Characterisation of quasi-Anosov diffeomorphisms

Graham Couper

Let f be a C^1 diffeomorphism of a compact C^{∞} boundary-less manifold, and let $f^{\#}$ be the operator on the bounded or continuous sections of the tangent bundle (with supremum norm) defined by $f^{\#}\eta = Tf \circ \eta \circ f^{-1}$. The main result of this paper is that f is quasi-Anosov if and only if $1 - f^{\#}$ is injective and has closed range.

1. Introduction

Let *M* be a compact C^{∞} manifold without boundary, and let diff¹(*M*) denote the C^{1} diffeomorphisms of *M* with the C^{1} topology. Write *TM* for the tangent bundle of *M*, and for $f \in \text{diff}^{1}(M)$ let $Tf : TM \to TM$ denote the tangent map of f. Fix a riemannian metric on *M*, and let $\|\cdot\|$ be the associated Finsler norm on *TM*. Let $\Gamma^{b}(TM)$ ($\Gamma^{0}(TM)$) denote the Banach space of bounded (continuous) sections of *TM*, with supremum norm. Define $f^{\#}: \Gamma^{i}(TM) \to \Gamma^{i}(TM)$, i = b, 0, by: for every $\eta \in \Gamma^{i}(TM)$ and every $x \in M$, ($f^{\#}\eta$)(x) = $Tf \circ \eta(f^{-1}x)$. $f^{\#}$ is a bounded linear operator (on either space).

In [11], Mather showed that f is Anosov if and only if $(1-f^{\#})$: $\Gamma^{0}(TM) \rightarrow \Gamma^{0}(TM)$ is an isomorphism. It is also known that f

Received 25 May 1977. The author would like to thank C. Pugh for pointing out an error in an earlier version of this paper.

satisfies Axiom A and the strong transversality condition if (Mañé, [9]) and only if (Robbin, [12]) $(1-f^{\#})$: $\Gamma^{0}(TM) \rightarrow \Gamma^{0}(TM)$ is surjective. In this paper we prove that there is an analogous result for quasi-Anosov diffeomorphisms.

DEFINITION. We say that $f \in \text{diff}^1(M)$ is quasi-Anosov if and only if, for every $x \in M$, and every non-zero $v \in T_x^M$, $\{\|Tf^nv\| : n \in Z\}$ is unbounded.

THEOREM. Let $f \in diff^{1}(M)$. The following are equivalent: (a) f is quasi-Anosov;

(b) $(1-f^{\#})$: $\Gamma^{b}(TM) \rightarrow \Gamma^{b}(TM)$ is injective and has closed range; (c) $(1-f^{\#})$: $\Gamma^{0}(TM) \rightarrow \Gamma^{0}(TM)$ is injective and has closed range.

This is the characterisation that should have appeared in [8]. There Mañé states that the following are equivalent:

(a') f is quasi-Anosov;

(b') $(1-f^{\#})$: $\Gamma^{b}(TM) \rightarrow \Gamma^{b}(TM)$ is injective; (c') $(1-f^{\#})$: $\Gamma^{0}(TM) \rightarrow \Gamma^{0}(TM)$ has closed range.

In Section 5 below we give an example of a diffeomorphism f on T^2 which is not quasi-Anosov and for which $(1-f^{\#}) : \Gamma^b(TM) \to \Gamma^b(TM)$ is injective. If g is the north pole – south pole diffeomorphism of S^2 (see [12]), then g satisfies Axiom A and strong transversality, and by Robbin's result $(1-g^{\#}) : \Gamma^0(TM) \to \Gamma^0(TM)$ has closed range. But the north pole – south pole diffeomorphism is not quasi-Anosov.

The name quasi-Anosov was introduced by Mane [7] in relation to a question of Hirsch regarding invariant hyperbolic submanifolds. Mané has established another characterisation of quasi-Anosov diffeomorphisms in [10]. Franks and Robinson [5] have given an example of a quasi-Anosov diffeomorphism that is not Anosov (and resolves Hirsch's question). Relationships between f and $(1-f^{\#})$ have appeared in the work of several

other authors; see [3], [4], [6], [13].

2. Proof that (a) implies (b)

Let f be quasi-Anosov. For every non-zero $v \in TM$ there exists $n(v) \in \mathbb{Z}$ such that $||Tf^{n(v)}v|| > 2$. By continuity, there is an open neighbourhood V of v in TM such that $||Tf^{n(v)}w|| > 2$ for every $w \in V$. Let $S = \{v \in TM : \frac{1}{2} \leq ||v|| \leq 1\}$. By compactness of S there exists $N \in \mathbb{Z}^+$ with the following property: for every $v \in S$ there exists $n \in \mathbb{Z}$ with $|n| \leq N$ such that

(1)
$$||Tf^{n}v|| > 2$$
.

Let $\eta \in \Gamma^b(TM)$ with $\|\eta\| = 1$, and let $\zeta = (1-f^{\#})\eta$. Then, for all $x \in M$,

$$\eta(fx) = Tf\eta(x) + \zeta(fx)$$

and

$$n(f^{-1}x) = Tf^{-1}n(x) - Tf^{-1}\zeta(x)$$
.

Using these repeatedly gives that, for all $n \in \mathbb{Z} \setminus \{0\}$,

(2)
$$\eta(f^{n}x) = \begin{cases} Tf^{n}_{\eta}(x) + \sum_{k=1}^{n} Tf^{k-1}\zeta(f^{n-k+1}x) & \text{if } n \ge 1 \\ \\ Tf^{n}_{\eta}(x) - \sum_{k=1}^{n} Tf^{-k}\zeta(f^{n+k}x) & \text{if } n \le -1 \end{cases}$$

Let $\varepsilon > 0$ and such that

(3)
$$\sup\{\|Tf^{n}v\|: |n| \leq N, v \in TM, \|v\| < \varepsilon\} < 1/N$$
.

Suppose $||\zeta|| < \varepsilon$. Let x be a point of M such that $||\eta(x)|| > \frac{1}{2}$. Then by (1), (2), and (3) there exists $n \in \mathbb{Z}$, $|n| \leq N$, such that

$$||n(f^{n}x)|| > 2 - N.(1/N) = 1$$
,

contradicting $\|\|\| = 1$. Hence $\|(1-f^{\#})\| \ge \varepsilon$. This means that $(1-f^{\#}) : \Gamma^{b}(TM) \to \Gamma^{b}(TM)$ is injective and has closed range (see [1] for example).

3. Proof that (b) implies (c)

If (b) is true, then there exists $\varepsilon > 0$ such that every $\eta \in \Gamma^{b}(TM)$ with $\|\eta\| = 1$ satisfies $\|(1-f^{\#})\eta\| \ge \varepsilon$ (see [1]). Since $\Gamma^{0}(TM) \subset \Gamma^{b}(TM)$, every $\eta \in \Gamma^{0}(TM)$ with $\|\eta\| = 1$ satisfies $\|(1-f^{\#})\eta\| \ge \varepsilon$, so (c) is true.

4. Proof that (c) implies (a)

Let f satisfy (c). Then there exists $\varepsilon > 0$ such that every $\eta \in \Gamma^{0}(TM)$ with $\|\eta\| = 1$ satisfies $\|(1-f^{\#})\eta\| \ge \varepsilon$.

We first show that this implies that the nonperiodic points are dense in M. The argument is due to Mather [11] Let P_n denote the closed set of points of M of period n. We will show that, for each positive integer n, P_n has no interior point. It then follows that $\bigcup P_n$ is nowhere dense, by Baire's theorem.

Suppose for some *n* that P_n does contain an interior point. Let *n* be the least such integer. Then $\bigcup P_k$ is nowhere dense and $(\inf P_n) \setminus \bigcup P_k \neq \emptyset$. Let $x_0 \in (\inf P_n) \setminus \bigcup P_k$. Then there is a neighbourhood *U* of x_0 such that $U \subset P_n$ and $f^k(U) \cap U = \emptyset$ for $1 \leq k \leq n-1$. Let $\zeta_0 \in \Gamma^0(TM)$, have support in *U*, and satisfy $\zeta_0(x_0) \neq 0$. Let $\zeta = \sum_{k=0}^{n-1} f^{\#k} \zeta_0$. Then $\zeta(x_0) = \zeta_0(x_0)$, so $\zeta \neq 0$; and $f^{\#k} \zeta = \zeta$. This contradicts the fact that $(1-f^{\#}) : \Gamma^0(TM) \to \Gamma^0(TM)$ is injective.

Now assume that f is not quasi-Anosov. We will show that this implies that there exists $n_2 \in \Gamma^b(TM)$ with finite support, $||n_2|| = 1$, and $||(1-f^{\#})n_2|| < \epsilon/2$. Then we will smooth n_2 to obtain $n \in \Gamma^0(TM)$ with ||n|| = 1 and $||(1-f^{\#})n|| < \epsilon$, which is impossible.

If f is not quasi-Anosov, there exists $x_1 \in M$ and non-zero $v \in T_{x_1}^M$ such that $\{\|Tf^n v\| : n \in Z\}$ is bounded. We may suppose that $\sup\{\|Tf^n v\| : n \in Z\} = 1$. By replacing v by $Tf^k v$ if necessary, we may suppose that $\|v\| > \frac{1}{2}$.

Let ε_1 satisfy $0 < \varepsilon_1 < \min(1, \varepsilon/8)$. Let $n_1 \in Z^+$ be such that $(1-\varepsilon_1)^{n_1} < \varepsilon/8$. Choose a non-periodic point x so close to x_1 and $w \in T_x^M$ so close to v that $||w|| > \frac{1}{2}$ and $||Tf^n_w|| < 2$ for $|n| \le 1 + n_1$.

Define $\eta_1 \in \Gamma^b(TM)$ by

$$\eta_{1}(y) = \begin{cases} \left(1-\varepsilon_{1}\right)^{\left|n\right|} T f^{n} w & \text{for } y = f^{n} x \text{ and } \left|n\right| \leq n_{1} \\ 0 & \text{otherwise.} \end{cases}$$

Then $\|\eta_1\| \ge \|\eta_1(x)\| = \|w\| > \frac{1}{2}$. For $-n_1 + 1 \le n \le n_1$,

$$\| (1-f^{\#}) n_1(f^n x) \| = \| (1-\varepsilon_1)^{|n|} Tf^n \omega - (1-\varepsilon_1)^{|n-1|} Tf^n w \|$$

$$\leq \varepsilon_1 \| Tf^n w \|$$

$$< \varepsilon/4 .$$

Further,

$$\begin{split} \left\| (1-f^{\#}) \eta_{1} (f^{-n_{1}} x) \right\| &= \left\| (1-\varepsilon_{1})^{n_{1}} Tf^{-n_{1}} w \right\| < \varepsilon/4 , \\ \\ \left\| (1-f^{\#}) \eta_{1} (f^{n_{1}+1} x) \right\| &= \left\| (1-\varepsilon_{1})^{n_{1}} Tf^{n_{1}+1} w \right\| < \varepsilon/4 ; \\ \\ \text{and for all other points } y \in M , \quad \left\| (1-f^{\#}) \eta_{1} (y) \right\| = 0 . \text{ Hence} \end{split}$$

$$\|(1-f^{\#})\eta_1\| < \varepsilon/4 < \frac{1}{2}\varepsilon \|\eta_1\|$$
.

Now let $\eta_2 = \eta_1 / \|\eta_1\|$. Then η_2 has the required properties.

We now smooth η_2 to get $\eta \in \Gamma^0(TM)$. The riemannian metric determines a metric on M which we denote by d. Let

$$U_{n} = \{y \in M : d(x, y) < r\}$$

Choose r > 0 so small that the following conditions are satisfied: the sets $f^n(U_r)$, $|n| \le n_1 + 1$, are pairwise disjoint; for each n with $|n| \le n_1 + 1$, $f^n(U_n)$ is contained in a

normal neighbourhood of $f^{n}(x)$.

Let $p, q \in M$ and $v \in T_pM$, let $\tau v \in T_qM$ denote the parallel translation of v along the geodesic joining p to q.

By making r smaller if necessary, we may ensure that the following condition is also satisfied:

for all
$$n$$
 with $-n_1 \le n \le n_1+1$, all $y \in U_p$ and all
 $v \in T_{f^n-1} \underset{x}{M}$,
 $\left\| \begin{pmatrix} Tf \\ f^{n-1} \\ x \end{pmatrix} \int_{f^n-1}^{v-\tau} f^n \\ f^n \\ y \\ f^n \\ x \\ f^n \\ x \\ f^n \\ x \\ f^n \\ y \\ f^n \\ y \\ f^n \\ y \\ f^n \\ y \\ f^n \\ x \\ f^n \\ x \\ f^n \\ x \\ f^n \\ y \\ y \\ f^n \\ y \\ y \\ f^n \\ y \\ f^n \\ y \\ f^n \\ y \\ y \\ f^n \\ y \\ f^n \\ y \\ y \\ f^n \\ y \\ y \\ f^n \\ y \\ f^$

 $y \in U_{p}$ and $-n_{1} \leq n \leq n_{1}+1$, then

$$\begin{split} \| (1-f^{\#}) n(f^{n}y) \| \\ &= \left\| n(f^{n}y) - (Tf)_{f^{n-1}y} n(f^{n-1}y) \right\| \\ &\leq \left\| n(f^{n}y) - \tau_{f^{n}x, f^{n}y} (Tf)_{f^{n-1}x} \tau_{f^{n-1}y, f^{n-1}x} n(f^{n-1}y) \right\| \\ &+ \left\| \tau_{f^{n}x, f^{n}y} (Tf)_{f^{n-1}x} \tau_{f^{n-1}y, f^{n-1}x} n(f^{n-1}y) - (Tf)_{f^{n-1}y} n(f^{n-1}y) \right\| \\ &= \left\| \phi(d(x, y)) \cdot \tau_{f^{n}x, f^{n}y} n_{2} (f^{n}x) - \tau_{f^{n}x, f^{n}y} (Tf)_{f^{n-1}x} \phi(d(x, y)) \cdot n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \tau_{f^{n}x, f^{n}y} (Tf)_{f^{n-1}x} \phi(d(x, y)) \cdot n_{2} (f^{n-1}x) - (Tf)_{f^{n-1}y} \phi(d(x, y)) \right\| \\ &= \left\| \phi(d(x, y)) \right\| \left\| n_{2} (f^{n}x) - (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \left\| n_{2} (f^{n}x) - (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \left\| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \left\| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \left\| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \left\| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y)) \right\| \| \| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| \phi(d(x, y) \right\| \\ &+ \left\| (Tf)_{f^{n-1}x} n_{2} (f^{n-1}x) \right\| \\ &+ \left\| (Tf)_{f^{n-1}x$$

since parallel translation preserves the norm. Therefore

$$\|(1-f^{\#})n(f^{n}y)\| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon \|n_{2}(f^{n-1}x)\| \le \varepsilon .$$

So we have $\eta \in \Gamma^0(TM)$ with $\|\eta\| = 1$ and $\|\{1-f^{\#}\}\eta\| < \varepsilon$, giving the contradiction.

5. Examples

Here we construct an example of a diffeomorphism f on the 2-torus $M = T^2$ which is not quasi-Anosov and for which $(1-f^{\#}) : \Gamma^i(TM) \to \Gamma^i(TM)$ is injective, i = 0, b.

Let $g_0 : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$g_0 = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} ,$$

and let g be the induced diffeomorphism of $T^2 = R^2/Z^2$. Let

 $\pi : \mathbb{R}^2 \to \mathbb{T}^2$ be the covering map, and let $p = \pi(0)$. We will perturb g in a neighbourhood of p to give a diffeomorphism f of T^2 with the following properties:

- (i) f(p) = p;
- (ii) $T_n f$ equals minus the identity;
- (iii) for every $q \in T^2 \{p\}$ and for every non-zero $v \in T_q^M$, $\{||Tf^n v|| : n \in \mathbb{Z}\}$ is unbounded.

By (i) and (ii), for every $v \in T_p^M$, $\{\|Tf^n v\| : n \in Z\}$ is bounded; so f is not quasi-Anosov. Now suppose $\eta \in \Gamma^b(TM)$ and $(1-f^{\#})\eta = 0$. Then $0 = (1-f^{\#})\eta(p) = 2\eta(p)$ by (i) and (ii), so $\eta(p) = 0$; and for any $q \in M$, $0 = (1-f^{\#})\eta(q)$, which gives $\eta(f^n q) = Tf^n\eta(q)$ for any $n \in Z$. Hence $\{\|Tf^n\eta(q)\| : n \in Z\}$ is bounded, and therefore $\eta(q) = 0$ by (iii). Thus $(1-f^{\#})$ is injective on $\Gamma^b(TM)$, and so also on $\Gamma^0(TM)$.

We now set about constructing f. Let $\theta : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation of coordinate axes that takes the *x*-axis (*y*-axis) into the contracting (expanding) eigenspace of g_0 . Call these new axes the x_1^- and $y_1^$ axes. Let g_1 represent g_0 with respect to these new coordinates, that is, $g_1 = \theta g_0 \theta^{-1}$. Then $g_1 = \text{diag}(-\lambda^{-1}, -\lambda)$, where $\lambda > 1$. Let $\pi_1 : \mathbb{R}^2 \to \mathbb{T}^2$ be the covering map with respect to the new coordinates, that is, $\pi_1 = \pi \theta^{-1}$. From now on we work with the new coordinates in \mathbb{R}^2 .

Let ϕ_{\pm} be the flow of

(4)
$$\frac{dx_1}{dt} = -\mu x_1, \quad \frac{dy_1}{dt} = \mu y_1,$$

where $\mu = \log \lambda$. Then $g_1 = -\phi_1$. Let

$$B(0, k) = \left\{ \left(x_{1}, y_{1}\right) : \left(x_{1}^{2} + y_{1}^{2}\right)^{\frac{1}{2}} \leq k \right\}.$$

choose $k_1 > 0$, $k_2 > 0$ such that the following condition is satisfied:

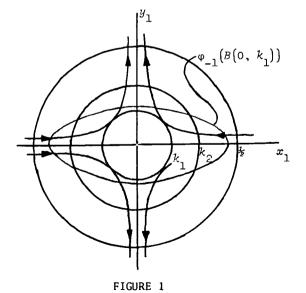
(A) for all t with $|t| \leq 1$, $\phi_t B(0, k_1) \subset \text{int } B(0, \frac{1}{2})$, and $\phi_t B(0, k_2) \subset \text{int } B(0, k_1)$.

Let $0 < k_{\downarrow} < k_{3} < k_{2}$ and let $\rho : \mathbb{R} \to \mathbb{R}$ be C^{∞} with these properties: $\rho(x) = 1$ for $x \le k_{\downarrow}$; $\rho(x) = 0$ for $x \ge k_{3}$; $\rho'(x) \le 0$ for all x. Let $r = \left(x_{1}^{2}\pi y_{1}^{2}\right)^{\frac{1}{2}}$. The differential equations

(5)
$$\frac{dx_{1}}{dt} = -\mu x_{1} \left\{ x_{1}^{2} + y_{1}^{2} \right\} \rho(r) - \mu x_{1} \left\{ 1 - \rho(r) \right\},$$
$$\frac{dy_{1}}{dt} = \mu y_{1} \left\{ x_{1}^{2} + y_{1}^{2} \right\} \rho(r) + \mu y_{1} \left\{ 1 - \rho(r) \right\},$$

define a flow ψ_t on \mathbb{R}^2 . The flow lines for both (4) and (5) are the curves $x_1y_1 = c$, c constant. Equations (4) and (5) are identical in $\mathbb{R}^2 \setminus B(0, k_2)$. Because of condition (A), we have:

(B) in
$$\mathbb{R}^2 \setminus B(0, k_1)$$
, $\psi_1 = \phi_1 (= -g_1)$ and $\psi_{-1} = \phi_{-1} (= -g_1^{-1})$.



Note also that (A) ensures the following property:

(C) suppose that $(x_1, y_1) \in B(0, k_1)$ and that $y_1 \neq 0$. Then there exists $n \in Z^+$ such that $\psi_1^{n-1}(x_1, y_1) \in B(0, k_1)$, and $\psi_1^n(x_1, y_1) \in B(0, \frac{1}{2}) \setminus B(0, k_1)$. By (B), $\psi_1 \circ \psi_1^n(x_1, y_1) = -g_1 \circ \psi_1^n(x_1, y_1)$.

There is a similar statement to (C) for ψ_{-1} .

Define
$$f : T^2 \to T^2$$
 by
 $f(\pi_1(x_1, y_1)) = \pi_1 \circ (-\psi_1)(x_1, y_1)$ if $(x_1, y_1) \in B(0, \frac{1}{2})$,
 $f(q) = g(q)$ if $q \notin \pi_1 \circ B(0, \frac{1}{2})$.

Condition (B) shows that f is a diffeomorphism. Condition (C) is needed to give the following property for f, which we will use later:

(D) let $q \in T^2$. Then either $f^n(q) \to p$ as $n \to \infty$, or there exists a sequence $\{n_k\} \to \infty$ such that $f \circ f^{n_k}(q) = g \circ f^{n_k}(q)$.

There is a similar statement to (D) for $\,f^{-1}$.

We must establish conditions (i)-(iii) for f. Condition (i) is immediate. For (ii), use the local coordinates, given by π_1 . In these coordinates, $T_p f$ is given by $-D \Psi_1(0, 0)$. From (5), $D \Psi_1(0, 0)$ is the identity.

It remains to establish (iii). The covering map π_1 can be used to give a chart at any point of $M = T^2$. All charts used henceforth will be the charts given by π_1 . Let $q \in M \setminus \{p\}$, $w \in T_q^M \setminus \{0\}$, and suppose wis represented by [u, v] in terms of the chart. We will show that if $|v| \ge |u|$, then $\{\|(Tf)^n w\| : n \in Z^+\}$ is unbounded. A similar argument yields that if $|v| \le |u|$, then $\{\|(Tf)^n w\| : n \in Z^-\}$ is unbounded. In local coordinates, Tf is represented either by $-D\psi_1$ or by

331

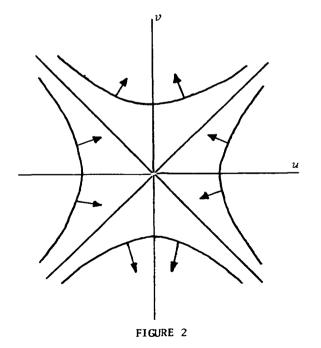
 Dg_1 . We examine $D\psi_1$ first. Let $F(x_1, y_1)$ be the right hand side of (5), and let $[u_0, v_0]$ be a vector in \mathbb{R}^2 . The vector $D\psi_t(x_1, y_1)[u_0, v_0]$ satisfies the variational equation

(6)
$$\frac{d}{dt} D\psi_t(x_1, y_1) [u_0, v_0] = DF(\psi_t(x_1, y_1)) D\psi_t(x_1, y_1) [u_0, v_0]$$

A short calculation yields

$$(-u, v)DF(x_{1}, y_{1})[u, v] = \mu \left[(3u^{2}+v^{2})x_{1}^{2}+4uvx_{1}y_{1}+(u^{2}+3v^{2})y_{1}^{2} \right]\rho(r) + \mu (u^{2}+v^{2})[1-\rho(r)] + \mu r^{-1}\rho'(r)(ux_{1}+vy_{1})^{2} \left\{ -1+x_{1}^{2}+y_{1}^{2} \right\} \geq 0 ,$$

with equality only when $x_1 = y_1 = 0$ or u = v = 0. This means that, for any $t \in \mathbb{R}$ and any $(x_1, y_1) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, the vector field determined by (6) in the punctured (u, v)-plane ((0, 0) removed) is nowhere tangent to the family of hyperbolas $v^2 - u^2 = c$, $c \in \mathbb{R}$, and is directed as shown in Figure 2.



This yields the following property of $D\Psi_{1}$.

(E) Suppose
$$v_0^2 + u_0^2 > 0$$
 and $v_0^2 - u_0^2 = c_0^2 \ge 0$. Let
 $\begin{bmatrix} -u_1, -v_1 \end{bmatrix} = D\psi_1(x_1, y_1) \begin{bmatrix} u_0, v_0 \end{bmatrix}$, and let
 $v_1^2 - u_1^2 = (-v_1)^2 - (-u_1)^2 = c_1^2$. Then $c_1^2 > c_0^2$.

The action of Dg_1 is similar, and we get some additional information.

(F) Suppose $v_0^2 + u_0^2 > 0$, and $v_0^2 - u_0^2 = c_0^2 \ge 0$. Let $\begin{bmatrix} u_1, v_1 \end{bmatrix} = Dg_1 \begin{bmatrix} u_0, v_0 \end{bmatrix} = \begin{bmatrix} -\lambda^{-1}u_0, -\lambda v_0 \end{bmatrix}$, and let $v_1^2 - u_1^2 = c_1^2$. Then $c_1^2 = (\lambda^2 - \lambda^{-2})u_0^2 + \lambda^2 c_0^2$, so that $c_1^2 \ge \lambda^2 c_0^2$ (recall that $\lambda > 1$). Equality holds only when $u_0 = 0$; but then $c_0 > 0$, so always $c_1^2 > c_0^2$.

Let $q \in M \{p\}$, and let $w \in T_q^M$ and be represented in the chart by $[u_0, v_0]$ with $|v_0| \ge |u_0|$; that is, with $v^2 - u_0^2 = c_0^2$. For $n \ge 0$, let $Tf^n w$ be represented in the chart by $[u_n, v_n]$, and let $v_n^2 - u_n^2 = c_n^2$. By (E), (F), the sequence $\left\{c_n^2\right\}_{n=0}^{\infty}$ is monotone increasing.

Suppose first that $f^n(q)$ does not tend to p as $n \to \infty$. By (D), there exists a sequence $\{n_k\} \to \infty$ such that $(Tf)_{\substack{n_k \ = (Tg) \ n_k \ f^k(q)}} = (Tg)_{\substack{n_k \ f^k(q)}}$ for $f^k(q) \qquad f^k(q)$ all k. Property (F) then gives that $c_n^2 \to \infty$ as $n \to \infty$. Hence $v_n^2 \to \infty$ as $n \to \infty$, so that $\{\|Tf^n w\| : n \in Z^+\}$ is unbounded.

Now suppose that $f^{n}(q) \rightarrow p$ as $n \rightarrow \infty$. Then there exists $n_{1} \geq 0$ such that $f^{n}(q)$ lies on $\pi_{1}\{(x_{1}, 0) : |x_{1}| \leq k_{1}\}$ whenever $n \geq n_{1}$. Let $\{x_{n_{1}}, 0\}, |x_{n_{1}}| \leq k_{1}$, be the point such that $\pi_{1}(x_{n_{1}}, 0) = f^{n_{1}}(q)$. Inside $B(0, k_{\downarrow})$ equations (5) become

$$\frac{dx_{1}}{dt} = -\mu x_{1}^{3} , \quad \frac{dy_{1}}{dt} = \mu y_{1}^{3} .$$

Hence for $t \ge 0$, $\psi_t(x_{n_1}, 0) = \left(x_{n_1}\left(1+2\mu x_{n_1}^2 t\right)^{-\frac{1}{2}}, 0\right)$. The variational equation for the derivative $D\psi_t(x_{n_1}, 0)$ for $t \ge 0$ becomes

$$(7) \quad \frac{d}{dt} D\Psi_t(x_{n_1}, 0) = \begin{pmatrix} -3\mu x_{n_1}^2 \left(1 + 2\mu x_{n_1}^2 t\right)^{-1} & 0 \\ 0 & \mu x_{n_1}^2 \left(1 + 2\mu x_{n_1}^2 t\right)^{-1} \\ 0 & \mu x_{n_1}^2 \left(1 + 2\mu x_{n_1}^2 t\right)^{-1} \end{pmatrix} D\Psi_t(x_{n_1}, 0) \quad .$$

Let $|u'_t, v'_t| = D\psi_t(x_{n_1}, 0)[u_{n_1}, v_{n_1}]$. From (7), for all $t \ge 0$,

$$\log |v_t'| - \log |v_{n_1}| = \frac{1}{2} \log \left(1 + 2\mu x_{n_1}^2 t\right) \to \infty \quad \text{as} \quad t \to \infty$$

Therefore $|v'_t| \to \infty$ as $t \to \infty$. Finally $|v'_n| = |v'_n|$ for all $n \ge n_1$, so in this case too, we have $\{ \|Tf^n_w\| : n \in Z^+ \}$ unbounded.

References

- [1] Nelson Dunford and Jacob T. Schwartz, *Linear operators*, Part I (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
- [2] John Franks, "Necessary conditions for stability of diffeomorphisms", Trans. Amer. Math. Soc. 158 (1971), 301-308.
- [3] John Franks, "Differentiably Ω-stable diffeomorphisms", Topology 11 (1972), 107-113.
- [4] John Franks, "Absolutely structurally stable diffeomorphisms", Proc. Amer. Math. Soc. 37 (1973), 293-296.
- [5] John Franks and Clark Robinson, "A quasi-Anosov diffeomorphism that is not Anosov", Trans. Amer. Math. Soc. 223 (1976), 267-278.

- [6] John Guckenheimer, "Absolutely Ω -stable diffeomorphisms", *Topology* 11 (1972), 195-197.
- [7] Ricardo Mañe, "Persistent manifolds are normally hyperbolic", Bull. Amer. Math. Soc. 80 (1974), 90-91.
- [8] R. Mañé, "Quasi-Anosov diffeomorphisms", Dynamical systems, 27-29 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [9] Ricardo Mañé, "On infinitesimal and absolute stability of diffeomorphisms", Dynamical systems, 151-161 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [10] Ricardo Mañé, "Expanding diffeomorphisms", Dynamical systems, 162-174 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [11] John N. Mather, "Characterization of Anosov diffeomorphisms", K. Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 479-483.
- [12] J.W. Robbin, "A structural stability theorem", Ann. of Math. (2) 94 (1971), 447-493.
- [13] R. Clark Robinson, "Structural stability of C¹-diffeomorphisms", J. Differential Equations 22 (1976), 28-73.

Department of Mathematics, University of California, Berkeley, Berkeley, California, USA; Department of Mathematics, University of Newcastle, Newcastle, New South Wales.

334