NEAR-IR IMAGING SPECTROSCOPY OF CD GALAXY NGC1275

B. J. SAMS, R. GENZEL, A. KRABBE, N. THATTE AND H. KROKER Max Planck Institut für extraterrestrische Physik Giessenbachstrasse 85748 Garching, GERMANY

1. The Continuum and Molecular Line Emission

H and K band imaging spectroscopy of the central 12" (4.2 kpc) of NGC1275 using the Max-Planck-Institut für extraterrestrische Physik imaging spectrometer "3D" maps the gas density and temperature in the core and separates the contribution of Seyfert emission to the core light.

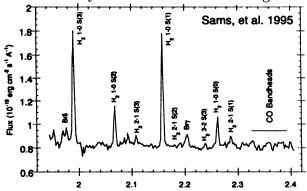


Figure 1: Integrated K-band spectrum of central 3".25

The K band spectrum integrated over the central 3".25 shows many H_2 lines whose excitation is 1750 K, consistent both with shock heating and excitation by a central source. The derived H_2 column density is $N(H_2) =$ $7.6 \times 10^{15} \text{cm}^{-2}$. The continuum slope varies from $I(\lambda) \propto \lambda^{-2.7}$ within the central 1", to a nearly black body slope of $I(\lambda) \propto \lambda^{-3.6}$ at a radius of 3", showing that The central source dominates the continuum emission. We fit the K-band continuum emission from the central 1" with a combination of K5III stars which dominate the light in the NIR, emission from hot dust with emissivity $\propto \lambda^{-1}$, and Seyfert emission $\propto \lambda^{-1}$. We find a a stellar contribution of 0.075, a Seyfert contribution of 0.8, a dust contribution of 0.125 at 475 K, and a K band optical depth of 0.75. This causes dilution of the CO_{sp} index by a factor of roughly 13 in the center.