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ABSTRACT

We are dealing with the ruin probability and the expected ruin time in a two
state Markov model where the premium is the reciprocal of an integer and the
initial surplus is a multiple of the premium.
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1. PRELIMINARIES

Let t\, t2, ..., tm ... be equidistant points of time. Without loss of generality
we may assume that the time interval tn-tn_l= 1. We consider a risk process
where, if in state one at time tn, is payable a premium c, and, if in state two at
time tn, is payable a benefit of 1. Further let 0 <Pu< 1 be the probability to
move from state 1 to state 2 in the interval (/„, tn+l], and 0 <p2\< 1 the proba-
bility to move from state 2 to state 1 in the interval (?„, tn+l\. The process can
be described as a homogeneous MARKOV chain with two states and the transi-
tion matrix

Pn Pn\ _ |*~P\2 P\2
Pi\ P22) ~ \ P21 l~P2

Define the claim size Xn by Xn = 0, if the chain is in state 1 at time tn and Xn = 1,
if the chain is in state 2 at time tn. Starting with initial surplus u e R in state
/ e {1,2}, let

f n )

T,.(w)=inf\n(=N u + nc-(\ +c^X^Oi (2)

' The author is indebted to the editor and an anonymous referee for their helpful comments and
some simplified derivations of formulae, especially in section 3.
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be the time of ruin. We are interested in the ruin probability in infinite time
*F,(w) = P(TJ(U) < oo) and in the expected value of the ruin time, £,-(w) = E(TJ(U)).

In the present paper we will assume c = jf with NeN, N > I, since in most
situations we can expect c to be very small compared to 1. If there is no \
"close" to c, we have at least an upper bound for *?,(«) and a lower bound for

£,(«) by choosing jj<c. Assuming further for the rest of this paper that u > 0
is a multiple of c, we can write u = -^ with k e No.

We will derive recursion formulae for the ruin probability and the expected
value of the ruin time, and we will calculate the corresponding initial values,
which are

where a is the only root of the polynomialp(s) = -pu + s- (p2]-p\\)sN-p22sN+l

in the interval (0,1). Further we will give a linear approximation for the
expected ruin time.

2. A RECURSION FORMULA FOR THE RUIN PROBABILITY

To determine the ruin probability we can adapt ideas from REINHARD and
SNOUSSI (2000), who in their paper are dealing with a semi-MARKOV model.
In section 4 we will give some further comments on this point.

In order to ensure *?,(") < 1 we suppose a positive safety loading, i.e. we
suppose jj>Pnlpn, the net premium for the stationary chain. We start our
calculation by noting that for u > 0, I'I(M) and *P2(

M) a r e connected in the fol-
lowing manner:

«-l), (4)

j r ) u - l ) . (5)

For 0 < u < 1 equation (4) becomes

For 1 < u < 2 combining (4) and (5) leads to

(6)

(7)
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Finally, for u > 2 combining (4) and (5) yields

(8)

Writing O(/:) = ̂ (Jjr) we are arriving at

<S>(k)-PuO(k+\)

_\Pn forO<k<N, (9)

~\p22<J>(k-N)+(p2l-pn)Ogc-N + l) fork>N.

Given $(0), the N+ 1 starting values O(0),..., O(A0 can be calculated immedi-
ately from (9),

^ 4 / " 1 forO<^<TV, (10)
Pu

and in the sequel the values of O(A:) for all k > N can be calculated from the
linear homogeneous difference equation of order N+1,

\)=p22<t>(k-N)+(p2l-pu)Q>(k-N+l). (11)

From the values of O(£) resp. ¥,(«) we get the values for *F2(«) with (5).

3. THE INITIAL VALUES FOR THE RUIN PROBABILITY

We proceed from (9). Let n be an integer greater than N. Then

O(n)-O(0)

k=\

*;=!
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- A T )
k=N+\

k=\

n-N

7=1

/t=l k = \

(12)

= (l-JPn)

Now note that lim,,.^ d>(w) = 0 because of the positive safety loading. Hence
from (12) for n —>°° we obtain

¥,(())= O(0) = t f | £ . (13)

With (5) we find T2(0) = p2\¥x(±\+P22, hence with (10) we get

V2(0)=Pu(N~^+P22. (14)

As an example let /?12 = 0.01 and/>2i = 0.2, so the net premium is JQ. Choosing
N= 10 we obtain %(0)= 0.5 and Y2(0) « 0.9. %(u) for some further values of
u can be found in the following table 1.

TABLE 1

NUMERICAL EXAMPLE FOR ¥:

II

0.0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

0.50000
0.49495
0.48985
0.48469
0.47949
0.47423
0.46892
0.46356
0.45814
0.45266

«F2(«)

0.89899
0.89797
0.89694
0.89590
0.89485
0.89378
0.89271
0.89163
0.89053
0.88943

u

1.0
2.0
3.0
4.0

5.0
6.0

7.0
8.0
9.0
10.0

»Pr(«)

0.44714
0.39985

0.35756
0.31974

0.28591
0.25566
0.22860
0.20441

0.18277
0.16343

«P2(«)

0.80771
0.72531
0.65102
0.58409
0.52385
0.46967
0.42097
0.37722

0.33794
0.30268

Finally, look what happens if -^ equals the net premium in the stationary chain
P\2lp2\- As is known, with this JV the ruin probability is 1 (see e.g. ASMUSSEN
(2000), corollary 1.12 in chapter VI). This corresponds with (13) and (14).
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4. A RELATED MODEL AND A RISK PROCESS

Changing the scale for the monetary unit (divide by jf) for c, u and Xj we
obtain an equivalent (though less obvious) formulation of the problem where
the premium c - 1 is independent of the state and A} = 0 in state 1, A} = N+1
in state 2, and u e No. Now define Xj = A M̂ for j > 2. With this new claim size
distribution the result 1 -Xj in a time interval may be positive only for inter-
vals starting in state 1. Models with this kind of restriction are considered
by REINHARD and SNOUSSI as a special case of their semi-MARKOV model.
Because X, = 0 when starting in state 1, their ^(w) is our y¥l(

R^1-), in particular
%(0) = In" ("Ai"""1) " °-4 9 5 i n t h e Previous example. Further their %{u) is our

With Xj the model is closely related to â  risk process with independent
increments: Let Y* totalize the claim surplus Xj -1 in the intervals after a stay
in state 1 up to the very next stay in state 1. Then the distribution of Y*t is
given by

j = -l)=pn, P(Y^nN-l)^pnp
n

22
1p2l(nGN), (15)

hence Y*, Y2, ... are i.i.d. with expectation E(Y*) = Npl2/p2i - 1 < 0. Let X* =
Yj + 1 and consider the risk process {M + «~Z!" = 1 ^ /} H > 1 . The result in the last
interval before ruin is negative for both the risk process (ending in state 1) and
the MARKOV-model with Xj. Therefore ruin occurs in the risk process if and
only if it occurs in the MARKOV-model, i.e. both have the same ruin function.

5. A RECURSION FORMULA FOR THE EXPECTED RUIN TIME

Here we suppose jj < Pnlpi\- In this case of a negative safety loading ruin is
certain and the expected ruin time £,-(w), re {1,2}, is finite.

We note that BAUERLE (1996) showed in the context of a MARKOv-modu-
lated model that the asymptotic behaviour of £,(w) is linear. With quite evi-
dent modifications the proof of her theorem 3.1 also works for our model.
(First use the modified model as described in the beginning lines of section 4,
then re-scale to premium c). The adaption of BAUERLE'S result to our situation
reads

^P ^ ( 1 6 )
-C

with rj - liniy^ao E(Xj) =Pn/(P\2 + Pii)i the stationary probability for state two.
The method used for the calculation of the ruin probability can be adapted.
We start by noting that for u > 0, £, (u) and £2 (u) are connected in the follow-
ing manner:

d jA (17)
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^(u) = p21^(u + i)+p22i2(u-\) + l. (18)

For 0 < u < 1 equation (17) becomes

€l(u)-PnZl(u + jr)=l. (19)

For 1 < u < 2 combining (17) and (18) leads to

(19)

M/>2ifi(«-i + :M + i) + 1
 (20 )

Finally, for w>2 combining (17) and (18) yields

- l + w) +^22^2(«- 2) + l) + 1

(21)

We are now re-using the symbols we introduced earlier while calculating the
ruin probability. Writing ®(&) = £,\{jj) we get

for 0 < k < N,

\ N ) + (p2l-pn)®(k-N+l)+pn+p2l for k>N.

Given $(0), the 7V+1 starting values O(0),..., <b(N) can be calculated immedi-
ately from (22),

<S>Qc)= V " — ^ - ^ forO<A:<iV, (23)
Pi i

and in the sequel the values of ®(£) for all k > N can be calculated from the
linear difference equation of order TV + 1,
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+p2V (24)

From the values of O(fc) resp. £x(ii) we get the values for £,2(u) with (18).
Due to the above mentioned asymptotic behaviour of £,\(u) we incidentally
know a general solution of (24), $>(k) = k/((N+ l)rj- l)+const. We will make
use of this in section 7.

6. THE INITIAL VALUES FOR THE EXPECTED RUIN TIME

For J e No define./} as zero except for/0 -Pu,fN=P2\ ~Pu and/^+j -p12. Then
we can write (22) as

(25)

where SkN_x is the KRONECKER symbol, I{k>N} is the indicator function and
ke No. We are now partially following DICKSON and WATERS'S (1992) calcu-
lation of the initial value for the ruin probability when the aggregate claim
amount is compound POISSON.

For |s| < 1 we define J(s) - 2"=0
s>c®(&)• Note that since <D(A:) = Z^jf) -

O(k) the sum converges absolutely for every \s\< 1. Further let H(s) = 2A°=OS -/it-

Then

k=0 \j=0

oo k
\-l k

k=N

k=0 j=0 J k=0 * J (26)

)-/o

i-s

and hence

07)
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Now note that J(s) < °° for all |*| < 1. Hence, if we are putting a zero 0 < a < 1
of the denominator in the above formula we find that the numerator has to be
zero, too. Recall that fj is zero except for f0 -pu, fN = p2\ - P\ j and/^+j = p22,
hence

\ - -H(s) = -(s-pn- (p2l-pn)s
N-p22s

N+l). (28)

No matter if p2i -p\\ is positive, negative or zero, we have two changes of the
sign in the sequence of the coefficients of the polynomial p(s) = -pu+ s-(pn-
Pu)sN-Pi2sN+l- By DESCARTES' rulep(s) has none or two positive roots. Since
p{\) = 0,p'{\) = p2\-N pn<0 andp(O) = -pu <0 there must be a second (sin-
gle) root a less than 1. It can be determined numerically. With this a we get

(29)
P2l{\-a)

With (18) we find £2(0) =p2i £,(^) + 1, hence with (23) we get

(30)

As an example let/?12 = 0.025 andp2l = 0.2, so the net premium is | . Choosing
7V= 10 we obtain a = 0.994387..., ^(0) = 195.5 and <̂ 2(0) « 40.9. ^(u) for
some further values of u can be found in the following table 2.

u

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

195.5
199:4
203.5
207.7
212.0
216.4
221.0
225.6
230.4
235.2

194.4
198.9
203.4
207.9
212.4
216.9
221.4
225.9
230.4
234.9

TABLE 2

NUMERICAL EXAMPLE FOR

40.9
41.7
42.5
43.4
44.3
45.2
46.1
47.1
48.0
49.0

42(«)
23.9
28.4
32.9
37.4
41.9
46.4
50.9
55.4
59.9
64.4

u

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

Si(«0

240.2
285.1
329.9
374.8
419.8
464.7
509.6
554.6
599.6
644.5

239.4
284.4
329.4
374.4
419.4
464.4
509.4
554.4
599.4
644.4

82.6
124.9
167.8
211.0
254.6
298.5
342.6
386.9
431.3
475.8

U«)
68.9
113.9
158.9
203.9
248.9
293.9
338.9
383.9
428.9
473.9

7. AN APPROXIMATION FOR THE EXPECTED RUIN TIME

The numerical calculation of the expected ruin time using (24) is not stable.
Due to machine rounding errors, for "large" values of k (in our example for
about k > 2000, i.e. u > 200) it seems appropriate to use a linear approximation.
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def

Our aim in this section is to find ate M. (i= 1,2) for £,(w) = a,+ w/((l + c)rj-c)
so that limM_^oo{4(«)~'f,(")}=0. We first turn to ax and the equivalent formu-
lation

(31)

Associated with the difference equations (11) and (24) is the companion matrix

A =

0
0

0

1
0

0

0
1

P22 Pu~
Pw Pw 0

"-. 0
0 1

0 £

(32)

and the characteristic polynomial q(s) = -p22-(p2\ ~P\\)s + sN-pns
N+l (mul-

tiplied with (~l)N pn). We recall our analysis of p(s) from the previous section
and note that, for s ̂  0, q(s) - 0 if and only if p(l/s) = 0. Hence from the cal-
culation of (29) we get the only zero sx = Ma of q(s) with absolute value
greater than 1. This eigenvalue of A makes the system unstable. Next we have
s2 = 1 as a single zero, which is the only zero of p(s) resp. <7(s) on the unit
circle. This can be seen with the help of the generating function gx* of Xl
from section 4. We have

foi\s\< 1. (33)

Now if p{ek) = 0 with 0 < T < 2n, then gx'(e") = eiz, i.e. the FOURIER transform
of X] takes the absolute value 1. With FELLER'S lemma XV. 1.4 we see that
this is possible only for T = Inn IN (n-l,..., N- 1), but then gx'(e") - 1 / eh.

<&k, k > 0, is a solution of the homogeneous system (11), which can also be
written as

(34)

Since we already know that O* is asymptotic (at most) linear, i.e. O/t+1/Ot—>1
as k—>°o, we see that the starting vector (<D0, ...,Q>N^h $>N)T doesn't have a
component in the direction of an eigenvector of s{ = I/a. (After a certain
number of iterations roundoff errors may violate this condition and make
the numerical solution grow exponentially). As shown before, the eigenvalue
s2 = 1 dominates the remaining eigenvalues. Hence from the JORDAN canonical
form of A we conclude
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.., O#_!, 6 ^ for k^°°, (35)

where 5 e [R^+Dx^+D is gjven by 5(1, . . . . l ) r = (1, . . . , l ) r , 5 = **> with xT

given by y4xr = xT and j> given by yA = y. We can take x - (1, ..., 1) and y =
jvfl2'-P21 (P22,̂ i2, -,Pn,-Pu)- So we finally see that

l-Pu^Ny (36)

Note that with the starting values (10) we would have <IV—>0 as expected.
There remains to adjust ax for the current starting values. We obtain

__ *™ Pix , (N+\)N(pn+p22)pi2

' ^'*Pn-Pu 2(Npu-p2iy

With the help of (17) and (18) we get

«2-«i Npl2-p21 •

In our example we have o.\ ~ 194.4, a2~23.9, and the approximation is better
than 0.01 for about u > 34. See also the values given for <f,-(w) in table 2.
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