Characterisation of quasi-Anosov diffeomorphisms

Graham Couper

Let f be a C^{l} diffeomorphism of a compact C^{∞} boundary-less manifold, and let $f^{\#}$ be the operator on the bounded or continuous sections of the tangent bundle (with supremum norm) defined by $f^{\#} \eta=T f \circ n \circ f^{-1}$. The main result of this paper is that f is quasi-Anosov if and only if $l-f^{\#}$ is injective and has closed range.

1. Introduction

Let M be a compact C^{∞} manifold without boundary, and let $\operatorname{diff}^{l}(M)$ denote the C^{l} diffeomorphisms of M with the C^{1} topology. Write $T M$ for the tangent bundle of M, and for $f \in \operatorname{diff}^{l}(M)$ let $T f: T M \rightarrow T M$ denote the tangent map of f. Fix a riemannian metric on M, and let $\|\cdot\|$ be the associated Finsler norm on $T M$. Let $\Gamma^{b}(T M) \quad\left(\Gamma^{0}(T M)\right)$ denote the Banach space of bounded (continuous) sections of $T M$, with supremum norm. Define $f^{\#}: \Gamma^{i}(T M) \rightarrow \Gamma^{i}(T M), i=b, 0$, by: for every $\eta \in \Gamma^{i}(T M)$ and every $x \in M,\left(f^{\#} \eta\right)(x)=T f \circ n\left(f^{-1} x\right) \cdot f^{H} \quad$ is a bounded linear operator (on either space).

In [11], Mather showed that f is Anosov if and only if $\left(1-f^{\#}\right): \Gamma^{O}(T M) \rightarrow \Gamma^{0}(T M)$ is an isomorphism. It is also known that f

Received 25 May 1977. The author would like to thank C. Pugh for pointing out an error in an earlier version of this paper.
satisfies Axiom A and the strong transversality condıtion if (Mañé, [9]) and only if (Robbin, [12]) ($1-f^{\#}$) : $\Gamma^{0}(T M) \rightarrow \Gamma^{0}(T M)$ is surjective. In this paper we prove that there is an analogous result for quasi-Anosov diffeomorphisms.

DEFINITION. We say that $f \in \operatorname{diff}^{l}(M)$ is quasi-Anosov if and only if, for every $x \in M$, and every non-zero $v \in T_{x} M,\left\{\left\|T f^{n} v\right\|: n \in Z\right\}$ is unbounded.

THEOREM. Let $f \in \operatorname{diff}^{1}(M)$. The following are equivalent:
(a) f is quasi-Anosov;
(b) $\left(1-f^{\#}\right): \Gamma^{b}(T M) \rightarrow \Gamma^{b}(T M)$ is injective and has closed range;
(c) $\left(1-f^{\#}\right): \Gamma^{0}(T M) \rightarrow \Gamma^{0}(T M)$ is injective and has closed range.

This is the characterisation that should have appeared in [8]. There Mañé states that the following are equivalent:
(a') f is quasi-Anosov;
(b^{\prime}) $\left(1-f^{H}\right): \Gamma^{b}(T M) \rightarrow \Gamma^{b}(T M)$ is injective;
(c') $\left(1-f^{\# \prime}\right): \Gamma^{0}(T M) \rightarrow \Gamma^{0}(T M)$ has closed range.
In Section 5 below we give an example of a diffeomorphism f on T^{2} which is not quasi-Anosov and for which $\left(1-f^{\#}\right): \Gamma^{b}(T M) \rightarrow \Gamma^{b}(T M)$ is injective. If g is the north pole - south pole diffeomorphism of s^{2} (see [12]), then g satisfies Axiom A and strong transversality, and by Robbin's result $\left(1-g^{\#}\right): \Gamma^{0}(T M) \rightarrow \Gamma^{0}(T M)$ has closed range. But the north pole - south pole diffeomorphism is not quasi-Anosov.

The name quasi-Anosov was introduced by Mañe [7] in relation to a question of Hirsch regarding invariant hyperbolic submanifolds. Mañé has established another characterisation of quasi-Anosov diffeomorphisms in [10]. Franks and Robinson [5] have given an example of a quasi-Anosov diffeomorphism that is not Anosov (and resolves Hirsch's question). Relationships between f and $\left(1-f^{H}\right)$ have appeared in the work of several
other authors; see [3], [4], [6], [13].

2. Proof that (a) implies (b)

Let f be quasi-Anosov. For every non-zero $v \in T M$ there exists $n(v) \in Z$ such that $\left\|T f^{n(v)} v\right\|>2$. By continuity, there is an open neighbourhood V of v in $T M$ such that $\left\|T^{n(v)} w\right\|>2$ for every $w \in V$. Let $S=\left\{v \in T M: \frac{1}{2} \leq\|v\| \leq 1\right\}$. By compactness of S there exists $N \in Z^{+}$with the following property: for every $v \in S$ there exists $n \in Z$ with $|n| \leq N$ such that

$$
\begin{equation*}
\left\|T f^{n} v\right\|>2 . \tag{1}
\end{equation*}
$$

Let $\eta \in \Gamma^{b}(T M)$ with $\|n\|=1$, and let $\zeta=\left(1-f^{\#}\right) \eta$. Then, for all $x \in M$,

$$
\eta(f x)=T f \eta(x)+\zeta(f x)
$$

and

$$
\eta\left(f^{-1} x\right)=T f^{-1} \eta(x)-T f^{-1} \zeta(x)
$$

Using these repeatedly gives that, for all $n \in Z \backslash\{0\}$,
(2) $\quad \eta\left(f^{n} x\right)= \begin{cases}T f^{n} \eta(x)+\sum_{k=1}^{n} T f^{k-1} \zeta\left(f^{n-k+1} x\right) & \text { if } n \geq 1, \\ T f_{n}^{n}(x)-\sum_{k=1}^{-n} T f^{-k} \zeta\left(f^{n+k} x\right) & \text { if } n \leq-1 .\end{cases}$

Let $\varepsilon>0$ and such that

$$
\begin{equation*}
\sup \left\{\left\|T f^{n} v\right\|:|n| \leq N, v \in T M,\|v\|<\varepsilon\right\}<1 / N \tag{3}
\end{equation*}
$$

Suppose $\|\zeta\|<\varepsilon$. Let x be a point of M such that $\|\eta(x)\|>\frac{3}{2}$. Then by (1), (2), and (3) there exists $n \in Z,|n| \leq N$, such that

$$
\left\|n\left(f^{n} x\right)\right\|>2-N \cdot(1 / N)=1
$$

contradicting $\|n\|=1$. Hence $\left\|\left(1-f^{\#}\right) \eta\right\| \geq \varepsilon$. This means that $\left(1-f^{\#}\right): \Gamma^{b}(T M) \rightarrow \Gamma^{b}(T M)$ is injective and has closed range (see [1] for example).

3. Proof that (b) implies (c)

If (b) is true, then there exists $\varepsilon>0$ such that every $\eta \in \Gamma^{b}(T M)$ with $\|n\|=1$ satisfies $\left\|\left(1-f^{\#}\right) \eta\right\| \geq \varepsilon$ (see [1]). Since $\Gamma^{0}(T M) \subset \Gamma^{b}(T M)$, every $\eta \in \Gamma^{0}(T M)$ with $\|\eta\|=1$ satisfies $\left\|\left(1-f^{\#}\right) \eta\right\| \geq \varepsilon$, so (c) is true.
4. Proof that (c) implies (a)

Let f satisfy (c). Then there exists $\varepsilon>0$ such that every $n \in \Gamma^{0}(T M)$ with $\|n\|=1$ satisfies $\left\|\left(1-f^{\#}\right) n\right\| \geq \varepsilon$.

We first show that this implies that the nonperiodic points are dense in M. The argument is due to Mather [11] Let P_{n} denote the closed set of points of M of period n. We will show that, for each positive integer n, P_{n} has no interior point. It then follows that $U P_{n}$ is nowhere dense, by Baire's theorem.

Suppose for some n that P_{n} does contain an interior point. Let n be the least such integer. Then $\underset{k<n}{U} P_{k}$ is nowhere dense and $\left(\right.$ int $\left.P_{n}\right) \backslash \bigcup_{k<n} P_{k} \neq \emptyset$. Let $x_{0} \in\left(\right.$ int $\left.P_{n}\right) \backslash \underset{k<n}{U} P_{k}$. Then there is a neighbourhood U of x_{0} such that $U \subset p_{n}$ and $f^{k}(U) \cap U=\varnothing$ for $1 \leq k \leq n-1$. Let $\zeta_{0} \in \Gamma^{0}(T M)$, have support in U, and satisfy $\zeta_{0}\left(x_{0}\right) \neq 0$. Let $\zeta=\sum_{k=0}^{n-1} f^{\# k} \zeta_{0}$. Then $\zeta\left(x_{0}\right)=\zeta_{0}\left(x_{0}\right)$, so $\zeta \neq 0$; and $f^{\#} \zeta=\zeta$. This contradicts the fact that $\left(1-f^{\#}\right): \Gamma^{0}(T M) \rightarrow \Gamma^{0}(T M)$ is injective.

Now assume that f is not quasi-Anosov. We will show that this implies that there exists $n_{2} \in \Gamma^{b}(T M)$ with finite support, $\left\|n_{2}\right\|=1$, and $\left\|\left(1-f^{\#}\right) \eta_{2}\right\|<\varepsilon / 2$. Then we will smooth η_{2} to obtain $n \in \Gamma^{0}(T M)$ with $\|n\|=1$ and $\left\|\left(1-f^{\#}\right) n\right\|<\varepsilon$, which is impossible.

If f is not quasi-Anosov, there exists $x_{1} \in M$ and non-zero $v \in T_{x_{1}} M$ such that $\left\{\left\|T f^{n} v\right\|: n \in z\right\}$ is bounded. We may suppose that $\sup \left\{\left\|T f^{n} v\right\|: n \in Z\right\}=1$. By replacing v by $T f^{k} v$ if necessary, we may suppose that $\|v\|>\frac{3}{2}$.

$$
\text { Let } \varepsilon_{1} \text { satisfy } 0<\varepsilon_{1}<\min (1, \varepsilon / 8) \text {. Let } n_{1} \in Z^{+} \text {be such }
$$

that $\left(1-\varepsilon_{1}\right)^{n_{1}}<\varepsilon / 8$. Choose a non-periodic point x so close to x_{1} and $w \in T_{x} M$ so close to v that $\|w\|>\frac{1}{2}$ and $\left\|T f^{n} w\right\|<2$ for $|n| \leq 1+n_{1}$.

$$
\begin{aligned}
& \text { Define } \eta_{1} \in \Gamma^{b}(T M) \text { by } \\
& \quad \eta_{1}(y)= \begin{cases}\left(1-\varepsilon_{1}\right)^{|n|} T^{\prime} f^{n} w & \text { for } y=f^{n} x \text { and }|n| \leq n_{1} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then $\left\|\eta_{1}\right\| \geq\left\|\eta_{1}(x)\right\|=\|w\|>\frac{1}{2}$. For $-n_{1}+1 \leq n \leq n_{1}$,

$$
\begin{aligned}
\left\|\left(1-f^{\#}\right) n_{1}\left(f^{n} x\right)\right\| & =\|\left(1-\varepsilon_{1}\right)^{\left.|n|_{T f^{n} w-\left(1-\varepsilon_{1}\right.}\right)^{|n-1|_{T f^{n} w} \|}} \begin{aligned}
& \leq \varepsilon_{1}\left\|T f^{n} w\right\| \\
& <\varepsilon / 4
\end{aligned} .
\end{aligned}
$$

Further,

$$
\begin{aligned}
& \left\|\left(1-f^{\#}\right) \eta_{1}\left(f^{-n_{1}} x\right)\right\|=\left\|\left(1-\varepsilon_{1}\right)^{n_{1} 1_{T f}}{ }^{-n_{1}} w\right\|<\varepsilon / 4, \\
& \left\|\left(1-f^{\#}\right) \eta_{1}\left(f^{n_{1}+1} x\right)\right\|=\|\left(1-\varepsilon_{1}\right)^{n_{1} 1_{T f} n_{1}^{+1} w \|<\varepsilon / 4} ;
\end{aligned}
$$

and for all other points $y \in M,\left\|\left(1-f^{\not \#}\right) \eta_{1}(y)\right\|=0$. Hence

$$
\left\|\left(1-f^{\#}\right) n_{1}\right\|<\varepsilon / 4<\frac{1}{2} \varepsilon\left\|n_{1}\right\|
$$

Now let $\eta_{2}=n_{1} /\left\|n_{1}\right\|$. Then η_{2} has the required properties.

We now smooth η_{2} to get $n \in \Gamma^{0}(T M)$. The riemannian metric determines a metric on M which we denote by d. Let

$$
U_{r}=\{y \in M: d(x, y)<r\}
$$

Choose $r>0$ so small that the following conditions are satisfied:
the sets $f^{n}\left(U_{p}\right), \quad|n| \leq n_{1}+1$, are pairwise disjoint;
for each n with $|n| \leq n_{1}+1, f^{n}\left(U_{p}\right)$ is contained in a
normal neighbourhood of $f^{n}(x)$.
Let $p, q \in M$ and $v \in T_{p}^{M}$, let $\tau_{p q} v \in T_{q} M$ denote the parallel translation of v along the geodesic joining p to q.

By making r smaller if necessary, we may ensure that the following condition is also satisfied:
for all n with $-n_{1} \leq n \leq n_{1}+1$, all $y \in U_{r}$ and all
$v \in T_{f^{n-1}}^{x}$,

$$
\left\|(T f){ }_{f^{n-1} x}^{v-\tau} f^{n} y, f^{n} x f^{n} y^{(T f)} f^{n-1} x, f^{n-1} y\right\|<\frac{1}{2} \varepsilon\|v\| .
$$

Let $\phi: \mathrm{R} \rightarrow \mathrm{R}$ be C^{∞} with $\phi(0)=1,0 \leq \phi(x) \leq 1$ for all $x \in \dot{R}$, and with $\operatorname{supp}(\phi)$ contained in $(-r, r)$. Define $\eta \in \Gamma^{0}(T M)$ by

$$
\begin{aligned}
\eta\left(f^{n} y\right) & =\phi(d(x, y)) \cdot \tau_{f^{n} x, f^{n} y}^{n_{2}}\left(f^{n} x\right) \\
n(y) & =0
\end{aligned} \quad \text { if } y \in U_{r} \text { and }|n| \leq n_{1},
$$

Then $\|n\|=1$. If $y \not \bigcup_{n=-n_{1}}^{n_{1}+1} f^{n}\left(U_{p}\right),\left\|\left(1-f^{H}\right) n(y)\right\|=0$. If $y \in U_{r}$ and $-n_{1} \leq n \leq n_{1}+1$, then

$$
\begin{aligned}
& \left\|\left(1-f^{\#}\right) \eta\left(f^{n} y\right)\right\| \\
& =\left\|n\left(f^{n} y\right)-(T f){ }_{f^{n-1} y}^{n\left(f^{n-1} y\right)}\right\| \\
& \leq\left\|n\left(f^{n} y\right)-\tau{ }_{f^{n} x, f^{n} y}{ }^{(T f)}{ }_{f^{n-1}} x^{\tau} f^{n-1} y, f^{n-1} x{ }^{n\left(f^{n-1} y\right)}\right\| \\
& +\left\|\tau{ }_{f^{n} x, f^{n} y}{ }^{(T f)}{ }_{f^{n-1}}{ }^{\tau} f^{n-1} y_{y} f^{n-1} x_{x}^{n\left(f^{n-1} y\right)-(T f)}{ }_{f^{n-1} y^{n}}^{n\left(f^{n-1} y\right)}\right\| \\
& =\left\|\phi(d(x, y)) \cdot \tau_{f^{n} x, f^{n} y} n_{2}\left(f^{n} x\right)-\tau{ }_{f^{n} x, f^{n} y}(T f){ }_{f^{n-1} x} \phi(d(x, y)) \cdot n_{2}\left(f^{n-1} x\right)\right\| \\
& +\| \tau_{f^{n} x, f^{n} y}{ }^{(T f)}{ }_{f^{n-1} x} \phi(d(x, y)) \cdot n_{2}\left(f^{n-1} x\right)-(T f){ }_{f^{n-1}{ }_{y}} \phi(d(x, y)) \\
& \cdot \tau_{f^{n-1} x, f^{n-1} y_{2}}^{n}\left(f^{n-1} x\right) \\
& =|\phi(d(x, y))|\left\|n_{2}\left(f^{n} x\right)-(T f){ }_{f^{n-1}}^{x} n_{2}\left(f^{n-1} x\right)\right\| \\
& +\|\phi(d(x, y)) \mid\|(T f){ }_{f^{n-1} x} n_{2}\left(f^{n-1} x\right) \\
& { }^{-\tau} f^{n} y, f^{n} x{ }^{(T f)}{ }_{f^{n-1} y^{\tau}} f^{n-1} x, f^{n-1} y_{2}^{\eta}\left(f^{n-1} x\right) \|
\end{aligned}
$$

since parallel translation preserves the norm. Therefore

$$
\left\|\left(1-f^{\#}\right) n\left(f^{n} y\right)\right\|<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon\left\|\eta_{2}\left(f^{n-1} x\right)\right\| \leq \varepsilon .
$$

So we have $\eta \in \Gamma^{0}(T M)$ with $\|\eta\|=1$ and $\left\|\left(1-f^{\#}\right) \eta\right\|<\varepsilon$, giving the contradiction.

5. Examples

Here we construct an example of a diffeomorphism f on the 2 -torus $M=T^{2}$ which is not quasi-Anosov and for which $\left(1-f^{\#}\right): \Gamma^{i}(T M) \rightarrow \Gamma^{i}(T M)$ is injective, $i=0, b$.

Let $g_{0}: R^{2} \rightarrow R^{2}$ be given by

$$
g_{0}=\left(\begin{array}{ll}
-2 & -1 \\
-1 & -1
\end{array}\right)
$$

and let g be the induced diffeomorphism of $T^{2}=R^{2} / Z^{2}$. Let
$\pi: R^{2} \rightarrow T^{2}$ be the covering map, and let $p=\pi(0)$. We will perturb g in a neighbourhood of p to give a diffeomorphism f of T^{2} with the following properties:
(i) $f(p)=p$;
(ii) $T_{p} f$ equals minus the identity;
(iii) for every $q \in T\left\{\{p\}\right.$ and for every non-zero $v \in T{ }_{q}^{M}$, $\left\{\left\|T f^{n} v\right\|: n \in Z\right\}$ is unbounded.

By (i) and (ii), for every $v \in T_{p} M,\left\{\left\|T f^{n} v\right\|: n \in Z\right\}$ is bounded; so f is not quasi-Anosov. Now suppose $\eta \in \Gamma^{b}(T M)$ and $\left(1-f^{\#}\right) \eta=0$. Then $0=\left(1-f^{\#}\right) \eta(p)=2 \eta(p)$ by (i) and (ii), so $\eta(p)=0$; and for any $q \in M, 0=\left(1-f^{\#}\right) \eta(q)$, which gives $n\left(f^{n} q\right)=T f^{n} \eta(q)$ for any $n \in Z$. Hence $\left\{\left\|T f^{n} \eta(q)\right\|: n \in Z\right\}$ is bounded, and therefore $\eta(q)=0$ by (iii). Thus $\left(1-f^{\#}\right)$ is injective on $\Gamma^{b}(T M)$, and so also on $\Gamma^{0}(T M)$.

We now set about constructing f. Let $\theta: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be the rotation of coordinate axes that takes the x-axis (y-axis) into the contracting (expanding) eigenspace of g_{0}. Call these new axes the x_{1} - and y_{1} axes. Let g_{1} represent g_{0} with respect to these new coordinates, that is, $g_{1}=\theta g_{0} \theta^{-1}$. Then $g_{1}=\operatorname{diag}\left(-\lambda^{-1},-\lambda\right)$, where $\lambda>1$. Let $\pi_{1}: R^{2} \rightarrow T^{2}$ be the covering map with respect to the new coordinates, that is, $\pi_{1}=\pi \theta^{-1}$. From now on we work with the new coordinates in R^{2}.

Let ϕ_{t} be the flow of
(4)

$$
\frac{d x_{1}}{d t}=-\mu x_{1}, \frac{d y_{1}}{d t}=\mu y_{1}
$$

where $\mu=\log \lambda$. Then $g_{i}=-\phi_{1}$. Let

$$
B(0, k)=\left\{\left(x_{1}, y_{1}\right):\left(x_{1}^{2}+y_{1}^{2}\right)^{\frac{3}{2}} \leq k\right\}
$$

choose $k_{1}>0, \dot{k}_{2}>0$ such that the following condition is satisfied:
(A) for all t with $|t| \leq 1, \phi_{t} B\left(0, k_{1}\right) \subset \operatorname{int} B\left(0, \frac{k_{2}}{2}\right)$, and

$$
\phi_{t} B\left(0, k_{2}\right) \subset \operatorname{int} B\left(0, k_{1}\right)
$$

Let $0<k_{4}<k_{3}<k_{2}$ and let $\rho: R \rightarrow R$ be c^{∞} with these properties: $\rho(x)=1$ for $x \leq k_{4} ; \rho(x)=0$ for $x \geq k_{3} ; \rho^{\prime}(x) \leq 0$ for all x. Let $r=\left(x_{1}^{2}+y_{1}^{2}\right)^{\frac{3 / 2}{2}}$. The differential equations

$$
\begin{equation*}
\frac{d x_{1}}{d t}=-\mu x_{1}\left(x_{1}^{2}+y_{1}^{2}\right) \rho(r)-\mu x_{1}(1-\rho(r)) \tag{5}
\end{equation*}
$$

$$
\frac{d y_{1}}{d t}=\mu y_{1}\left\{x_{1}^{2}+y_{1}^{2}\right\} \rho(r)+\mu y_{1}(1-\rho(r))
$$

define a flow ψ_{t} on R^{2}. The flow lines for both (4) and (5) are the curves $x_{1} y_{1}=c, c$ constant. Equations (4) and (5) are identical in $\mathrm{R}^{2} \backslash B\left(0, k_{2}\right)$. Because of condition (A), we have:
(B) in $R^{2} \backslash B\left(0, k_{1}\right), \psi_{1}=\phi_{1}\left(=-g_{1}\right)$ and $\psi_{-1}=\phi_{-1}\left(=-g_{1}^{-1}\right)$.

FIGURE 1

Note also that (A) ensures the following property:
(C) suppose that $\left(x_{1}, y_{1}\right) \in B\left(0, k_{1}\right)$ and that $y_{1} \neq 0$. Then there exists $n \in Z^{+}$such that $\psi_{1}^{n-1}\left(x_{1}, y_{1}\right) \in B\left(0, k_{1}\right)$, and $\psi_{1}^{n}\left(x_{1}, y_{1}\right) \in B\left(0, \frac{1}{2}\right) \backslash B\left(0, k_{1}\right) . \quad \mathrm{By}(\mathrm{B})$; $\psi_{1} \circ \psi_{1}^{n}\left(x_{1}, y_{1}\right)=-g_{1} \circ \psi_{1}^{n}\left(x_{1}, y_{1}\right)$.

There is a similar statement to (c) for ψ_{-1}.
Define $f: T^{2} \rightarrow T^{2}$ by

$$
\begin{array}{cl}
f\left(\pi_{1}\left(x_{1}, y_{1}\right)\right)=\pi_{1} \circ\left(-\psi_{1}\right)\left(x_{1}, y_{1}\right) & \text { if }\left(x_{1}, y_{1}\right) \in B\left(0, \frac{1}{2}\right), \\
f(q)=g(q) & \text { if } q \nmid \pi_{1} \circ B\left(0, \frac{z}{2}\right) .
\end{array}
$$

Condition (B) shows that f is a diffeomorphism. Condition (C) is needed to give the following property for f, which we will use later:
(D) let $q \in T^{2}$. Then either $f^{n}(q) \rightarrow p$ as $n \rightarrow \infty$, or there exists a sequence $\left\{n_{k}\right\} \rightarrow \infty$ such that $f \circ f^{n_{k}}(q)=g \circ f^{n_{k}}(q)$.

There is a similar statement to (D) for f^{-1}.
We must establish conditions (i)-(iii) for f. Condition (i) is immediate. For (ii), use the local coordinates, given by π_{1}. In these coordinates, $T_{p} f$ is given by $-D \psi_{1}(0,0)$. From (5), $D \psi_{1}(0,0)$ is the identity.

It remains to establish (iii). The covering map π_{l} can be used to give a chart at any point of $M=T^{2}$. All charts used henceforth will be the charts given by π_{I}. Let $q \in M \backslash\{p\}, w \in T_{q} M \backslash\{0\}$, and suppose w is represented by $[u, v]$ in terms of the chart. We will show that if $|v| \geq|u|$, then $\left\{\left\|(T f)^{n} w\right\|: n \in Z^{+}\right\}$is unbounded. A similar argument yields that if $|v| \leq|u|$, then $\left\{\left\|(T f)^{n} w\right\|: n \in Z^{-}\right\}$is unbounded.

In local coordinates, $T f$ is represented either by $-D \psi_{1}$ or by
$D g_{1}$. We examine $D \psi_{1}$ first. Let $F\left(x_{1}, y_{1}\right)$ be the right hand side of (5), and let $\left[u_{0}, v_{0}\right]$ be a vector in R^{2}. The vector $D \psi_{t}\left(x_{1}, y_{1}\right)\left[u_{0}, v_{0}\right]$ satisfies the variational equation

$$
\begin{equation*}
\frac{d}{d t} D \psi_{t}\left(x_{1}, y_{1}\right)\left[u_{0}, v_{0}\right]=D F\left(\psi_{t}\left(x_{1}, y_{1}\right)\right) D \psi_{t}\left(x_{1}, y_{1}\right)\left[u_{0}, v_{0}\right] \tag{6}
\end{equation*}
$$

A short calculation yields

$$
\begin{aligned}
(-u, v)_{D F}\left(x_{1}, y_{1}\right)[u, v] & =\mu\left[\left(3 u^{2}+v^{2}\right) x_{1}^{2}+4 u v x_{1} y_{1}+\left(u^{2}+3 v^{2} y_{1}^{2}\right] \rho(r)\right. \\
& +\mu\left(u^{2}+v^{2}\right)[1-\rho(r)]+\mu r^{-1} \rho^{\prime}(r)\left(u x_{1}+v y_{1}\right)^{2}\left\{-1+x_{1}^{2}+y_{1}^{2}\right] \\
& \geq 0
\end{aligned}
$$

with equality only when $x_{1}=y_{1}=0$ or $u=v=0$. This means that, for any $t \in R$ and any $\left.\left(x_{1}, y_{1}\right) \in R^{2} \backslash(0,0)\right\}$, the vector field determined by (6) in the punctured (u, v)-plane $((0,0)$ removed) is nowhere tangent to the family of hyperbolas $v^{2}-u^{2}=c, c \in R$, and is directed as shown in Figure 2.

FIGURE 2

This yields the following property of $D \psi_{1}$.
(E) Suppose $v_{0}^{2}+u_{0}^{2}>0$ and $v_{0}^{2}-u_{0}^{2}=c_{0}^{2} \geq 0$. Let $\left[-u_{1},-v_{1}\right]=D \psi_{1}\left(x_{1}, y_{1}\right)\left[u_{0}, v_{0}\right]$, and let $v_{1}^{2}-u_{1}^{2}=\left(-v_{1}\right)^{2}-\left(-u_{1}\right)^{2}=c_{1}^{2} . \quad$ Then $c_{1}^{2}>c_{0}^{2}$.

The action of $D g_{1}$ is similar, and we get some additional information.
(F) Suppose $v_{0}^{2}+u_{0}^{2}>0$, and $v_{0}^{2}-u_{0}^{2}=c_{0}^{2} \geq 0$. Let
$\left[u_{1}, v_{1}\right]=D g_{1}\left[u_{0}, v_{0}\right]=\left[-\lambda^{-1} u_{0},-\lambda v_{0}\right]$, and let
$v_{1}^{2}-u_{1}^{2}=c_{1}^{2}$. Then $c_{1}^{2}=\left(\lambda^{2}-\lambda^{-2}\right) u_{0}^{2}+\lambda^{2} c_{0}^{2}$, so that
$c_{1}^{2} \geq \lambda^{2} c_{0}^{2}$ (recall that $\left.\lambda>1\right)$. Equality holds only when
$u_{0}=0 ;$ but then $c_{0}>0$, so always $c_{1}^{2}>c_{0}^{2}$.
Let $q \in M\{p\}$, and let $w \in T_{q}^{M}$ and be represented in the chart by $\left[u_{0}, v_{0}\right]$ with $\left|v_{0}\right| \geq\left|u_{0}\right|$; that is, with $v^{2}-u_{0}^{2}=c_{0}^{2}$. For $n \geq 0$, let $T f^{n} w$ be represented in the chart by $\left[u_{n}, v_{n}\right]$, and let $v_{n}^{2}-u_{n}^{2}=c_{n}^{2}$. By $(E),(F)$, the sequence $\left\{c_{n}^{2}\right\}_{n=0}^{\infty}$ is monotone increasing.

Suppose first that $f^{n}(q)$ does not tend to p as $n \rightarrow \infty$. By (D), there exists a sequence $\left\{n_{k}\right\} \rightarrow \infty$ such that (If) $n_{f_{k}(q)}=(T g) f_{k_{(q)}}$ for all k. Property (F) then gives that $c_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$. Hence $v_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$, so that $\left\{\left\|T f^{n} w\right\|: n \in Z^{+}\right\}$is unbounded.

Now suppose that $f^{n}(q) \rightarrow p$ as $n \rightarrow \infty$. Then there exists $n_{1} \geq 0$ such that $f^{n}(q)$ lies on $\pi_{1}\left\{\left(x_{1}, 0\right):\left|x_{1}\right| \leq k_{4}\right\}$ whenever $n \geq n_{1}$. Let $\left(x_{n_{1}}, 0\right),\left|x_{n_{1}}\right| \leq k_{4}$, be the point such that $\pi_{1}\left(x_{n_{1}}, 0\right)=f^{n_{1}}(q)$.

Inside $B\left(0, k_{4}\right)$ equations (5) become

$$
\frac{d x_{1}}{d t}=-\mu x_{1}^{3}, \quad \frac{d y_{1}}{d t}=\mu y_{1}^{3}
$$

Hence for $t \geq 0, \psi_{t}\left(x_{n_{1}}, 0\right)=\left(x_{n_{1}}\left(1+2 \mu x_{n_{1}}^{2} t\right)^{-\frac{3}{2}}, 0\right)$. The variational equation for the derivative $D \psi_{t}\left(x_{n_{1}}, 0\right)$ for $t \geq 0$ becomes
(7) $\frac{d}{d t} D \psi_{t}\left(x_{n_{1}}, 0\right)=\left\{\begin{array}{cc}-3 \mu x_{n_{1}}^{2}\left(1+2 \mu x_{n_{1}}^{2} t\right)^{-1} & 0 \\ 0 & \mu x_{n_{1}}^{2}\left(1+2 \mu x_{n_{1}}^{2} t\right)^{-1}\end{array}\right\} D \psi_{t}\left(x_{n_{1}}, 0\right)$. Let $\left|u_{t}^{\prime}, v_{t}^{\prime}\right|=D \psi_{t}\left(x_{n_{1}}, 0\right)\left[u_{n_{1}}, v_{n_{1}}\right]$. From (7), for all $t \geq 0$,

$$
\log \left|v_{t}^{\prime}\right|-\log \left|v_{n_{1}}\right|=\frac{3}{2} \log \left(1+2 \mu x_{n_{1}}^{2} t\right) \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
$$

Therefore $\left|v_{t}^{\prime}\right| \rightarrow \infty$ as $t \rightarrow \infty$. Finally $\left|v_{n}\right|=\left|v_{n}^{\prime}\right|$ for all $n \geq n_{1}$, so in this case too, we have $\left\{\left\|T f^{n} \omega\right\|: n \in Z^{+}\right\}$unbounded.

References

[1] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
[2] John Franks, "Necessary conditions for stability of diffeomorphisms": Trans. Amer. Math. Soc. 158 (1971), 301-308.
[3] John Franks, "Differentiably Ω-stable diffeomorphisms", Topology 11 (1972), 107-113.
[4] John Franks, "Absolutely structurally stable diffeomorphisms", Proc. Amer. Math. Soc. 37 (1973), 293-296.
[5] John Franks and Clark Robinson, "A quasi-Anosov diffeomorphism that is not Anosov", Trans. Amer. Math. Soc. 223 (1976), 267-278.
[6] John Guckenheimer, "Absolutely Ω-stable diffeomorphisms", Topology 11 (1972), 195-197.
[7] Ricardo Mañe, "Persistent manifolds are normally hyperbolic", Bull. Amer. Math. Soc. 80 (1974), 90-91.
[8] R. Mañé, "Quasi-Anosov diffeomorrhisms", Dynomical systems, 27-29 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468 . Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[9] Ricardo Mañé, "On infinitesimal and absolute stability of diffeomorphisms", Dynomical systems, 151-161 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[10] Ricardo Mañé, "Expanding diffeomorphisms", Dynamical systems, 162-174 (Proc. Sympos. University of Warwick, 1973/74. Lecture Notes in Mathematics, 468. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[11] John N. Mather, "Characterization of Anosov diffeomorphisms", K. Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 479-483.
[12] J.W. Robbin, "A structural stability theorem", Ann. of Math. (2) 94 (1971), 447-493.
[13] R. Clark Robinson, "Structural stability of C^{l}-diffeomorphisms", J. Differential Equations 22 (1976), 28-73.

Department of Mathematics, University of California, Berkeley, Berkeley, California, USA;

Department of Mathematics, University of Newcastle,
Newcastle,
New South Wales.

