GENERALIZED LIE ELEMENTS

RIMHAK REE

Introduction. Let $\lambda(i j), i, j=1,2, \ldots, m$, be m^{2} elements in a field K of characteristic zero such that $\lambda(i j) \lambda(j i)=1$ for all i and j, and $x_{1}, x_{2}, \ldots, x_{m}$ non-commutative associative indeterminates over K. Define the elements $\left[x_{i 1} x_{i_{2}} \ldots x_{i_{n}}\right]$ inductively by $\left[x_{i}\right]=x_{i}$ and

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]=x_{i_{1}}\left[x_{i_{2}} \ldots x_{i_{n}}\right]-\prod_{\nu=2}^{n} \lambda\left(i_{1} i_{v}\right)\left[x_{i_{2}} \ldots x_{i_{n}}\right] x_{i_{1}} .
$$

Any linear combination of the elements

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]
$$

with coefficients in K will be called a generalized Lie elememt. Generalized Lie elements reduce to ordinary Lie elements if $\lambda(i j)=1$ for all i and j.

The purpose of this paper is to generalize to the generalized Lie elements the following: a theorem of Friedrichs, a theorem of Dynkin-Specht-Wever (2), and the Witt formula on the dimension of the space spanned by homogeneous Lie elements of a fixed degree. The set of all generalized Lie elements will be made into an algebra which generalizes the ordinary free Lie algebra. This algebra turns out to be free in a certain sense. We shall also generalize the algebra associated with shuffles in (2). ${ }^{1}$

1. Generalized Lie algebras. Throughout this paper K will denote a field of characteristic zero. By a bi-character in K of an additively written abelian semi-group M we shall mean a map $\chi: M \times M \rightarrow K$ satisfying the following:

$$
\chi(\rho, \sigma+\tau)=\chi(\rho, \sigma) \chi(\rho, \tau), \chi(\rho+\sigma, \tau)=\chi(\rho, \tau) \chi(\sigma, \tau)
$$

for all ρ, σ, τ in M. A bi-character χ will be called skerw-symmetric if $\chi(\sigma, \tau)$ $\chi(\tau, \sigma)=1$ for all σ, τ in M. An (associative or non-associative) algebra A over K is said to be graded by the semi-group M if A is a direct sum of subspaces A_{ρ} indexed by $\rho \in M$ such that $f \in A_{\rho}$ and $g \in A_{\sigma}$ imply $f g \in A_{\rho+\sigma}$.

Let L be an algebra graded by M, and let χ be a skew-symmetric bicharacter of M in K. We shall call L a generalized Lie algebra of type χ, or simply a χ-algebra, if $f \in L_{\rho}, g \in L_{\sigma}$, imply

$$
[f, g]+\chi(\rho, \sigma)[g, f]=0 ;
$$

[^0]$$
[f,[g, h]]-\chi(\rho, \sigma)[g,[f, h]]=[[f, g], h],
$$
where $[f, g]$ denotes the product in L of f and g. In case χ is trivial, a χ-algebra is clearly an ordinary Lie algebra. Let A be an associative algebra graded by M. Define a new multiplication $[a, b]$ in the vector space A by
$$
[a, b]=a b-\chi(\rho, \sigma) b a
$$
where $a \in A_{\rho}, b \in A_{\sigma}$. Then we obtain a new algebra which we shall denote by $[A]$. It can be seen easily that $[A]$ is a χ-algebra.

Let L and L^{\prime} be two algebras graded by the same M. A linear map $\phi: L \rightarrow L^{\prime}$ will be said to respect grade if $f \in L_{\rho}$ implies $\phi(f) \in L_{\rho}{ }^{\prime}$. Let L be a χ-algebra and A an associated algebra both graded by M. A grade-respecting linear map $\phi: L \rightarrow A$ will be called a linearization of L in A if ϕ is a homomorphism of L into [A], that is, if

$$
\phi([f, g])=\phi(f) \phi(g)-\chi(\rho, \sigma) \phi(g) \phi(f)
$$

for all $f \in L_{\rho}, g \in L_{\sigma}$. The tensor algebra T over the vector space L is graded by M if T_{ρ} is defined to be the subspace spanned by elements of the form $f_{1} \otimes f_{2} \otimes \ldots \otimes f_{n}$, where $f_{i} \in L_{\rho_{i}}$ and $\rho_{1}+\rho_{2}+\ldots+\rho_{n}=\rho$. Let J be the two-sided ideal of T generated by homogeneous elements of the form $f \otimes g-\chi(\rho, \sigma) g \otimes f-[f, g]$, where $f \in L_{\rho} . g \in L_{\sigma}$. Then the algebra $U=T / J$ is also graded by M, and the inclusion map $L \rightarrow T$ induces a linearization η of L in U. The algebra U will be called the universal enveloping algebra of L; it can be characterized by the property: for any linearization $\phi: L \rightarrow A$ of L into an associative algebra A, there exists a grade-respecting homomorphism $\xi: U \rightarrow A$ such that $\phi=\xi \circ \eta$.
2. Finitely generated free χ-algebras. From now on we shall consider χ-algebras L satisfying the following conditions (2.1) - (2.4):
(2.1) M is a free abelian group of rank m, with basis elements $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$;
(2.2) $L_{\rho}=0$ unless ρ is of the form $\rho=t_{1} \rho_{1}+t_{2} \rho_{2}+\ldots+t_{m} \rho_{m}$, where $t_{1}, t_{2}, \ldots, t_{m}$ are non-negative integers not all of which are zero;
(2.3) each $L_{\rho_{i}}(i=1,2, \ldots, m)$ is of dimension 1 ;
(2.4) L is generated by $L_{\rho_{1}}, L_{\rho_{2}}, \ldots, L_{\rho_{m}}$.

A χ-algebra L satisfying (2.1) - (2.4) above, will be called a free χ-algebra of rank m if any χ-algebra satisfying (2.1) - (2.4) is a (grade-respecting) homomorphic image of L. The existence of a free χ-algebra can be seen as follows: let F be the free (non-associative) algebra generated by an m-dimensional vector space E over the field K. If we choose a basis of E over K, then F can be graded in an obvious way by the free abelian group M of rank m. Let J be the two-sided ideal of F generated by homogeneous elements of the forms $f g+\chi(\rho, \sigma) g f$ and $f(g h)-\chi(\rho, \sigma) g(f h)-(f g) h$, where $f \in F_{\rho,} g \in F_{\sigma}$. Then $L=F / J$ is easily seen to be a free χ-algebra of rank m.

Let U be the universal enveloping algebra of the free χ-algebra L of rank m with the linearization map $\eta: L \rightarrow U$, and let A be the free associative algebra over K generated by m free generators $x_{1}, x_{2}, \ldots, x_{m}$. Since L is free, there exists a homomorphism $\phi: L \rightarrow[A]$ such that $\phi\left(f_{i}\right)=x_{i}, i=1$, $2, \ldots, m$, that is, ϕ is a linearization of L in A. Then by the definition of U, there exists a grade-respecting homomorphism $\xi: U \rightarrow A$ such that $\phi=\xi \circ \eta$. Then ξ must be an isomorphism, since A is free-associative. Thus we may regard U as a free associative algebra with free generators $x_{1}=\eta\left(f_{1}\right), \ldots, x_{m}=\eta\left(f_{m}\right)$. The fact that $\eta(f)=0$ implies $F=0$ can also be proved in exactly the same way as in the case of free Lie algebras (3, 1-9). Hence we may identify L as the subalgebra of $[U]$ generated by x_{1}, \ldots, x_{m}. It can be seen easily that L is spanned by the elements

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]=\left[x_{i_{1}}\left[\ldots\left[x_{i_{n-1}} x_{i_{n}}\right] \ldots\right]\right]
$$

defined in the Introduction by using $\lambda(i j)=\chi\left(\rho_{i}, \rho_{j}\right)$. Thus we may state
Theorem 2.5. Let K be a field of characteristic zero, $x_{1}, x_{2}, \ldots, x_{m}$ non-commutative associative indeterminates over K, and $\lambda(i j), i, j=1,2, \ldots, m$, be m^{2} elements in K such that $\lambda(i j) \lambda(j i)=1$ for all i and j. Then the vector space over K spanned by the elements

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]
$$

defined above forms a free χ-algebra L with respect to the multiplication

$$
\begin{aligned}
& {\left[\left[x_{i_{1}} \ldots x_{i_{p}}\right],\left[x_{j_{1}} \ldots x_{j_{q}}\right]\right]} \\
& \quad=\left[x_{i_{1}} \ldots x_{i_{p}}\right]\left[x_{j_{1}} \ldots x_{j_{q}}\right]-\prod_{\mu=1}^{p} \prod_{v=1}^{q} \lambda\left(i_{\mu} j_{v}\right)\left[x_{j_{1}} \ldots x_{j_{q}}\right]\left[x_{i_{1}} \ldots x_{i_{p}}\right] .
\end{aligned}
$$

The universal enveloping algebra of L is isomorphic to the free associative algebra with m free generators.

It should be understood in the above theorem that L is graded by M as follows: for $\rho=t_{1} \rho_{1}+t_{2} \rho_{2}+\ldots+t_{m} \rho_{m}, L_{\rho}$ consists of linear combinations of elements of the form

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]
$$

in which, for each i, x_{i} appears t_{i} times. Also, χ is defined by $\chi\left(\rho_{i}, \rho_{j}\right)=\lambda(i j)$.
3. A generalization of a Witt formula. Let L be as in Theorem 2.5. An element in L will be called a homogeneous element of degree n if it is a linear combination of elements of the form

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right] .
$$

In this section we shall compute the dimension of the space spanned by all homogeneous elements of degree n, following a method given by Witt (4). By the same method one may be able to compute the dimension of each L_{ρ}.

Let A and B be two associative algebras both graded by M, and $\mathrm{A} \otimes B$ the tensor product of A and B regarded as vector spaces over K. Using a bi-character χ of M, define a multiplication in the vector space $A \otimes B$ by

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=\chi\left(\sigma, \rho^{\prime}\right)\left(a a^{\prime} \otimes b b^{\prime}\right)
$$

where $b \in B_{\sigma}, a^{\prime} \in A_{\rho}^{\prime}$. The algebra obtained in this way is easily seen to be associative, and will be denoted simply by $A \otimes B$. It will be used in the proof of (3.1), below, as well as in the formulation of a generalization of a theorem of Friedrichs.

Now, for the skew-symmetric bi-character χ of M, we have $\chi(\rho, \rho)= \pm 1$ for any $\rho \in M$. The subspace L_{ρ} of the free χ-algebra L will be called positive or negative according as $\chi(\rho, \rho)=1$ or $\chi(\rho, \rho)=-1$. Choose a basis for each positive L_{ρ} and let the union of these basis elements be $P_{1}, P_{2}, P_{3} \ldots$ Also, choose a basis for each negative L_{ρ} and let the union of these basis elements be $Q_{1}, Q_{2}, Q_{3} \ldots$ Let $\eta: L \rightarrow U$ be the linearization of L into its universal enveloping algebra U. Then we have

Theorem 3.1. The elements

$$
\eta\left(P_{1}\right)^{s_{1}} \eta\left(P_{2}\right)^{s_{2}} \ldots \eta\left(P_{k}\right)^{s_{k}} \eta\left(Q_{1}\right)^{t_{1}} \eta\left(Q_{2}\right)^{t_{2}} \ldots \eta\left(Q_{n}\right)^{t_{n}}
$$

form a basis of the universal enveloping algebra U of the free χ-algebra L. Here the indices run as follows: $s_{1}, s_{2} \ldots$ are non-negative integers; each of t_{i} is either 0 or 1 ; $k, n=0,1,2 \ldots$

Proof. Since, for each i,

$$
\eta\left(\left[Q_{i}, Q_{i}\right]\right)=\eta\left(Q_{i}\right)^{2}-\chi(\rho, \rho) \eta\left(Q_{i}\right)^{2}=2 \eta\left(Q_{i}\right)^{2}
$$

it follows that $\eta\left(Q_{i}\right)^{2}$ is a linear combination of some $\eta\left(P_{j}\right)$'s and some $\eta\left(Q_{k}\right)$'s. Then by the definition of the linearization, it is clear that U is spanned by the given elements. Thus it remains to show that the given elements are linearly independent. For this purpose, let U^{\prime} be a replica of U with grade-respecting isomorphism $\iota: U \rightarrow U^{\prime}$, and let $\eta^{\prime}=\iota \circ \eta$. Let $U \otimes U^{\prime}$ be the tensor product of U and U^{\prime} with respect to χ. Then $U \otimes U^{\prime}$ is also graded by M in an obvious way, and the map $\bar{\eta}: L \rightarrow U \otimes U^{\prime}$ defined by

$$
\bar{\eta}(f)=\eta(f) \otimes 1+1 \otimes \eta^{\prime}(f)
$$

is easily seen to be a linearization of L into $U \otimes U^{\prime}$. Therefore there exists a homomorphism $\xi: U \rightarrow U \otimes U^{\prime}$ such that $\xi \circ \eta=\bar{\eta}$. Using ξ, one may now prove the linear independence of the given elements in exactly the same way as in the case of ordinary Lie algebras (3, pp. 1-8). We omit the details.

Now, let the free χ-algebra L given in (2.5) be graded by M as in the remark following (2.5). Let the basis elements $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ be such that

$$
L_{\rho_{1}}, \ldots, L_{\rho_{p}}
$$

are positive while

$$
L_{\rho_{p+1}}, \ldots, L_{\rho_{p+q}}
$$

($p+q=m$) are negative. Since, for $\rho=t_{1} \rho_{1}+\ldots+t_{m} \rho_{m}$,

$$
\chi(\rho, \rho)=\prod_{i, j} \chi\left(\rho_{i}, \rho_{j}\right)^{t_{i} t_{j}}=\prod_{i} \chi\left(\rho_{i}, \rho_{i}\right)^{t_{i}^{2}}=(-1)^{t}
$$

where $t=t_{p+1}+\ldots+t_{p+q}$, it follows that

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]
$$

belongs to a positive L_{ρ} if and only if its degree with respect to x_{p+1}, \ldots, x_{p+q} is even. Denote by p_{n} and q_{n}, respectively, the numbers of P_{i} 's of degree n and the numbers of Q_{i} 's of degree n, and consider the formal power series

$$
F(x, \lambda)=\prod_{d=1}^{\infty}\left(1+x^{d}+x^{2 d}+\ldots\right)^{p_{d}}\left(1+\lambda x^{d}\right)^{q_{d}}
$$

with a parameter λ. The coefficient $c_{n}(\lambda)$ of x^{n} in $F(x)$ is a polynomial in λ with integral coefficients. By (3.1), $c_{n}(1)$ is equal to the dimension of the subspace of U spanned by all homogeneous elements of degree $n ; c_{n}(1)=(p+q)^{n}$. On the other hand, also by $(3.1), c_{n}(-1)=a_{n}-b_{n}$, where a_{n} denotes the dimension of the subspace A_{n} of U spanned by all homogeneous elements which are of even degrees with respect to x_{p+1}, \ldots, x_{p+q}, and where b_{n} denotes the dimension of the subspace B_{n} of U spanned by all homogeneous elements which are of odd degrees with respect to x_{p+1}, \ldots, x_{p+q}. Since U is free associative, A_{n} (resp. B_{n}) is spanned by elements

$$
x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}
$$

of even (resp. odd) degree with respect to x_{p+1}, \ldots, x_{p+q}. Thus

$$
\begin{aligned}
& a_{n}=C_{n, 0} p^{n}+C_{n, 2} p^{n-2} q^{2}+\ldots \\
& b_{n}=C_{n, 1} p^{n-1} q+C_{n, 3} p^{n-3} q^{3}+\ldots
\end{aligned}
$$

where $C_{n, r}$ are binomial coefficients. Hence $a_{n}-b_{n}=(p-q)^{n}$, and we have

$$
\begin{aligned}
& F(x, 1)=1+(p+q) x+(p+q)^{2} x^{2}+\ldots \\
& F(x, 1)=-1+(p-q) x+(p-q)^{2} x^{2}+\ldots
\end{aligned}
$$

Taking logarithms of both sides, and comparing the coefficients of x^{n} / n, we have, for $n=1,2, \ldots$,

$$
\begin{aligned}
& \sum_{d \mid n} d p_{d}-\sum_{d \mid n}(-1)^{n / d} d q_{d}=(p+q)^{n} \\
& \sum_{d \mid n} d p_{d}-\sum_{d \backslash n} d q_{d}=(p-q)^{n}
\end{aligned}
$$

Let $k>0$ be an odd integer. Then, since

$$
\begin{aligned}
& \sum_{d \mid 2^{\alpha_{k}}}(-1)^{2^{\alpha_{k} / d}} d q_{d}=\sum_{d \mid 2^{\alpha-1} k} d q_{d}-\sum_{d \mid k} 2^{\alpha} d q_{2^{\alpha_{d}}}, \\
& \sum_{d \mid 2^{\alpha} k} d p_{d}=\sum_{d \mid 2^{\alpha-1} 1_{k}} d p_{d}+\sum_{d \mid k} 2^{\alpha} d p_{2^{\alpha_{d}}}
\end{aligned}
$$

we obtain, from the above,

$$
\sum_{d \backslash k} 2^{\alpha} d\left(p_{2 \alpha_{d}}+q_{2 \alpha_{d}}\right)=(p+q)^{2_{k}}-(p-q)^{2^{\alpha-1} k}
$$

Then by the Möbius inversion formula, we have

$$
p_{2^{\alpha_{k}}}+q_{2 \alpha_{k}}=\frac{1}{2^{\alpha} k} \sum_{d \mid k} \mu(d)\left((p+q)^{2^{\alpha} k / d}-(p-q)^{2 \alpha-1 k / d}\right) .
$$

In case $\alpha=0$, the above reduces (for odd k) to

$$
p_{k}+q_{k}=\frac{1}{k} \sum_{d \mid k} \mu(d)(p+q)^{k / d}
$$

Following Witt, we shall use the notations:

$$
\begin{aligned}
& \psi(n)=\frac{1}{n} \sum_{d \backslash n} \mu(d)(p+q)^{n / d} \\
& \psi^{*}(n)=p_{n}+q_{n}
\end{aligned}
$$

Then the above can be summarized as
Theorem 3.2. The dimension $\psi^{*}(n)$ of the vector space spanned by all elements of the form

$$
\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}\right]
$$

is given, for odd k, by

$$
\begin{aligned}
\psi^{*}(k) & =\psi(k) \\
\psi^{*}\left(2^{\alpha} k\right) & =\psi\left(2^{\alpha} k\right)+\frac{1}{2^{\alpha} k} \sum_{d!k} \mu(d)\left((p+q)^{2^{\alpha-1} k / d}-(p-q)^{2^{\alpha-1} k / d}\right)
\end{aligned}
$$

where p denotes the number of indices i such that $\lambda(i i)=\chi\left(\rho_{i}, \rho_{i}\right)=1$ while q denotes the number of indices j such that $\lambda(j j)=-1$.

It should be remarked that the function $\psi^{*}(n)$ is completely determined by the values of $\lambda(i i)$, and independent of other values of $\lambda(i j)$. The Witt formula is obtained as the case $q=0$. In case all $\lambda(i i)=-1$, we have $p=0$, and we may deduce from the above that

$$
\psi^{*}(n)=\left\{\begin{array}{l}
\psi(n) \text { for } n \equiv 0,1,3(\bmod 4) \\
\psi(n)+\psi\left(\frac{1}{2} n\right) \text { for } n \equiv 2(\bmod 4)
\end{array}\right.
$$

4. An algebra associated with shuffles. We shall generalize the algebra defined in (2) to apply to generalized Lie elements. If r and s are positive integers, define a shufle of type (r, s) to be a permutation σ of the numbers $1,2, \ldots, r+s$ such that $1 \leqslant \sigma(\mu)<\sigma(\nu) \leqslant r$ or $r<\sigma(\mu)<\sigma(\nu) \leqslant r+s$ implies $\mu<\nu$. Take m^{2} elements $\lambda(i j)$ in K arbitrarily, and define an algebra A over K as follows. A has the basis

$$
\{1\} \cup\left\{a\left(i_{1} \ldots i_{n}\right) \mid i_{1}, \ldots, i_{n}=1,2, \ldots, m ; n=1,2, \ldots\right\}
$$

with the multiplication table: 1 is a unity element;

$$
a\left(i_{1} \ldots i_{r}\right) a\left(i_{r+1} \ldots i_{r+s}\right)=\sum_{\sigma} \lambda(\sigma) a\left(i_{\sigma(1)} i_{\sigma(2)} \ldots i_{\sigma(\tau+s)}\right)
$$

where the sum ranges over all shuffles σ of type (r, s) while $\lambda(\sigma)$ denotes the product of all $\lambda\left(i_{\sigma(\mu)}, i_{\sigma(\nu)}\right)$ such that $\mu<\nu$ and $\sigma(\mu)>\sigma(\nu)$. (We set $\lambda(\sigma)=1$ if σ is the identity permutation.)
Thus, for example,

$$
\begin{aligned}
a(i) a(j) & =a(i j)+\lambda(j i) a(j i) ; \\
a(i) a(j k) & =a(i j k)+\lambda(j i) a(j i k)+\lambda(j i) \lambda(k i) a(j k i) .
\end{aligned}
$$

Theorem 4.1. The algebra A is associative, and if $\lambda(i j) \lambda(j i)=1$ for all i and j, then it satisfies the generalized commutativity:

$$
a\left(j_{1} \ldots j_{s}\right) a\left(i_{1} \ldots i_{r}\right)=\prod_{\mu=1}^{\tau} \prod_{v=1}^{s} \lambda\left(i_{\mu} j_{v}\right) a\left(i_{1} \ldots i_{\tau}\right) a\left(j_{1} \ldots j_{s}\right) .
$$

Proof. If

$$
f=a\left(i_{1} \ldots i_{\tau}\right), g=a\left(i_{r+1} \ldots i_{r+s}\right), h=a\left(i_{r+s+1} \ldots i_{r+s+t}\right) .
$$

then it is readily seen that both $(f g) h$ and $f(g h)$ are of the form

$$
\sum \lambda(\sigma) a\left(i_{\sigma(1)} i_{\sigma(2)} \ldots i_{\sigma(r+s+t)}\right)
$$

where σ runs over all permutations of $1,2, \ldots, r+s+t$ such that any one of the three conditions

$$
\begin{aligned}
& 1 \leqslant \sigma(\mu)<\sigma(\nu)<r, \\
& r<\sigma(\mu)<\sigma(\nu) \leqslant r+s, \\
& r+s<\sigma(\mu)<\sigma(\nu)<r+s+t
\end{aligned}
$$

implies $\mu<\nu$, and where $\lambda(\sigma)$ denotes the product of all $\lambda\left(i_{\sigma(\mu)} i_{\sigma(\nu)}\right)$ such that $\mu<\nu$ and $\sigma(\mu)>\sigma(\nu)$. Hence $(f g) h=f(g h)$. The second half of the theorem may be verified easily.

In the rest of this section, we shall assume that $\lambda(i j) \lambda(j i)=1$ for all i and j. Making the convention that $a\left(i_{1} \ldots i_{r}\right)$ stands for 1 whenever the set $\left\{i_{1}, \ldots, i_{r}\right\}$ of indices is empty, we define the bilinear operation \vee in A by

$$
a\left(i_{1} \ldots i_{r}\right) \vee a\left(j_{1} \ldots j_{s}\right)=a\left(i_{1} \ldots i_{r} j_{1} \ldots j_{s}\right)
$$

We also make the convention that the multiplication in A has priority over the operation \vee.

Define the elements $a\left[i_{1} i_{2} \ldots i_{n}\right]$ in A inductively by $a[i]=a(i)$ and

$$
a\left[i_{1} i_{2} \ldots i_{n}\right]=a\left(i_{1}\right) \vee a\left[i_{2} \ldots i_{n}\right]-\prod_{v=1}^{n-1} \lambda\left(i_{n} i_{v}\right) a\left(i_{n}\right) \vee a\left[i_{1} \ldots i_{n-1}\right] .
$$

For the generalizations in the next section of some theorems on Lie elements, we need the following

Theorem 4.2. For $n>0$, we have

$$
\sum_{s=1}^{n} a\left[i_{1} \ldots i_{s}\right] a\left(i_{s+1} \ldots i_{n}\right)=n a\left(i_{1} \ldots i_{n}\right) .
$$

The above theorem may be proved in exactly the same way as in the case where all $\lambda(i j)=1$ (2), if we use the linear map $D: A \rightarrow A$ defined by $D(1)=0$ and

$$
D a\left(i_{1} i_{2} \ldots i_{n}\right)=\gamma\left(i_{1}\right) a\left(i_{2} \ldots i_{n}\right)
$$

where $\gamma(1), \ldots, \gamma(m)$ are m arbitrary elements in K. We omit the proof of (4.2). Incidentally, the map D becomes an anti-derivation of A if all $\lambda(i j)=-1$.

Theorem 4.3. If the linear map $\phi: A \rightarrow A$ is defined by $\phi(1)=0$ and $\phi\left(a\left(i_{1} i_{2} \ldots i_{n}\right)\right)=a\left[i_{1} i_{2} \ldots i_{n}\right]$, then $\phi\left(a\left(i_{1} \ldots i_{r}\right) a\left(i_{r+1} \ldots i_{r+s}\right)\right)=0$ for all $i_{1}, i_{2}, \ldots, i_{r+s}=1,2, \ldots, m ; r>0, s>0$.

Proof. We shall proceed by induction on $n=r+s$. If $n=2$, then the theorem can be verified easily. Assume $n>2$ and that the theorem is proved for smaller values of n. By the definition of the multiplication in A, we have

$$
\begin{aligned}
& \phi\left(a\left(i_{1} \ldots i_{\tau}\right) a\left(i_{r+1} \ldots i_{n}\right)\right) \\
& =\sum \lambda(\sigma) a\left(i_{\sigma(1)}\right) \vee a\left[i_{\sigma(2)} \ldots i_{\sigma(n)}\right] \\
& \quad-\sum \lambda(\sigma) \prod_{\nu=1}^{n-1} \lambda\left(i_{\sigma(n)} i_{\sigma(\nu)}\right) a\left(i_{\sigma(n)}\right) \vee a\left[i_{\sigma(1)} \ldots i_{\sigma(n-1)}\right]
\end{aligned}
$$

where the sums run over all shuffles of type $(r, s), r+s=n$. Since $\sigma(1)=1$ or $r+1$, and $\sigma(n)=r$ or n, the right-hand side of the above equation can be written

$$
\begin{aligned}
\sum_{\sigma(1)=1} \lambda(\sigma) a\left(i_{1}\right) & \vee a\left[i_{\sigma(2)} \ldots i_{\sigma(n)}\right] \\
& +\sum_{\sigma(1)=\tau+1} \lambda(\sigma) a\left(i_{r+1}\right) \vee a\left[i_{\sigma(2)} \ldots i_{\sigma(n)}\right] \\
& -\sum_{\sigma(n)=r} \lambda(\sigma) \prod_{\nu=1}^{n-1} \lambda\left(i_{r} i_{\sigma(\nu)}\right) a\left(i_{r}\right) \vee a\left[i_{\sigma(1)} \ldots i_{\sigma(n-1)}\right] \\
& -\sum_{\sigma(n)=n} \lambda(\sigma) \prod_{\nu=1}^{n-1} \lambda\left(i_{n} i_{\sigma(\nu)}\right) a\left(i_{n}\right) \vee a\left[i_{\sigma(1)} \ldots i_{\sigma(n-1)}\right] \\
=a\left(i_{1}\right) & \vee \phi\left(a\left(i_{2} \ldots i_{r}\right) a\left(i_{r+1} \ldots i_{n}\right)\right) \\
& +\prod_{\nu=1}^{r} \lambda\left(i_{r+1} i_{\nu}\right) a\left(i_{r+1}\right) \vee \phi\left(a\left(i_{1} \ldots i_{r}\right) a\left(i_{r+2} \ldots i_{n}\right)\right) \\
& -\prod_{\mu=r+1}^{n} \lambda\left(i_{\mu} i_{r}\right) \prod_{\nu=1, \neq r}^{n} \lambda\left(i_{r} i_{\nu}\right) a\left(i_{r}\right) \vee \phi\left(a\left(i_{1} \ldots i_{r-1}\right) a\left(i_{r+1} \ldots i_{n}\right)\right) \\
& -\prod_{\nu=1}^{r-1} \lambda\left(i_{n} i_{\nu}\right) a\left(i_{n}\right) \vee \phi\left(a\left(i_{1} \ldots i_{r}\right) a\left(i_{r+1} \ldots i_{n-1}\right)\right)
\end{aligned}
$$

$$
=0
$$

because of the induction assumption and the fact that, for $r=1$,

$$
\prod_{\mu=r+1}^{n} \lambda\left(i_{\mu} i_{r}\right) \prod_{\nu=1, \neq \tau}^{n} \lambda\left(i_{r} i_{\nu}\right)=1
$$

Corollary 4.3. If $0<r<n$, then

$$
n a\left(i_{1}, \ldots, i_{r}\right) a\left(i_{r+1} \ldots i_{n}\right)=\sum \lambda(\sigma)\left(n a\left(i_{\sigma(1)} \ldots i_{\sigma(n)}\right)-a\left[i_{\sigma(1)} \ldots i_{\sigma(n)}\right]\right)
$$

where the sum ranges over all shuffes of type $(r, n-r)$.
The above corollary, together with (4.2), shows that the $(n-1) m^{n}$ elements $a\left(i_{1} \ldots i_{\tau}\right) a\left(i_{r+1} \ldots i_{n}\right), i_{1}, \ldots, i_{n}=1,2, \ldots, m ; 0<r<n$, and the m^{n} elements $n a\left(i_{1} \ldots i_{n}\right)-a\left[i_{1} \ldots i_{n}\right]$ span the same vector space over K. Also from (4.2) we obtain

Corollary 4.4. The linear map $\phi_{0}: A \rightarrow A$ defined by $\phi_{0}(1)=0$ and

$$
\phi_{0}\left(a\left(i_{1} i_{2} \ldots i_{n}\right)\right)=n^{-1} a\left[i_{1} i_{2} \ldots i_{n}\right]
$$

for $n>0$, is a projection, that is, $\phi_{0}{ }^{2}=\phi_{0}$.
The following theorem is essentially a generalization of Theorem 2.6 of (2), and may be proved by using the map D introduced in the above.

Theorem 4.5. For $n>0$, we have

$$
\sum_{s=0}^{n}(-1)^{s} \prod_{s<\mu<\nu<n} \lambda\left(i_{\nu} i_{\mu}\right) a\left(i_{1} \ldots i_{s}\right) a\left(i_{n} i_{n-1} \ldots i_{s+1}\right)=0 .
$$

5. Generalization of a theorem of Friedrichs. Let L be a free χ algebra of rank m, and $\eta: L \rightarrow U$ the linearization of L into its universal enveloping algebra. Let U^{\prime} be a replica of U with the grade-respecting isomorphism $\iota: U \rightarrow U^{\prime}$ and $\eta^{\prime}=\iota \circ \eta$. Let $U \otimes U^{\prime}$ be the tensor product of U and U^{\prime} with respect to χ. In the course of the proof of (3.1) we have seen that the map $\bar{\eta}: L \rightarrow U \otimes U^{\prime}$ defined by

$$
\bar{\eta}(f)=\eta(f) \otimes 1+1 \otimes \eta^{\prime}(f)
$$

is a linearization and that there exists a homomorphism $\xi: U \rightarrow U \otimes U^{\prime}$ such that $\xi \circ \eta=\bar{\eta}$. Now the following theorem generalizes a theorem of Friedrichs (2).

Theorem 5.1. Let η, ι, and ξ be as above. Then an element u in U belongs to the image $\eta(L)$ of L under η if and only if

$$
\xi(u)=u \otimes 1+1 \otimes \iota(u) .
$$

Proof. The "only if" part follows from the fact that $\bar{\eta}=\xi \circ \eta$. In order to prove the "if" part, let $x_{1}, x_{2}, \ldots, x_{m}$ be free generators of U and write, for simplicity, x_{i} and $x_{i}{ }^{\prime}$ for $x_{i} \otimes 1$ and $1 \otimes \iota\left(x_{i}\right)$, respectively. If

$$
u=\sum \alpha_{i_{1} \ldots i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

with coefficients in K, then

$$
\begin{aligned}
\xi(u) & =\sum \alpha_{i_{1} \ldots i_{n}}\left(x_{i_{1}}+x_{i_{1}}^{\prime}\right) \ldots\left(x_{i_{n}}+x_{i_{n}}^{\prime}\right) \\
& =\sum \sum_{s=0}^{n} \phi\left(a\left(i_{1} \ldots i_{s}\right) a\left(i_{s+1} \ldots i_{n}\right)\right) x_{i_{1}} \ldots x_{i_{s}} x_{i_{s+1}}^{\prime} \ldots x_{i_{n}}^{\prime}
\end{aligned}
$$

where ϕ is a linear map: $A_{n} \rightarrow K$ defined by

$$
\phi\left(a\left(i_{1} \ldots i_{n}\right)\right)=\alpha_{i_{1}} \ldots i_{n}
$$

Hence the condition given in (5.1) is equivalent to

$$
\phi\left(a\left(i_{1} \ldots i_{s}\right) a\left(i_{s+1} \ldots i_{n}\right)\right)=0 \quad(0<s<n)
$$

The rest of the proof is exactly the same as in the case $\lambda(i j)=1$ ($\mathbf{2}, \mathrm{p} .214$), and may be omitted. Here we have to use

$$
\sum a\left[i_{1} \ldots i_{n}\right] x_{i_{1}} \ldots x_{i_{n}}=\sum a\left(i_{1} \ldots i_{n}\right)\left[x_{i_{1}} \ldots x_{i_{n}}\right]
$$

but this, too, can be proved as in (2, p. 213).
Similarly we may prove the following
Theorem 5.2. A homogeneous element

$$
f=\sum \alpha_{i_{1} \ldots i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

in U of degree $n>0$ is a generalized Lie element if and only if

$$
n t=\sum \alpha_{i_{1} \ldots i_{n}}\left[x_{i_{1}} \ldots x_{i_{n}}\right] .
$$

This generalizes a theorem of Dynkin-Specht-Wever (2, p. 214).

References

1. C. Chevalley, Fundamental concepts of algebra (New York: Academic Press Inc., 1956).
2. Rimhak Ree, Lie elements and an algebra associated with shufles, Ann. Math., 68 (1958), 210-220.
3. Seminaire "Sophus Lie," Theorie des algebres de Lie et topologie des groupes de Lie, 1954-5.
4. Ernst Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math., 177 (1937), 152-160.

University of British Columbia

[^0]: Received March 30, 1959.
 ${ }^{1}$ The referee remarks that the algebras considered in this paper include, as a special case, the "left Lie algebras" which are used in homological algebra (cf. for example, the exposition by P. Cartier in Séminaire Bourbaki, May, 1955).

