Nominations are sought for the Batchelor Prize 2012

The Batchelor Prize, sponsored by the Journal of Fluid Mechanics, is presented once every four years at the ICTAM conference, the next occasion being in Beijing in August 2012. The prize winner will be announced late in 2011.

The Prize of \$25,000 is awarded to a single scientist, for outstanding research in fluid dynamics. The research so recognised by the Prize shall normally have been published during the ten-year period prior to the announcement of the award (i.e. during the period 2001–2010). The intention is thus that younger researchers should be as eligible for consideration as those who are more established, and that the work should be of great current interest (representing, for example, an emerging field of application of fluid mechanics, or a significant breakthrough in an established branch of the subject).

The Prize winner will be determined by a small committee whose members are internationally distinguished in fluid mechanics. It is expected that the Prizewinner will deliver a lecture at ICTAM and that this lecture will also be published in the Journal of Fluid Mechanics and be made freely available on the Cambridge Journals website.

The nomination process is open to everyone. If you would like someone to be considered for the Batchelor Prize please nominate them using the procedure outlined below:

1. The nomination should include a brief curriculum vitae of the candidate nominated.

2. A list of his/her publications during the period 2001–2010 with up to 10 of particular distinction being marked by an asterisk (there is no requirement that the research was published in the *Journal of Fluid Mechanics*).

3. A brief (one page) statement of the case for making the award.

To submit a nomination email jfmprize@cambridge.org with the above information.

The deadline for nominations is 30th April 2011.

Conditions concerning the award of the Batchelor Prize:

Self-nominations will NOT be accepted.

All nominations must be in English.

The decision of the Committee shall be final. Previous winners are not eligible.

Editorial office Journal of Fluid Mechanics

ISSN 0022-1120

671

Journal of Fluid Mechanics

1	The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble O. Marxen & D. S . Henningson
S 34	A falling cloud of particles at a small but finite Reynolds number F. Pignatel, M. Nicolas & É. Guazzelli
52	Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes P. J. Diamessis, G. R. Spedding & J. A. Domaradzki
96	Viscous coupling of shear-free turbulence across nearly flat fluid interfaces J. C. R. Hunt, D. D. Stretch & S. E. Belcher
121	On the depinning of a drop of partially wetting liquid on a rotating cylinder U. Thiele
137	An asymptotic expansion for the vortex-induced vibrations of a circular cylinder P. Meliga & JM. Chomaz
168	The enstrophy cascade in forced two-dimensional turbulence A. Vallgren & E. Lindborg
184	Growth and instability of a laminar plume in a strongly stratified environment M. Lombardi, C. P. Caulfield, C. Cossu, A. I. Pesci & R. E. Goldstein
207	Hysteresis in vortex-induced vibrations: critical blockage and effect of <i>m</i> * T. K. Prasanth, V. Premchandran & S. Mittal
226	Whipping instability characterization of an electrified visco-capillary jet G. Riboux, Á. G. Marín, I. G. Loscertales & A. Barrero
254	Three-dimensional interactions between a finite-span synthetic jet and a crossflow O. Sahni, J. Wood, K. E. Jansen & M. Amitay
288	The wall pressure signature of transonic shock/boundary layer interaction M. Bernardini, S. Pirozzoli & F. Grasso
313	Rayleigh–Taylor instability of an inclined buoyant viscous cylinder J. R. Lister, R. C. Kerr, N. J. Russell & A. Crosby
339	Shock propagation through a bubbly liquid in a deformable tube K. Ando, T. Sanada, K. Inaba, J. S. Damazo, J. E. Shepherd, T. Colonius & C. E. Brennen
364	Spatial structure of first and higher harmonic internal waves from a horizontally oscillating sphere E. V. Ermanyuk, JB. Flór & B. Voisin
384	Highly transient squeeze-film flows E. A. Moss, A. Krassnokutski, B. W. Skews & R. T. Paton
399	Oscillations of weakly viscous conducting liquid drops in a strong magnetic field J. Priede
417	Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions E. Touber & N. D. Sandham
466	Cellular flow in a small blood vessel J. B. Freund & M. M. Orescanin
491	Transport relaxation time and length scales in turbulent suspensions P. Claudin, F. Charru & B. Andreotti
507	Large-eddy simulations of turbulent mixing layers using the stretched-vortex model T. W. Mattner
S 535	Forced turbulent fountain flow behaviour N. Williamson, S. W. Armfield & W. Lin
559	Boundary-layer thickness effects of the hydrodynamic instability along an impedance wall S. W. Rienstra & M. Darau
S 574	The action of waving cylindrical rings in a viscous fluid H. Nguyen, R. Ortiz, R. Cortez & L. Fauci
587	Tuning tidal turbines in-concert to maximise farm efficiency R. Vennell
605	Erratum

S indicates supplementary data or movies available online.

Cambridge Journals Online

For further information about this journal please go to the journal web site at **journals.cambridge.org/flm**

Cert no. SA-COC-1527 www.fsc.org © 1996 Forest Stewardship Council

