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1. Introduction

Let G be a group and let A" be a field. The twisted group algebra K'{G)
of G over Kis defined as follows: let G have elements a, b, c, ... and let K'(G)
be the vector space over K with basis elements a, b~, c, ...; let a: G x G->K be
a 2-cocycle and define a multiplication on K'(G) by

xy = a(x,y)xy (x,yeG);

extending this by linearity to K'(G) yields an associative algebra. We are
interested in information concerning the Jacobson radical of K'(G), denoted
by JK'(G).

Extending an earlier notion ((14), p. 54 Definition) we call a class X of
groups a JK' class if whenever G has a normal subgroup H such that G/H e X
then JK\G) £ JK'(H)K'(G). We call a class X of groups an NJK' class of
exponent «>0 if whenever G has a normal subgroup 7f such that G/H e X then
IJK'(G)Y <= JK\H)K'{G); we call AT an TW '̂ class if JK'{G) is nilpotent
modulo JK'{H)K'{G). If .K has characteristic 0 then the class of finite groups
is a JK' class ((8) Proposition 1.5, p. 164). If K has characteristic p>0 then
the class of finite groups of order at most n is an NJK' class of exponent n
((8) Proposition 1.3, (9) p. 164) and the class of finite soluble groups of orders
p"m, (p, m) = 1, is an NJK' class of exponent p" ((8) Theorem 1.6, (9) p. 164).
We remark in passing that if a group G belongs to an NJK' class of exponent
n then \JK\Gy\" = {0}; it is unknown whether the converse is true. In this
paper we show that the property of being a JK' or an NJK' class is invariant
under certain closure operations on classes of groups. This enables us to
deduce that certain large classes of groups are of the above types and so have
zero or nilpotent Jacobson radicals; further our methods provide means for
extending results on JK' or NJK' classes.

Following the ideas of P. Hall (5) a mapping A from classes of groups to
classes of groups is called a closure operation if, for classes X and Y of groups,

(i) X £ AX,

(ii) Y £ X implies A F S A J T and

(iii) AX = AAX.
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X is A-closed if X = AX. For every class X and closure operation A there is a
least A-closed class containing X, namely AX. We shall employ closure opera-
tions L, p and P defined as follows ((5), p. 533):

G e hX if every finitely generated subgroup of G is contained in an X-
subgroup of G;

G e PX if there exists a series of subgroups Ht of G such that

where HJ+JHj eX(j= 0, 1, ..., « - l ) .
G e pXif for some totally ordered set Q there exists a family {Ua,Va: a e Q]

of pairs of subgroups of G such that

(i) Ua<iVa for all a eQ,

(ii) VJU.eXfoidMoeQ,

(iii) <T<T(<T, t eQ) implies that Va <=, Uz,

(iv) C\{1} = (J (W. ) -

We shall show that P and P are closure operations.
Finally we use the standard notation that if A and B are two closure opera-

tions then {A, B}X denotes the least class of groups containing X and closed
under A and B.

Our main results are as follows.

Theorem 1.1. Let X be a JK' class. Then {L, P}X is a JK' class.

Theorem 1.2. Let X be an NJK' class. Then PX is an NJK' class.

2. Preliminary results
In this section we collect together a few simpler results, some of which are

necessary for later proofs and some of which are of independent interest. The
following lemma, although well-known, is included for the sake of completeness.

Lemma 2.1. P and v are closure operations.

Proof. First we show that p is a closure operation. The fact that p satisfies
(i) and (ii) of the definition of a closure operation is immediate. Now let
G e P P X Then we have a series

such that Hi+l/Hi€vX (i = 0, 1,..., n— 1). Thus we have for each i,
0 g i g n - l , a series

such that HiJ+l/Hjj e X(j = 0, 1, ..., H;— 1). Then the series

{1} = H00^H01^...<aHij^Hij+1^...^Hn = G
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shows that G e vX. Hence P satisfies (iii) of the definition and is a closure
operation.

To prove that X c $x let G e X and consider the ordered set il = {1} and
the pair {1, G} of subgroups of G. The conditions set out in the definition of
vX are then satisfied and so G e vX. Thus X £ vX. If Y s X then it is
immediate from the definition that PY £ PX.

It remains to show that PX = PP.Y. Let G e vPX. Then, for some totally
ordered set Q, there exists a family {£/„, Va: oeQ.} of pairs of subgroups
such that

(i) l / ^ J ^ f o r a l l a e Q ,

(ii) VJUa e PX for all a e Q,

(iii) o<x(o, x e Q), implies that Va c Ux

(iv) G\{1} = (J

But (ii) implies that for each a e Q, there exists a totally ordered set Ma and a
family {i?^, S^: \ia e Afff} of pairs of subgroups such that

(i) i

(ii) SJR^ eXfor all / i .eM,,

(iii) na<va(na, va e Qa) implies that SM<r £ .RV(j,

(iv) Va\Ua = 1J (S^U^J.

Let fi = (J MCT be totally ordered by the relation na<vt if either a<x or
< x s n

cr = T and juff<v(7. Then the family {i?Ma, 5 ^ : /xa e Q} of pairs of subgroups
satisfies

(i) /?„„<! S,,, for all | i , efi,

(ii) SJR^ eX for an ii.en,

(iii) //ff<vt(^<T, vt e H) implies that S ô £ i?Vt if <T = T and that

Sfc EK, ££/ , = *„ if (T<T,

(iv) G\{I}= U_(^\R,J-

Thus G e P X and so PPX = PX. Consequently P is a closure operation.

Lemma 2.2. Le/ X be a JK' class. Then LX is a JK' class.

Proof. Let G be a group, let H<\ G and suppose G/H e LX. We wish to

show that JK'(G) c JK\H)K\G). LetfsJK'(G), then/= £ 1 ,̂. where
i = 1

XJEK, gjeG (j = 1,2, ...,«). Let /? be the subgroup of G generated by
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g2, ...,gn}. Then since G/HeLX and R/His finitely generated there
exists a subgroup S of G such that R £ S and S/H e X. But fe JK'(G)nK'(S)
and so feJK'(S) ((8) Lemma 1.9, (9) p. 164). Since S/HeXv/e have

fe JK'(S) £ JK'(H)K'(S) £ JK\H)K\G)
which establishes the lemma.

Theorem 2.3. Let X be an NJK' class and let G be a group and H a normal
subgroup of G such that G/HetX. Then JK'(G) is locally nilpotent modulo
JK'(H)K'(G).

Proof. Le t / i , / 2 , . . . , / r be r elements ofJK'(G). We require to show that
the ring W generated by {fuf2, ...,/r} is nilpotent modulo JK'(H)K'(G). In
the expressions for the ft as linear combinations of elements of G let F be the
finite set of elements of G appearing with non-zero coefficients. Let R be the
subgroup generated by HuF. Then since G/HehX and R/H is finitely
generated there exists a subgroup S of G such that R £ S and S/H e X. But
fieJK'(G)nK'(S) and so / ( e JK'(S) ( /= 1,2, ...,/•) ((8) Lemma 1.9); thus
W £ JK'(S). But X is an NJK' class and hence there exists n such that

[JK'(Sy]n £ JK'(H)K'(S) £ JK\H)K\G).
This implies that W" £ JK'(H)K'(G) which completes the proof.

3. Proofs of main theorems

Theorem 1.1 follows directly from Lemma 2.2 and the next result.

Lemma 3.1. Let X be a JK' class. Then $X is a JK' class.

Proof. Let G have a normal subgroup H such that G/H e $X. Let the
series satisfying the definition of the closure operation be given by the family
{VJH, UJH: a e ft}, where Q is a totally ordered set, Ua<i Va, VJUa e Xand
G\H = (J {Va\Ua). Let Tbe a fixed transversal of HinC. Consider/e JK'{G),

n

then / = Y, ^i9i where k} e K'(H), gjeT(j= 1,2,..., n). We wish to show
i = 1

that ljeJK\H) (j = 1, 2, ...,«) and we shall do this by induction on n = /(/),
the coset length of/. If gjeVaU)\Ua(J) (j = 1,2, ...,n) then we may first
suppose feJK'(Vz) where T = max{o-(l), <T(2), ..., o(ri)} since clearly/e^'(Ft)
and so feJK'(G)nK'(Vz) £ Jis:'(Kt) ((8), Lemma 1.9). We shall argue, by
induction on this coset length, that iffeJK'(Vp) for some p then

feJK'(H)K'(G).
We begin with the observation that gt (i = 1, 2, ..., n) is invertible and that
g'1 = agr1 where ct e K, ct =fr 0 (i = 1, 2, ..., n) ((8), Lemma 1.1).

Suppose n = 1 and then/ = Ai^. As/^'(Kt) is an ideal of K'(VZ) we have
^i =f9il e ^ T O and hence k^BjK\Vz)nK'{H) ^ JK\H) ((8), Lemma
1.9). Thus / e JK\H)K'{yz).
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Suppose now n > 1 and assume the result is true for those / with /(/) < n.
Then fg^1 e JK'(VX) and

11 = E Xi9i9il = E
i = 1 i = 1

- 1

£ Vifoi, 0i )9i9i
i = 1

In terms of the new transversal Tg~[l = {tg^l: (e T} we are required to show
that XjCiV.(gj,gil)GJK\H), from which we deduce easily that XjeJK'(H)
(j = 1, 2, ...,«). Consequently, without loss of generality, we may assume/

n

has the f o r m / = £ A.-g,- where gt = 1. The set {ffi, fir2. -".flV} is n ° t neces-
i = 1

sarily a subset of a transversal of U, in Fr and accordingly it is convenient to
make a notational change. Let

{ . 0 1 > 9 2 > • • • > 0 n } = { 0 1 1 . 0 1 2 > • • • > S i d , ! 0 2 1 ' 0 2 2 > • • • » 0 2 d 2 ; • • • ; 0 s l > 0 s 2 > • • • > 0 s < ( , }

where t/ t + d2 +... +^/ , = n a n d Uxgu = f/tgfc, if a n d on ly if

i = fc(./= 1 ,2 , . . . ,< / , ; / = 1 ,2 , . . . ,</»; i, fc = 1 ,2 , ...,s)

n s dj

and let / = £ A,.£, = ^ £ A«^* w h e r e ^* = Xi f o r s o m e ' = 'O'»fc)-
i = i j = I i = i

Since 0; e Ft/£/t for some j # 1 and gxeH we know that in the above we
have 5>1 and hence */f<n (/ = 1, 2, ..., s). Let gf,v = Mfj-g,! where uu e Uz

0 = 1,2, ...,rf,; / = 1,2, . . . , J ) . Then

/= E E ̂
j = 1 k = 1

= E E AWJ*0;I
/ = l * = I

s dj

= 1, Y, Vjk<x(Ujk,
j = 1 k = 1s. r d j - 1 -

= E E M;*a("j*. 5JI)MJ* 0yi-
; = l L* = l J

Since ^/C/, e X we deduce that
dj

E HJk<x(Ujk, 9j\)ujk e JK\Ut) (j = 1, 2, ..., s).
* = I

Since fi is totally ordered there exists a ^ T such that «,7 eVa(j=\,2,...,di;
i = 1, 2, ..., J ) and hence

E /i;ka("Jt, ff71)5j* e J T O G = 1, 2, ..., s)
* = I

E.M.S.—K

https://doi.org/10.1017/S0013091500009834 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009834


154 J. D. P. MELDRUM AND D. A. R. WALLACE

which implies that

£ Hjk<uJk, gn)ujk 6 JK'(Va) (j = 1, 2, ..., s).
k = 1

But
<LL _ \

*. 9ji)Ujk I ^ dj<n (j = 1, 2, ..., s)
\k = 1 /

and so, by our induction hypothesis,

t | i HjMujk, gn)uJk e JK\H)K\G) (j = 1, 2 s).

But JK'(H)K'(G) is aa ideal of K\G) ((12), Theorem 4.1), and so

feJK\H)IC{G).

This completes the induction and establishes the lemma.

Proof of Theorem 1.2. Let G have a normal subgroup H such that G//f e P.Y.
Then there exists a series

/ / = i foof f^ ...<3Hn = G

such that Hi+1/HteX (z = 0, 1,...,«-1). Since HJHn.teX there exists
j > 0 such that [.//£'(#„)]* c JK'iH^JK'iHJ. We argue by induction on n
and suppose that we have shown that there exists /*„_! >0 such that

We also have, since Hn.x^Hn, that JK\Hn.^)K\H^ = Kt(Hn)JK\Hn-l)
((8), lemma 1.2). Hence we deduce that

£JK'(H)K'(HJ.
The step it = 1 is trivial. This establishes the induction and so we conclude

that
[JK'(G)]r" = [JK'(Hn)Y"

£ JKXH)K'(Hn) = JK\H)K\G).

This establishes Theorem 1.2.

4. Concluding remarks

Our results on semisimplicity etc. are applicable to large classes of groups.
Some of these applications are incorporated in the next two theorems whose
corollaries contain some known results ((2), (3), (4), (9), (10), (12), (14), (15)).
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Theorem 4.1. Let K have characteristic 0 and let Xo be the class of finite
groups. Then {L, $}XO '•* a JK' class.

Corollary. Let K have characteristic 0 and let G be one of the following
types:

(a) locally finite group,
(b) locally soluble group,
(c) SN group,
(d) residually finite group,
(e) free group.

Then JK\G) = 0.

Theorem 4.2. Let K have characteristic p>0 and let Xp be the class of finite
groups of orders prime to p. Then {L, f}Xp is a JK' class.

Corollary. Let K have characteristic p>0 and let G be one of the following
types:

(a) locally finite group with no non-trivial p-elements,
(b) locally soluble group, the factors of the derived series of the finitely

generated subgroups of G having no non-trivial p-elements,
(c) SN group, the factors of an abelian series having no non-trivial p-elements,
(d) residually finite {of order prime to p) group,
(e) free group.

Then JK\G) = {0}.

In order to obtain further results in the above manner we would remark
that it is possible to extend Theorem 1.2 if we allow well-ordered series and if
we are willing to be satisfied with local nilpotency. We define, therefore, an
operation PI as follows (cf. (6), p. 171 and p. 182):

G e PiX if there exists an ordinal a and a series {H^: \i ^ a] of subgroups such
that

(i) //,<.<? (A ^ a ) ,

(ii) if A is a limit ordinal then Hx = \J H,, (A ̂  a),

(iii) Hx+1/HxeX(l.<a) and "<*

(iv) 1 = Ho, Ha = G.

If in the above (i) is replaced by

(i)' Hx^Hx+l(X«j),

then we say G e iX.

PI satisfies (i) and (ii) of the definition of a closure operationjjut not (iii).
The subsequent result is unfortunately restricted to the operation PI and cannot
be extended to the least closure operation containing PI.
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Theorem 4.3. Let X be an NJK' class. Let G be a group and let H be a
normal subgroup of G such that G/H e viX. Then JK'(G) is locally nilpotent
modulo JK'(H)K'(G).

Proof. By assumption there exists an ordinal <r and a series

H = H0£Hlc: ...^Ha = G

with HxoG, Hx+l/Hx e X and if A is a limit ordinal Hx = (J Hx. We shall
x<).

establish the theorem by showing that any finitely generated subring of
JK'(Ha)K'(G) is nilpotent modulo JK'(H)K'(G) for all a ^ a. If this statement
is not true then there exists a least ordinal P (say) such that JK'(He)K\G)
contains a finitely generated subring R which is not nilpotent modulo

JK'(H)K'(G).

Let R be generated by ft,f2, ...,/„. If P is a limit ordinal then H» = [j Ha

and we may write
fi = x,-i0i + x.202 + • • • + xirgr

where {gug2, •• •»#»•} is P a r t °f a transversal of Hp in G and XjjeJK'(Hp)
(j = 1, 2, ..., r; i = 1, 2, ...,»). Since x y is either 0 or has finite support there
exists 5<P such that, for all i,j, x,v e K'(He). Then, as Hs c jjp,

XijeJK'iH^nK'iH,) s / i f (fli) ((8), Lemma 1.9).

Thus fieJKt(Hs)K'(G) (i = 1, 2, ..., r) and so R <= JK'iHJK'iG). This
contradicts the definition of J? and hence /J cannot be a limit ordinal. Thus let
P = J.+ 1 and then we have Hp/Hy e X. Since X is an NJK' class there exists
an integer w such that \JK\H0)\

m E JK\Hy)K\Hp). Hence, as ff^C, we
have ((8), Lemma 1.2, (12) Theorem 4.1)

£ JK\Hy)K'{Hf)K\G)

= JK'(HV)K'(G).
But i?m is a finitely generated subring of JK'(Hy)K'(G) and, by the assumption
on P, is nilpotent modulo JK'(H)K'(G); this is a contradiction to the choice of
R. Hence any finitely generated subring of JK'(Ha)K'(G) is nilpotent modulo
JK'(H)K'(G) for all a ^ a and by taking a = a we obtain the desired result.

Lemma 4.4. Le? G be a group and let H be a normal subgroup such that
G/H is abelian or locally finite. Then JK'(G) is locally nilpotent modulo
JK'(H)K'(G).

Proof. By Theorem 2.4 if G/H is abelian then the result follows from Lemma
3.2 of (15) and if G/H is locally finite the result follows from Proposition 1.3
of (8).
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From this Lemma we deduce two useful results. For convenience we let F
be the class of finite groups and let S be the class of soluble groups.

Theorem 4.5. Let G be a group and let H be a normal subgroup such that
G/He L(FU5). Let JK'(H) = {0} and if K has characteristic p>0 let G have
no non-trivial p-elements. Then JK'(G) = {0}.

Proof. We argue by contradiction and so we suppose that xeJK*{G^),
x # 0. Let Go be the group generated by H and by the support of x. Then
Go/H is finitely generated and so is either finite or soluble. If Go/H is finite
then, by Lemma 4.4, JK'(G0) is locally nilpotent. If K has characteristic 0
then finite groups form a JK' class and JK'(G0) = {0}. If K has characteristic
p>0, by Theorem 3.2 of (8), we have JK'(G0) = {0}.

Suppose therefore Go/H is soluble. Then there exists a series

Goc>G1[>...t>Cm = H

such that G,-oG and CI/Gf+, is abelian (/ = 0, 1, ..., m — 1). If m = 1 then,
again by Lemma 4.4, JK'(G0) is locally nilpotent. If K has characteristic 0 this
implies JK'(G0) = {0} (cf. (7), (9), (15), Lemma 3.3), and if K has characteristic
p>0, since G has no non-trivial /^-elements, this implies JK'(G0) = {0} ((8)
Theorem 3.2). Suppose now m> 1. We argue by induction and suppose the
result is true for m— 1. Thus we suppose JK'{Gi) — {0}. By the above proof
we have JK'{G0) = {0}, establishing the theorem.

Finally we apply this result to obtain the following (cf. (15), Theorem 3.5).

Theorem 4.6. Let G e VL(FVS). If K has characteristic 0 or if K has
characteristic p>0 and G has no non-trivial p-elements then JK'(G) = {0}.

Proof. By assumption G has a series {Hx: I g a) of subgroups satisfying
the definition of £L(FUS). Suppose JK\G) # {0} and let j? be the least ordinal
such that/#'(#„) # {0}. By assumption JK'(HX) = 0(a</}). Let /e /# ' (#„) ,
/ # 0. If /} is a limit ordinal then, as / has finite support, there exists 6 < ft
such that/e.K'(#a). Thus.as//,, s //^wehave/e JK'iH^nK'^Ht) s JK'(HS)
which contradicts the choice of p. Hence J? is not a limit ordinal and thus we
have p = 1+1. Then, by hypothesis, JK\Hy) = {0}. Since

we deduce from Theorem 4.4 that JK'(Hy+{) = {0} and this contradicts trie
choice of p. Thus the theorem is proved.
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