im has cardinality at most n − 1 and
βI ◦ (β − βI ) = 1. Furthermore, assume that

∑
i even

⎛
⎝∑

j∈Ji

λ(i)j

⎞
⎠ ≤

∑
i odd

⎛
⎝∑

j∈Ji

λ(i)j

⎞
⎠ ,

for every (J1, . . . , Jm) ∈ S(n, m). Then

σλ(βI ) ≤ 0.

Proof. (1) Let us write β1 = β ′
I and β2 = β − β ′

I . As β1(0) = 1 and m is odd it
follows from Remark 5.3 that β1 has to be equal to β along the flags F(1) and F(m).
In other words, β2 is zero at vertex 0 and at all vertices of the flags F(1) and F(m).

Now, let Q′ be the quiver obtained from Q by deleting the vertex 0, the flags F(1)
andF(m) and all the arrows connected with these deleted vertices. If β ′

i is the restriction
of βi to Q′, i ∈ {1, 2}, then

β1 ◦ β2 = β ′
1 ◦ β ′

2.

Let Q′′ be the quiver obtained from Q′ by adding a new vertex 0, n arrows from
vertex 2 to 0 and n arrows from vertex m − 1 to 0. We denote by β ′′

1 and β ′′
2 the
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extensions of β ′
1 and β ′

2 to Q′′ such that β ′′
1 (0) = 1 and β ′′

2 (0) = 0. Again, it easy to see
that

β ′′
1 ◦ β ′′

2 = β ′
1 ◦ β ′

2.

Note that Q′′ is the quiver corresponding to �(n, m − 2), except that all the arrows
have the opposite orientation. So, let us define the weight σ ′′

λ for Q′′ by

σ ′′
λ (j, i) = (−1)i(λ(i)j − λ(i)j+1),∀1 ≤ j ≤ n,∀2 ≤ i ≤ m − 1,

and σ ′′
λ (0) is determined by σ ′′

λ (β ′′) = 0, where β ′′ is just the restriction of β to Q′′
0.

From Remark 3.2, we deduce that σ ′′
λ ∈ C(Q′′, β ′′) if and only if (λ(2), . . . , λ(m −

1)) ∈ C(n, m − 2). As β ′′
1 ↪→ β ′′ and σ ′′

λ ∈ C(Q′′, β ′′) it follows that σ ′′
λ (β ′′

1 ) ≤ 0, i.e.

∑
2≤i≤m−1
i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ −

∑
2≤i≤m−1
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ +

∑
2≤i≤m−1
i odd

|λ(i)| −
∑

2≤i≤m−1
i even

|λ(i)| ≤ 0.

In other words, we have

σλ(β ′
I ) ≤ 0.

(2) Let α1 = βI and α2 = β − βI . Again, as α1(0) = 0, we can simplify our quiver
by deleting the vertex 0 and all the arrows going out from this vertex. We denote the
simplified quiver by Q̃ and the restriction of the dimension vectors will be noted by α̃1,
α̃2 and β̃.

Next, we compute the dimension

βI ◦ (β − βI ) = α̃1 ◦ α̃2 = dim SI(Q̃, α̃2)〈̃α1,·〉

using the same arguments as in Lemma 5.2. Note that the weight σ̃1 = 〈̃α1, ·〉 is equal to
α̃1(1) − α̃1(2) at vertex 1 and it is equal to α̃1(m) − α̃1(m − 1) at vertex m. Furthermore,
as α̃1 ◦ α̃2 �= 0, we have α̃1(1) ≥ α̃1(2) and α̃1(m) ≥ α̃1(m − 1). To see this, just take
W̃ ∈ Rep(Q̃, β̃) to be bijective along the main arrows a1 and am−1.

Note that I1, . . . , Im are the jump sets of α̃1 along the m flags of Q. Let J1 be the
subset of I1 consisting of the first α̃1(2) elements of I1. Similarly, let Jm be the subset
of Im consisting of the first α̃1(m − 1) elements of Im. As α̃1 ◦ α̃2 �= 0, we know that
λ(J1), λ(Jm), λ(Ii) must be partitions for all 2 ≤ i ≤ m − 1 and

α̃1 ◦ α̃2 = f (λ(J1), λ(I2), . . . , λ(Im−1), λ(Jm)).

It is clear that at least one of the J1, I2, . . . , Im−1, Jm has cardinality at most n − 1, and
hence, (J1, I2, . . . , Im−1, Jm) ∈ S(n, m). Therefore, we have

∑
i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ≤

∑
j∈J1

λ(1)j +
∑
j∈Jm

λ(m)j +
∑

2≤i≤m−1
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ .

As λ(1)j and λ(m)j are assumed to be non-negative for all 1 ≤ j ≤ n we obtain that
σλ(βI ) ≤ 0. �
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Proof of Theorem 1.2. First, let us prove that (1) ⇒ (2). If I = (I1, . . . , Im) is an
m-tuple in S(n, m) then βI ◦ (β − βI ) �= 0, by Lemma 5.2 and so βI ↪→ β. As σλ ∈
C(Q, β), we have that σλ(βI ) ≤ 0 which is equivalent to

∑
i even

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ ≤

∑
i odd

⎛
⎝∑

j∈Ii

λ(i)j

⎞
⎠ .

To obtain the first inequality, we just note that β − e0 ↪→ β (this is not true if m is
even) and this clearly implies that∑

i even

|λ(i)| ≤
∑
i odd

|λ(i)|.

Next, it is clear that (λ(1), . . . , λ(m)) ∈ C(n, m) implies (λ(2), . . . , λ(m − 1)) ∈
C(n, m − 2).

For the other implication (1) ⇐ (2), let I = (I1, . . . , Im) be an m-tuple of subsets
of {1, . . . , n}. If |Ii| = n,∀1 ≤ i ≤ m then βI = β − e0 and β ′

I = β. In this case, we have

σλ(βI ) =
∑

i even

|λ(i)| −
∑
i odd

|λ(i)| ≤ 0,

and σλ(β ′
I ) = 0.

Now, let us assume that at least one of the Ii has cardinality at most n − 1. If
β ′

I ◦ (β − β ′
I ) = 1 then σλ(β ′

I ) ≤ 0 by Lemma 5.4(1). If βI ◦ (β − βI ) = 1 then it follows
from Lemma 5.4(2) that σλ(βI ) ≤ 0. The proof follows now from Theorem 4.4. �

REMARK 5.5. Let us point out that Theorem 1.2 fails if m is even. For example,
one can take m = 4, n = 1. Then λ(1) = (3), λ(2) = (3), λ(3) = (1), λ(4) = (2) give a
counter-example to Theorem 1.2.

When m = 3 in Theorem 1.2, we recover Fulton’s result [6]:

COROLLARY 5.6 (Majorization problem). Let λ(1), λ(2), λ(3) be three partitions with
at most n non-zero parts. Then the following are equivalent:

(1) there exist a short exact sequence of the form

Mλ(1) → Mλ(2) → Mλ(3),

where Mλ(i) is a finite abelian p-group of type λ(i);
(2) the numbers λ(i)j satisfy

|λ(2)| ≤ |λ(1)| + |λ(3)|

and ∑
j∈I2

λ(2)j ≤
∑
j∈I1

λ(1)j +
∑
j∈I3

λ(3)j

for all triples (I1, I2, I3) of subsets of {1, . . . , n} of the same cardinality r with
r < n and cλ(I2)

λ(I1),λ(I3) = 1.
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